Evaluation of the Effect of Various Cementation Protocols Used for 10% Zirconia-Reinforced Lithium Glass Ceramic Veneer on Shear Bond Strength to Resin Cement (An In Vitro Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Specimens
2.2. Grouping the Sample
2.3. Shear Bond Strength Test (SBS)
2.4. Failure Mode Investigation
- Adhesive failure: fracture between ceramic and resin.
- Cohesive failure: include internal fracture of ceramic or resin cement.
- Mixed failure: include adhesive with cohesive in the ceramic or resin cement.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sannino, G.; Germano, F.; Arcuri, L.; Bigelli, E.; Arcuri, C.; Barlattani, A. CEREC CAD/CAM chairside system. ORAL Implantol. 2014, 7, 57–70. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, J.; Jia, L.; Tan, X.; Xie, C.; Yu, H. Shear bond strength of ceramic laminate veneers to finishing surfaces with different percentages of preserved enamel under a digital guided method. BMC Oral Health 2022, 22, 3. [Google Scholar] [CrossRef]
- Alhussain, B.S.; Almawh, A.A.; Almuhanna, A.S.; Hamad, A. Dentists’ Perception about Chair-Side CAD/CAM; a cross-sectional study in Riyadh, Saudi Arabia. Arch. Pharm. Pract. 2022, 13, 46–52. [Google Scholar]
- Özcan, M.; Vallittu, P.K. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent. Mater. 2003, 19, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.E.; Leite, F.P.; Queiroz, J.R.; Vanderlei, A.D.; Reskalla, H.N.; Ozcan, M. Does the ultrasonic cleaning medium affect the adhesion of resin cement to feldspathic ceramic? J. Adhes. Dent. 2012, 14, 507–509. [Google Scholar] [CrossRef]
- Öztürk, E.; Bolay, Ş.; Hickel, R.; Ilie, N. Shear bond strength of porcelain laminate veneers to enamel, dentine and enamel-dentine complex bonded with different adhesive luting systems. J. Dent. 2013, 41, 97–105. [Google Scholar]
- Özcan, M.; Allahbeickaraghi, A.; Dündar, M. Possible hazardous effects of hydrofluoric acid and recommendations for treatment approach: A review. Clin. Oral Investig. 2012, 16, 15–23. [Google Scholar] [CrossRef]
- Canay, Ş.; Hersek, N.; Ertan, A. Effect of different acid treatments on a porcelain surface. J. Oral Rehabil. 2001, 28, 95–101. [Google Scholar]
- Fornaini, C.; Poli, F.; Merigo, E.; Brulat-Bouchard, N.; El Gamal, A.; Rocca, J.P.; Selleri, S.; Cucinotta, A. Disilicate dental ceramic surface preparation by 1070 nm fiber laser: Thermal and ultrastructural analysis. Bioengineering 2018, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.R.; Oka, K.; Kawano, T.; Goto, T.; Ichikawa, T. Carbon dioxide laser application enhances the effect of silane primer on the shear bond strength between porcelain and composite resin. Dent. Mater. J. 2010, 29, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, G.; Ariki, E.K.; Federico, C.D.; Galhano, G.; Zamboni, S.; Baldissara, P.; Bottino, M.A.; Valandro, L.F. Effect of acid neutralization and mechanical cycling on the microtensile bond strength of glass-ceramic inlays. Oper. Dent. 2009, 34, 211–216. [Google Scholar] [CrossRef]
- Giraldo, T.C.; Villada, V.R.; Castillo, M.P.; Gomes, O.M.M.; Bittencourt, B.F.; Dominguez, J.A. Active and passive application of the phosphoric acid on the bond strength of lithium disilicate. Braz. Dent. J. 2016, 27, 90–94. [Google Scholar] [CrossRef]
- Corado, H.P.R.; da Silveira, P.H.P.M.; Ortega, V.L.; Ramos, G.G.; Elias, C.N. Flexural Strength of Vitreous Ceramics Based on Lithium Disilicate and Lithium Silicate Reinforced with Zirconia for CAD/CAM. Int. J. Biomater. 2022, 2022, 5896511. [Google Scholar] [CrossRef]
- Mavriqi, L.; Valente, F.; Murmura, G.; Sinjari, B.; Macrì, M.; Trubiani, O.; Caputi, S.; Traini, T. Lithium disilicate and zirconia reinforced lithium silicate glass-ceramics for CAD/CAM dental restorations: Biocompatibility, mechanical and microstructural properties after crystallization. J. Dent. 2022, 119, 104054. [Google Scholar] [CrossRef]
- da Silva, L.H.; de Lima, E.; de Paula Miranda, R.B.; Favero, S.S.; Lohbauer, U.; Cesar, P.F. Dental ceramics: A review of new materials and processing methods. Braz. Oral Res. 2017, 31, 133–146. [Google Scholar] [CrossRef]
- Gracis, S.; Thompson, V.P.; Ferencz, J.L.; Silva, N.R.F.A.; Bonfante, E.A. A New Classification System for All-Ceramic and Ceramic-like Restorative Materials. International Journal of Prosthodontics. Int. J. Prosthodont. 2015, 28, 227–235. [Google Scholar]
- Peumans, M.; Valjakova, E.B.; De Munck, J.; Mishevska, C.B.; Van Meerbeek, B. Bonding effectiveness of luting composites to different CAD/CAM materials. J. Adhes. Dent. 2016, 18, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Nagayassu, M.P.; Shintome, L.K.; Uemura, E.S.; de Araújo, J.E.J. Effect of surface treatment on the shear bond strength of a resin-based cement to porcelain. Braz. Dent. J. 2006, 17, 290–295. [Google Scholar] [CrossRef]
- Kansu, G.; Gökdeniz, B. Effects of different surface-treatment methods on the bond strengths of resin cements to full-ceramic systems. J. Dent. Sci. 2011, 6, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Abuelenain, D.A.; Linjawi, A.I.; Alghamdi, A.S.; Alsadi, F.M. The effect of various mechanical and chemical surface conditioning on the bonding of orthodontic brackets to all ceramic materials. J. Dent. Sci. 2021, 16, 370–374. [Google Scholar] [CrossRef]
- Moura, D.M.D.; Araújo, A.M.M.; Souza, K.B.; Veríssimo, A.H.; Tribst, J.P.M.; Souza, R.O.A.E. Hydrofluoric acid concentration, time and use of phosphoric acid on the bond strength of feldspathic ceramics. Braz. Oral Res. 2020, 34, e018. [Google Scholar]
- dos Santos, D.M.; Bitencourt, S.B.; da Silva, E.V.F.; Matos, A.O.; Benez, G.d.C.; Rangel, E.C.; Pesqueira, A.A.; Barão, V.A.R.; Goiato, M.C. Bond strength of lithium disilicate after cleaning methods of the remaining hydrofluoric acid. J. Clin. Exp. Dent. 2020, 12, e103–e107. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar]
- Ayad, M.F.; Rosenstiel, S.F. Effect of surface treatment on roughness and bond strength of a heat-pressed ceramic. J. Prosthet. Dent. 2008, 99, 123–130. [Google Scholar] [CrossRef]
- Tian, T.; Tsoi, J.K.H.; Matinlinna, J.P.; Burrow, M.F. Aspects of bonding between resin luting cements and glass ceramic materials. Dent. Mater. 2014, 30, e147–e162. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, B.; Motwani, B.K.; Binalrimal, S.; Radwan, W.; Robaian, A.; Zidane, B.; Al Wadei, M.H.D.; Veeraraghavan, V.P.; Bhandi, S.; et al. The Effect of Different Surface Conditioning Techniques on the Bonding between Resin Cement & Ceramic. Coatings 2022, 12, 399. [Google Scholar] [CrossRef]
- Zimmermann, M.; Mehl, A.; Reich, S. New CAD/CAM materials and blocks for chairside procedures. Int. J. Comput. Dent. 2013, 16, 173–181. [Google Scholar]
- Lung, C.Y.K.; Matinlinna, J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012, 28, 467–477. [Google Scholar] [CrossRef]
- Blackburn, C.; Rask, H.; Awada, A. Mechanical properties of resin-ceramic CAD-CAM materials after accelerated aging. J. Prosthet. Dent. 2018, 119, 954–958. [Google Scholar] [CrossRef]
- Mazumdar, P.; Singh, S.; Das, D. Methos of assessing the bond strength of dental restorative materials; An overview. IOSR J. Dent. Med. Sci. 2021, 20, 28–32. [Google Scholar] [CrossRef]
- Murillo-Gómez, F.; Rueggeberg, F.A.; De Goes, M.F. Short-and Long-Term BondStrength Between Resin Cementand Glass-Ceramic Using a Silane-Containing Universal Adhesive. Oper. Dent. 2017, 42, 514–525. [Google Scholar] [CrossRef]
- Romanini-Junior, J.C.; Kumagai, R.Y.; Ortega, L.F.; Rodrigues, J.A.; Cassoni, A.; Hirata, R.; Reis, A.F. Adhesive/silane application effects on bond strength durability to a lithium disilicate ceramic. J. Esthet. Restor. Dent. 2018, 30, 346–351. [Google Scholar] [CrossRef]
Material | Exp. Date | Manufacturer |
---|---|---|
Celtra Duo block HT A1 C14 | 1 November 2033 | DeguDent GmbH/Germany |
N- Etch. Etching Gel 37% Phosphoric acid | 24 March 2023 | Ivoclar Vivadent/Liechenstein |
Tetric N-Bond Universal | 10 July 2022 | Ivoclar Vivadent/Liechenstein |
Monobond N | 15 October 2022 | Ivoclar Vivadent/Liechenstein |
Variolink Esthetic neutral light-curing cement | 9 January 2023 | Ivoclar Vivadent/Liechenstein |
Condac porcelain, Hydrofluoric acid 10% | 12 May 2023 | FGM, Joinville, SC, Brazil |
Group Name | Type of Ceramic Fitting Surface Treatment | Bonding Application Method |
---|---|---|
G1 | Without treatment (control group) | - |
GII | HF acid, US, and coupling agent only | - |
GIII | HF acid, US, silane coupling agent, and bonding | Light curing the bonding on the ceramic fitting surface after application of resin cement cylinder |
GIV | HF acid, US, 37% phosphoric acid, US, coupling agent, and bonding agent | |
GV | HF acid, US, coupling agent, and bonding | Light curing the bonding of ceramic fitting surface for 15 s before the application of resin cement cylinder |
GVI | HF acid, US, 37% phosphoric acid, (US), coupling agent, and bonding agent. |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 577.978 | 5 | 115.596 | 27.438 | 0.000 |
Within Groups | 227.502 | 54 | 4.213 | ||
Total | 805.480 | 59 |
Groups | Mean ± St. Deviation |
---|---|
GI a | 2.62 ± 1.07 |
Gil b | 9.14 ± 2.108 |
GIll c | 12.64 ± 2.67 |
GlV bc | 10.89 ± 2.45 |
GV b | 9.35 ± 1.905 |
GVl b | 9.36 ± 1.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zahawi, A.R. Evaluation of the Effect of Various Cementation Protocols Used for 10% Zirconia-Reinforced Lithium Glass Ceramic Veneer on Shear Bond Strength to Resin Cement (An In Vitro Study). Coatings 2022, 12, 1931. https://doi.org/10.3390/coatings12121931
Al-Zahawi AR. Evaluation of the Effect of Various Cementation Protocols Used for 10% Zirconia-Reinforced Lithium Glass Ceramic Veneer on Shear Bond Strength to Resin Cement (An In Vitro Study). Coatings. 2022; 12(12):1931. https://doi.org/10.3390/coatings12121931
Chicago/Turabian StyleAl-Zahawi, Abdulsalam Rasheed. 2022. "Evaluation of the Effect of Various Cementation Protocols Used for 10% Zirconia-Reinforced Lithium Glass Ceramic Veneer on Shear Bond Strength to Resin Cement (An In Vitro Study)" Coatings 12, no. 12: 1931. https://doi.org/10.3390/coatings12121931