Polycrystalline Silicon Thin Films for Solar Cells via Metal-Induced Layer Exchange Crystallization
Funding
Conflicts of Interest
References
- Peibst, R. Still in the game. Nat. Energy 2021, 6, 333–334. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Wu, Y.; Yang, G.; Mazzarella, L.; Procel-Moya, P.; Tamboli, A.C.; Weber, K.; Boccard, M.; Isabella, O.; et al. High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Mat. Sci. Eng. 2020, 142, 100579. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2021; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- Van Gestel, D.; Gordon, I.; Poortmans, J. Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective. Sol. Energy Mater. Sol. Cells 2013, 119, 261–270. [Google Scholar] [CrossRef]
- Haschke, J.; Amkreutz, D.; Rech, B. Liquid phase crystallized silicon on glass: Technology, material quality and back contacted heterojunction solar cells. Jpn. J. Appl. Phys. 2016, 55, 04EA04. [Google Scholar] [CrossRef]
- Tüzün Özmen, Ö.; Karaman, M.; Sedani, S.H.; Sağban, H.M.; Turan, R. Solid phase epitaxial thickening of boron and phosphorus doped polycrystalline silicon thin films formed by aluminium induced crystallization technique on glass substrate. Thin Solid Films 2019, 689, 137451. [Google Scholar] [CrossRef]
- Van Gestel, D.; Gordon, I.; Bender, H.; Saurel, D.; Vanacken, J.; Beaucarne, G.; Poortmans, J. Intragrain defects in polycrystalline silicon layers grown by aluminum-induced crystallization and epitaxy for thin-film solar cells. J. Appl. Phys. 2009, 105, 114507. [Google Scholar] [CrossRef]
- Bergmann, R.B. Crystalline Si thin-film solar cells: A review. Appl. Phys. A 1999, 69, 187–194. [Google Scholar] [CrossRef]
- Gall, S.; Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Lee, K.Y.; Rau, B.; Ruske, F.; Rech, B. Polycrystalline silicon thin-film solar cells on glass. Sol. Energy Mater. Sol. Cells 2009, 93, 1004–1008. [Google Scholar] [CrossRef]
- Toko, K.; Suemasu, T. Metal-induced layer exchange of group IV materials. J. Phys. D Appl. Phys. 2020, 53, 373002. [Google Scholar] [CrossRef]
- Wang, Z.; Jeurgens, L.P.H.; Mittemeijer, E.J. Metal-Induced Crystallization: Fundamentals and Applications, 1st ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Herd, S.R.; Chaudhari, P.; Brodsky, M.H. Metal contact induced crystallization in films of amorphous silicon and germanium. J. Non Cryst. Solids. 1972, 7, 309–327. [Google Scholar] [CrossRef]
- Wang, Z.; Jeurgens, L.P.H.; Wang, J.Y.; Mittemeijer, E.J. Fundamentals of Metal-induced Crystallization of Amorphous Semiconductors. Adv. Eng. Mater. 2009, 11, 131–135. [Google Scholar] [CrossRef]
- Knaepen, W.; Detavernier, C.; Van Meirhaeghe, R.L.; Jordan Sweet, J.; Lavoie, C. In-situ x-ray diffraction study of metal induced crystallization of amorphous silicon. Thin Solid Films 2008, 516, 4946–4952. [Google Scholar] [CrossRef]
- Pécz, B.; Vouroutzis, N.; Zoltán Radnóczi, G.; Frangis, N.; Stoemenos, J. Structural Characteristics of the Si Whiskers Grown by Ni-Metal-Induced-Lateral-Crystallization. Nanomaterials 2021, 11, 1878. [Google Scholar] [CrossRef]
- Nast, O.; Puzzer, T.; Koschier, L.M.; Sproul, A.B.; Wenham, S.R. Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature. Appl. Phys. Lett. 1998, 73, 3214. [Google Scholar] [CrossRef]
- Scholz, M.; Gjukic, M.; Stutzmann, M. Silver-induced layer exchange for the low-temperature preparation of intrinsic polycrystalline silicon films. Appl. Phys. Lett. 2009, 94, 012108. [Google Scholar] [CrossRef]
- Kishan Singh, C.; Tah, T.; Madapu, K.K.; Saravanan, K.; Ilango, S.; Dash, S. Au induced crystallization and layer exchange in a-Si/Au thin film on glass below and above the eutectic temperature. J. Non Cryst. Solids 2017, 460, 130–135. [Google Scholar] [CrossRef]
- Sarikov, A.; Schneider, J.; Berghold, J.; Muske, M.; Sieber, I.; Gall, S.; Fuhs, W. A kinetic simulation study of the mechanisms of aluminum induced layer exchange process. J. Appl. Phys. 2010, 107, 114318. [Google Scholar] [CrossRef]
- Schneider, J.; Klein, J.; Muske, M.; Gall, S.; Fuhs, W. Depletion regions in the aluminum-induced layer exchange process crystallizing amorphous Si. Appl. Phys. Lett. 2005, 87, 031905. [Google Scholar] [CrossRef]
- Usami, N.; Jung, M.; Suemasu, T. On the growth mechanism of polycrystalline silicon thin film by Al-induced layer exchange process. J. Cryst. Growth 2013, 362, 16–19. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, M.; Jeurgens, L.; Phillipp, L.P.H.F.; Mittemeijer, E.J. Real-time visualization of convective transportation of solid materials at nanoscale. Nano Lett. 2012, 12, 6126–6132. [Google Scholar] [CrossRef]
- Nast, O. The Aluminium-Induced Layer Exchange Forming Polycrystalline Silicon on Glass for Thin-Film Solar Cells. Ph.D. Thesis, Philipps-Universität, Marburg, Germany, 2000. [Google Scholar]
- Widenborg, P.I.; Aberle, A.G. Surface morphology of poly-Si films made by aluminium-induced crystallization on glass substrates. J. Cryst. Growth 2002, 242, 270–282. [Google Scholar] [CrossRef]
- Jaeger, C.; Bator, M.; Matich, S.; Stutzmann, M. Two-step crystallization during the reverse aluminum-induced layer exchange process. J. Appl. Phys. 2010, 108, 113513. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, Z.M.; Mittemeijer, E.J. Mechanism of aluminum-induced layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers. J. Appl. Phys. 2007, 102, 113523. [Google Scholar] [CrossRef]
- Kuraseko, H.; Orita, N.; Koaizawa, H.; Kondo, M. Inverted Aluminum-Induced Layer Exchange Method for Thin Film Polycrystalline Silicon Solar Cells on Insulating Substrates. Appl. Phys. Express. 2009, 2, 015501. [Google Scholar] [CrossRef]
- Zamchiy, A.O.; Baranov, E.A.; Maximovskiy, E.A.; Volodin, V.A.; Vdovin, V.I.; Gutakovskii, A.K.; Korolkov, I.V. Fabrication of polycrystalline silicon thin films from a-SiOx via the inverted aluminum-induced layer exchange process. Mater. Lett. 2020, 261, 127086. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Takata, N.; Hirota, T.; Ikeda, K.; Yoshida, F.; Nakashima, H. Nakashima, H. Low-Temperature Fabrication of Polycrystalline Si Thin Film Using Al-Induced Crystallization without Native Al Oxide at Amorphous Si/Al Interface. Jpn. J. Appl. Phys. 2005, 44, 4770. [Google Scholar] [CrossRef]
- Nast, O.; Wenham, S.R. Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization. J. Appl. Phys. 2000, 88, 124. [Google Scholar] [CrossRef]
- Chen, J.; Suwardy, J.; Subramani, T.; Jevasuwan, W.; Takei, T.; Toko, K.; Suemasu, T.; Fukata, N. Control of grain size and crystallinity of poly-Si films on quartz by Al-induced crystallization. CrystEngComm 2017, 19, 2305–2311. [Google Scholar] [CrossRef]
- Kurosawa, M.; Kawabata, N.; Sadoh, T.; Miyao, M. Orientation-controlled Si thin films on insulating substrates by Al-induced crystallization combined with interfacial-oxide layer modulation. Appl. Phys. Lett. 2009, 95, 132103. [Google Scholar] [CrossRef]
- Gall, S.; Muske, M.; Sieber, I.; Nast, O.; Fuhs, W. Aluminum-induced crystallization of amorphous silicon. J. Non Cryst. Solids. 2002, 299–302, 741–745. [Google Scholar] [CrossRef]
- Numata, R.; Toko, K.; Usami, N.; Suemasu, T. Large-grained (111)-oriented Si/Al/SiO2 structures formed by diffusion-controlled Al-induced layer exchange. Thin Solid Films 2014, 557, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Tankut, A.; Karaman, M.; Yildiz, I.; Canli, S.; Turan, R. Effect of Al vacuum annealing prior to a-Si deposition on aluminum-induced crystallization. Phys. Status Solidi A 2015, 212, 2702–2707. [Google Scholar] [CrossRef]
- Zamchiy, A.O.; Baranov, E.A.; Merkulova, I.E.; Khmel, S.Y.; Maximovskiy, E.A. Determination of the oxygen content in amorphous SiOx thin films. J. Non Cryst. Solids. 2019, 518, 43–50. [Google Scholar] [CrossRef]
- Yoon, J.-H. Fabrication of polycrystalline silicon films by Al-induced crystallization of silicon-rich oxide films. Phys. Status Solidi RRL 2016, 10, 68–672. [Google Scholar] [CrossRef]
- Zamchiy, A.O.; Baranov, E.A.; Konstantinov, V.O.; Lunev, N.A.; Sakhapov, S.Z.; Korolkov, I.V.; Volodin, V.A. Activation energy of gold-induced crystallization of amorphous silicon suboxide films. Mater. Lett. 2022, 323, 132566. [Google Scholar] [CrossRef]
- Zamchiy, A.O.; Baranov, E.A.; Khmel, S.Y.; Volodin, V.A.; Vdovin, V.I.; Gutakovskii, A.K. Aluminum-induced crystallization of silicon suboxide thin films. Appl. Phys. A 2018, 124, 1–4. [Google Scholar] [CrossRef]
- Zamchiy, A.O.; Baranov, E.A.; Merkulova, I.E.; Korolkov, I.V.; Vdovin, V.I.; Gutakovskii, A.K.; Volodin, V.A. Layer exchange during aluminum-induced crystallization of silicon suboxide thin films. Mater. Lett. 2021, 293, 129723. [Google Scholar] [CrossRef]
- Gordon, I.; Carnel, L.; Van Gestel, D.; Beaucarne, G.; Poortmans, J. Fabrication and characterization of highly efficient thin-film polycrystalline-silicon solar cells based on aluminium-induced crystallization. Thin Solid Films 2008, 516, 6984–6988. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamchiy, A.O.; Baranov, E.A. Polycrystalline Silicon Thin Films for Solar Cells via Metal-Induced Layer Exchange Crystallization. Coatings 2022, 12, 1926. https://doi.org/10.3390/coatings12121926
Zamchiy AO, Baranov EA. Polycrystalline Silicon Thin Films for Solar Cells via Metal-Induced Layer Exchange Crystallization. Coatings. 2022; 12(12):1926. https://doi.org/10.3390/coatings12121926
Chicago/Turabian StyleZamchiy, Alexandr O., and Evgeniy A. Baranov. 2022. "Polycrystalline Silicon Thin Films for Solar Cells via Metal-Induced Layer Exchange Crystallization" Coatings 12, no. 12: 1926. https://doi.org/10.3390/coatings12121926
APA StyleZamchiy, A. O., & Baranov, E. A. (2022). Polycrystalline Silicon Thin Films for Solar Cells via Metal-Induced Layer Exchange Crystallization. Coatings, 12(12), 1926. https://doi.org/10.3390/coatings12121926