Fabrication of Metallic Micro-/Nano-Composite Materials for Environmental Applications
Funding
Conflicts of Interest
References
- Lai, X.; Halpert, J.E.; Wang, D. Recent Advances in Micro-/Nano-Structured Hollow Spheres for Energy Applications: From Simple to Complex Systems. Energy Environ. Sci. 2012, 5, 5604–5618. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, H.; Yin, J.; Gao, W.; Jin, H.; Jian, J.; Jin, Q. Batch Fabrication of Miniaturized Ag/AgCl Reference Electrode With Ion Exchanging Micro-Nano-Pores by Silicon-Base Double-Side Anisotropic Etching Process. J. Microelectromech. Syst. 2019, 28, 817–823. [Google Scholar] [CrossRef]
- Yuan, D.; Lin, W.; Guo, R.; Wong, C.P.; Das, S. The Fabrication of Vertically Aligned and Periodically Distributed Carbon Nanotube Bundles and Periodically Porous Carbon Nanotube Films through a Combination of Laser Interference Ablation and Metal-Catalyzed Chemical Vapor Deposition. Nanotechnology 2012, 23, 215303. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.H.; Kim, G.T. Synthesis of Ceramic Microfiltration Membranes for Oil/Water Separation. Sep. Sci. Technol. 1997, 32, 2927–2943. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, C.; Zhao, G.; Li, C.; Liu, L.; Yu, J.; Jiao, F. Electrospun Composite Membrane with Superhydrophobic-Superoleophilic for Efficient Water-in-Oil Emulsion Separation and Oil Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125158. [Google Scholar] [CrossRef]
- Sirkar, K.K. Membrane Separation Technologies: Current Developments. Chem. Eng. Commun. 1997, 157, 145–184. [Google Scholar] [CrossRef]
- Jiang, Z.; Chu, L.; Wu, X.; Wang, Z.; Jiang, X.; Ju, X.; Ruan, X.; He, G. Membrane-Based Separation Technologies: From Polymeric Materials to Novel Process: An Outlook from China. Rev. Chem. Eng. 2020, 36, 67–105. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Q. Application of Membrane Separation Technology in Water Treatment Process. IOP Conf. Ser. Earth Environ. Sci. 2020, 508, 012048. [Google Scholar] [CrossRef]
- Vorotyntsev, V.M.; Malyshev, V.M.; Vorotyntsev, I.V. High Purification of Gases by the Hybrid Gas Hydrate-Membrane Method. Pet. Chem. 2014, 54, 491–497. [Google Scholar] [CrossRef]
- Padaki, M.; Surya Murali, R.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.A.; Hilal, N.; Ismail, A.F. Membrane Technology Enhancement in Oil–Water Separation. A Review. Desalination 2015, 357, 197–207. [Google Scholar] [CrossRef]
- Yalcinkaya, F.; Boyraz, E.; Maryska, J.; Kucerova, K. A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment. Materials 2020, 13, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Liao, F.; Guo, Y.; Liang, L. Preparation and Performance of Superhydrophilic and Superoleophobic Membrane for Oil/Water Separation. Prog. Chem. 2019, 31, 144–155. [Google Scholar] [CrossRef]
- García, A.; Rodríguez, B.; Giraldo, H.; Quintero, Y.; Quezada, R.; Hassan, N.; Estay, H. Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. Membranes 2021, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H. Fabrication of Superhydrophobic Surfaces. J. Adhes. Sci. Technol. 2008, 22, 235–250. [Google Scholar] [CrossRef]
- Khorasani, M.T.; Mirzadeh, H.; Kermani, Z. Wettability of Porous Polydimethylsiloxane Surface: Morphology Study. Appl. Surf. Sci. 2005, 242, 339–345. [Google Scholar] [CrossRef]
- Lee, M.W.; An, S.; Latthe, S.S.; Lee, C.; Hong, S.; Yoon, S.S. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil. ACS Appl. Mater. Interfaces 2013, 5, 10597–10604. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Z.; Yu, X.; Shi, F.; Xu, H.; Zhang, X.; Smet, M.; Dehaen, W. Self-Assembled Monolayers of Dendron Thiols for Electrodeposition of Gold Nanostructures: Toward Fabrication of Superhydrophobic/Superhydrophilic Surfaces and PH-Responsive Surfaces. Langmuir 2005, 21, 1986–1990. [Google Scholar] [CrossRef]
- Han, J.; Cai, M.; Lin, Y.; Liu, W.; Luo, X.; Zhang, H.; Zhong, M. 3D Re-Entrant Nanograss on Microcones for Durable Superamphiphobic Surfaces via Laser-Chemical Hybrid Method. Appl. Surf. Sci. 2018, 456, 726–736. [Google Scholar] [CrossRef]
- Kwon, M.H.; Shin, H.S.; Chu, C.N. Fabrication of a Super-Hydrophobic Surface on Metal Using Laser Ablation and Electrodeposition. Appl. Surf. Sci. 2014, 288, 222–228. [Google Scholar] [CrossRef]
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I.; Chabrol, G.; Perry, C.C. Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces. Adv. Mater. 2004, 16, 1929–1932. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Mo, J.; Sun, R.; Li, Z.; Guo, Z. Fabrication of Superhydrophobic Aluminum Surface by Droplet Etching and Chemical Modification. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 205–212. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. Superhydrophobic Surfaces: From Structural Control to Functional Application. J. Mater. Chem. 2008, 18, 621–633. [Google Scholar] [CrossRef]
- Zhao, Z. Research Progress of Semiconductor Photocatalysis Applied to Environmental Governance. IOP Conf. Ser. Earth Environ. Sci. 2021, 631, 012022. [Google Scholar] [CrossRef]
- Robertson, P.K.J.; Robertson, J.M.C.; Bahnemann, D.W. Removal of Microorganisms and Their Chemical Metabolites from Water Using Semiconductor Photocatalysis. J. Hazard. Mater. 2012, 211, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Younis, S.A.; Kim, K.-H. Heterogeneous Photocatalysis Scalability for Environmental Remediation: Opportunities and Challenges. Catalysts 2020, 10, 1109. [Google Scholar] [CrossRef]
- Pillai, S.C.; Štangar, U.L.; Byrne, J.A.; Pérez-Larios, A.; Dionysiou, D.D. Photocatalysis for Disinfection and Removal of Contaminants of Emerging Concern. Chem. Eng. J. 2015, 261, 1–2. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef]
- Li, N.; Tian, Y.; Zhang, J.; Sun, Z.; Zhao, J.; Zhang, J.; Zuo, W. Precisely-Controlled Modification of PVDF Membranes with 3D TiO2/ZnO Nanolayer: Enhanced Anti-Fouling Performance by Changing Hydrophilicity and Photocatalysis under Visible Light Irradiation. J. Membr. Sci. 2017, 528, 359–368. [Google Scholar] [CrossRef]
- Song, H.; Shao, J.; He, Y.; Hou, J.; Chao, W. Natural Organic Matter Removal and Flux Decline with Charged Ultrafiltration and Nanofiltration Membranes. J. Membr. Sci. 2011, 376, 179–187. [Google Scholar] [CrossRef]
- Tada, H.; Hattori, A.; Tokihisa, Y.; Imai, K.; Tohge, N.; Ito, S. A Patterned-TiO2/SnO2 Bilayer Type Photocatalyst. J. Phys. Chem. B 2000, 104, 4585–4587. [Google Scholar] [CrossRef]
- Farhadi, S.; Zaidi, M. Polyoxometalate–Zirconia (POM/ZrO2) Nanocomposite Prepared by Sol–Gel Process: A Green and Recyclable Photocatalyst for Efficient and Selective Aerobic Oxidation of Alcohols into Aldehydes and Ketones. Appl. Catal. A Gen. 2009, 354, 119–126. [Google Scholar] [CrossRef]
- Di, T.; Xu, Q.; Ho, W.; Tang, H.; Xiang, Q.; Yu, J. Review on Metal Sulphide-Based Z-Scheme Photocatalysts. ChemCatChem 2019, 11, 1394–1411. [Google Scholar] [CrossRef]
- Al-Halhouli, M.; Kieninger, J.; Yurchenko, O.; Urban, G. Mass Transport and Catalytic Activity in Hierarchical/Non-Hierarchical and Internal/External Nanostructures: A Novel Comparison Using 3D Simulation. Appl. Catal. A Gen. 2016, 517, 12–20. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Y.; Liu, B.; Yang, Y. Metallic Nanocatalysis: An Accelerating Seamless Integration with Nanotechnology. Small 2015, 11, 268–289. [Google Scholar] [CrossRef]
- Li, H.; Liao, J.; Du, Y.; You, T.; Liao, W.; Wen, L. Magnetic-Field-Induced Deposition to Fabricate Multifunctional Nanostructured Co, Ni, and CoNi Alloy Films as Catalysts, Ferromagnetic and Superhydrophobic Materials. Chem. Commun. 2013, 49, 1768. [Google Scholar] [CrossRef]
- Sahoo, G.P.; Kumar Bhui, D.; Das, D.; Misra, A. Synthesis of Anisotropic Gold Nanoparticles and Their Catalytic Activities of Breaking Azo Bond in Sudan-1. J. Mol. Liq. 2014, 198, 215–222. [Google Scholar] [CrossRef]
- Hu, H.; Xin, J.H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y. Synthesis and Stabilization of Metal Nanocatalysts for Reduction Reactions–a Review. J. Mater. Chem. A 2015, 3, 11157–11182. [Google Scholar] [CrossRef]
- Sun, H.; Park, S.-J. Highly Efficient Reduction of Aqueous Cr(VI) with Novel ZnO/SnS Nanocomposites through the Piezoelectric Effect. J. Environ. Sci. 2022, 118, 57–66. [Google Scholar] [CrossRef]
- Nie, G.; Yao, Y.; Duan, X.; Xiao, L.; Wang, S. Advances of Piezoelectric Nanomaterials for Applications in Advanced Oxidation Technologies. Curr. Opin. Chem. Eng. 2021, 33, 100693. [Google Scholar] [CrossRef]
- Shi, J.; Starr, M.B.; Wang, X. Band Structure Engineering at Heterojunction Interfaces via the Piezotronic Effect. Adv. Mater. 2012, 24, 4683–4691. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Chang, W.E.; Chang, Y.T.; Chang, C.-K. Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers. Adv. Mater. 2016, 28, 3718–3725. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Qian, W.; Zhang, D.; Zhao, X.; Zhang, X.; Li, C.; Bowen, C.R.; Yang, Y. A Coupled Photo-Piezo-Catalytic Effect in a BST-PDMS Porous Foam for Enhanced Dye Wastewater Degradation. Nano Energy 2020, 77, 105305. [Google Scholar] [CrossRef]
- Lin, H.; Wu, Z.; Jia, Y.; Li, W.; Zheng, R.-K.; Luo, H. Piezoelectrically Induced Mechano-Catalytic Effect for Degradation of Dye Wastewater through Vibrating Pb(Zr0.52Ti0.48)O3 Fibers. Appl. Phys. Lett. 2014, 104, 162907. [Google Scholar] [CrossRef]
- Hong, K.-S.; Xu, H.; Konishi, H.; Li, X. Piezoelectrochemical Effect: A New Mechanism for Azo Dye Decolorization in Aqueous Solution through Vibrating Piezoelectric Microfibers. J. Phys. Chem. C 2012, 116, 13045–13051. [Google Scholar] [CrossRef]
- Qian, W.; Zhao, K.; Zhang, D.; Bowen, C.R.; Wang, Y.; Yang, Y. Piezoelectric Material-Polymer Composite Porous Foam for Efficient Dye Degradation via the Piezo-Catalytic Effect. ACS Appl. Mater. Interfaces 2019, 11, 27862–27869. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Lu, X.; He, M.; Duan, X.; Yan, B.; Chen, G.; Wang, S. Catalytic Membrane-Based Oxidation-Filtration Systems for Organic Wastewater Purification: A Review. J. Hazard. Mater. 2021, 414, 125478. [Google Scholar] [CrossRef] [PubMed]
- Florean, B.; Viziteu, G.; Niagu, A.; Pruteanu, A. An Overview of Composite Materials Technology and Their Development in Multisectorial Applications. In Proceedings of the 2012 International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania, 25–27 October 2012; pp. 100–103. [Google Scholar]
- Hasan, M.; Zhao, J.; Jiang, Z. Micromanufacturing of Composite Materials: A Review. Int. J. Extrem. Manuf. 2019, 1, 012004. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Li, C.; Liu, R. Porous Nanofibrous Superhydrophobic Membrane with Embedded Au Nanoparticles for the Integration of Oil/Water Separation and Catalytic Degradation. J. Membr. Sci. 2019, 582, 350–357. [Google Scholar] [CrossRef]
- Li, F.; Kong, W.; Zhao, X.; Pan, Y. Multifunctional TiO2-Based Superoleophobic/Superhydrophilic Coating for Oil–Water Separation and Oil Purification. ACS Appl. Mater. Interfaces 2020, 12, 18074–18083. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, X.; Zhou, R.; Liu, H.; Han, G. Fabrication of Metallic Micro-/Nano-Composite Materials for Environmental Applications. Coatings 2022, 12, 1946. https://doi.org/10.3390/coatings12121946
Xing X, Zhou R, Liu H, Han G. Fabrication of Metallic Micro-/Nano-Composite Materials for Environmental Applications. Coatings. 2022; 12(12):1946. https://doi.org/10.3390/coatings12121946
Chicago/Turabian StyleXing, Xiaohan, Rui Zhou, Hongjun Liu, and Gang Han. 2022. "Fabrication of Metallic Micro-/Nano-Composite Materials for Environmental Applications" Coatings 12, no. 12: 1946. https://doi.org/10.3390/coatings12121946
APA StyleXing, X., Zhou, R., Liu, H., & Han, G. (2022). Fabrication of Metallic Micro-/Nano-Composite Materials for Environmental Applications. Coatings, 12(12), 1946. https://doi.org/10.3390/coatings12121946