IP–ZrO2/BC Nanofiltration Membranes: Preparation and Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Membranes
2.3. Membrane Characterization
2.4. Performance of IP–ZrO2/BC–NFM
2.4.1. Contact Angle of IP–ZrO2/BC–NFM
2.4.2. Pure Water Flux of IP–ZrO2/BC–NFM
2.4.3. Retention Rate of IP–ZrO2/BC–NFM
2.4.4. Molecular Weight Cut–Off of IP–ZrO2/BC–NFM
2.4.5. Acid and Alkali Resistance of IP–ZrO2/BC–NFMs
3. Results and Discussion
3.1. Optimization of IP–ZrO2/BC–NFM by Interfacial Polymerization
3.2. Morphology Analysis of IP–ZrO2/BC–NFM
3.3. FT–IR Analysis of IP–ZrO2/BC–NFM
3.4. XRD of IP–ZrO2/BC–NFM
3.5. TGA Analysis of IP–ZrO2/BC–NFM
3.6. Performance Test of IP–ZrO2/BC–NFM
3.7. Acid and Alkaline Resistance of IP–ZrO2/BC–NFM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Ma, X.; Su, L.; Zhang, C.; Dong, X.; Teng, C.; Jiang, L.; Yu, C. Eco-friendly perforated kelp membrane with high strength for efficient oil/water separation in a complex environment. Sep. Purif. Technol. 2022, 282, 120114. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Y.; Gao, X.; Ma, Z.; Wang, X.; Gao, C. Multilayered graphene oxide membranes for water treatment: A review. Carbon 2018, 139, 964–981. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Chen, L.; Li, N.; Dong, C.; Chen, Q.; Liu, B.; Ai, Q.; Si, P.; Feng, J.; et al. A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chem. Eng. J. 2018, 345, 536–544. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, H.; Chen, Y.; Ni, Y.; Huang, L.; Mondal, A.K.; Lin, S.; Huang, F.; Zhang, H. A cellulose-based nanofiltration membrane with a stable three-layer structure for the treatment of drinking water. Cellulose 2020, 27, 8237–8253. [Google Scholar] [CrossRef]
- Oulad, F.; Zinadini, S.; Zinatizadeh, A.A.; Derakhshan, A.A. Preparation and characterization of loose antifouling nanofiltration membrane using branched aniline oligomers grafted onto polyether sulfone and application for real algal dye removal. Chem. Eng. J. 2020, 401, 125861. [Google Scholar] [CrossRef]
- Ang, M.B.M.Y.; Lu, Y.-T.; Huang, S.-H.; Millare, J.C.; Tsai, H.-A.; Lee, K.-R. Surfactant-assisted interfacial polymerization for improving the performance of nanofiltration-like forward osmosis membranes. J. Polym. Res. 2022, 29, 90. [Google Scholar] [CrossRef]
- You, X.; Xiao, K.; Wu, H.; Li, Y.; Li, R.; Yuan, J.; Zhang, R.; Zhang, Z.; Liang, X.; Shen, J.; et al. Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes. Iscience 2021, 24, 102369. [Google Scholar] [CrossRef]
- Raaijmakers, M.J.T.; Benes, N.E. Current trends in interfacial polymerization chemistry. Prog. Polym. Sci. 2016, 63, 86–142. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, Y.; Sun, C.; Yu, S.; Liu, M.; Gao, C. Thin-membrane composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration. J. Membr. Sci. 2014, 471, 381–391. [Google Scholar] [CrossRef]
- Mah, K.H.; Yussof, H.W.; Seman, M.N.A.; Mohammad, A.W. Optimisation of interfacial polymerization factors in thin-membrane composite (TFC) polyester nanofiltration (NF) membrane for separation of xylose from glucose. Sep. Purif. Technol. 2019, 209, 211–222. [Google Scholar] [CrossRef]
- Hao, X.; Gao, S.; Tian, J.; Sun, Y.; Cui, F.; Tang, C.Y. Calcium-carboxyl intrabridging during interfacial polymerization: A novel strategy to improve antifouling performance of thin membrane composite membranes. Environ. Sci. Technol. 2019, 53, 4371–4379. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, Z.; Shi, W.; Zhang, R.; Zhang, B.; Bao, X.; Guo, Y.; Cui, F. A novel polyester composite nanofiltration membrane prepared by interfacial polymerization catalysed by 4-dimethylaminopyridine: Enhanced the water permeability and anti-fouling ability. Polymer 2018, 153, 24–32. [Google Scholar] [CrossRef]
- Ma, T.; Su, Y.; Li, Y.; Zhang, R.; Liu, Y.; He, M.; Li, Y.; Dong, N.; Wu, H.; Jiang, Z. Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer. J. Membr. Sci. 2016, 503, 101–109. [Google Scholar] [CrossRef]
- Lai, G.S.; Lau, W.J.; Goh, P.S.; Ismail, A.F.; Tan, Y.H.; Chong, C.Y.; Krause-Rehberg, R.; Awad, S. Tailor-made thin membrane nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation. Chem. Eng. J. 2018, 344, 524–534. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, Z.; Yang, N.N.; Zhang, L.; Jiang, B.; Sun, Y.; Ma, J. Nanofiltration membrane via EGCG-PEI co-deposition followed by cross-linking on microporous PTFE substrates for desalination. Sep. Purif. Technol. 2020, 232, 115964. [Google Scholar] [CrossRef]
- Zhu, J.; Yuan, S.; Wang, J.; Zhang, Y.; Tian, M.; Van der Bruggen, B. Microporous organic polymer-based membranes for ultrafast molecular separations. Prog. Polym. Sci. 2020, 110, 101308. [Google Scholar] [CrossRef]
- Huang, X.; Tian, F.; Chen, G.; Wang, F.; Weng, R.; Xi, B. Preparation and Characterization of Regenerated Cellulose Membrane Blended with ZrO2 Nanoparticles. Membranes 2021, 12, 42. [Google Scholar] [CrossRef]
- Kadhom, M.; Deng, B. Synthesis of high-performance thin film composite (TFC) membranes by controlling the preparation conditions: Technical notes. J. Water Process Eng. 2019, 30, 100542. [Google Scholar] [CrossRef]
- Murono, T.; Hongo, K.; Nakano, K.; Maezono, R. Ab-initio-based interface modeling and statistical analysis for estimate of the water contact angle on a metallic Cu(111) surface. Surf. and Int. 2022, 34, 102342. [Google Scholar] [CrossRef]
- Zinadini, S.; Zinatizadeh, A.A.; Derakhshan, A.A. Preparation and characterization of high permeance functionalized nanofiltration membranes with antifouling properties by using diazotization route and potential application for licorice wastewater treatment. Sep. Purif. Technol. 2022, 280, 119639. [Google Scholar]
- Gumbi, N.N.; Li, J.; Mamba, B.B.; Nxumalo, E.N. Relating the performance of sulfonated thin-membrane composite nanofiltration membranes to structural properties of macrovoid-free polyethersulfone/sulfonated polysulfone/O-MWCNT supports. Desalination 2020, 474, 114176. [Google Scholar] [CrossRef]
- Kang, Y.; Obaid, M.; Jang, J.; Kim, I.S. Sulfonated graphene oxide incorporated thin membrane nanocomposite nanofiltration membrane to enhance permeation and antifouling properties. Desalination 2019, 470, 114125. [Google Scholar] [CrossRef]
- Bandehali, S.; Moghadassi, A.; Parvizian, F.; Hosseini, S. A new type of [PEI-glycidyl POSS] nanofiltration membrane with enhanced separation and antifouling performance. Korean J. Chem. Eng. 2019, 36, 1657–1668. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, L.; Zhang, Y.; Zhang, G.; Yang, J.; Bai, R. Fabrication of antifouling membranes by blending poly (vinylidene fluoride) with cationic polyionic liquid. J. Appl. Polym. Sci. 2020, 137, 48878. [Google Scholar] [CrossRef]
- Gevaudan, J.P.; Caicedo-Ramirez, A.; Hernandez, M.T.; Srubar, W.V. Copper and cobalt improve the acid resistance of alkali-activated cements. Cement Concrete Res. 2018, 115, 327–338. [Google Scholar] [CrossRef]
- Maiti, S.; Bose, S. Free-standing graphene oxide membrane works in tandem with confined interfacial polymerization of polyamides towards excellent desalination and chlorine tolerance performance. Nanoscale Adv. 2022, 4, 467–478. [Google Scholar] [CrossRef]
- Ma, X.; Yang, Z.; Yao, Z.; Guo, H.; Xu, Z.-L.; Tang, C.Y. Interfacial Polymerization with Electrosprayed Microdroplets: Toward Controllable and Ultrathin Polyamide Membranes. Environ. Sci. Technol. Lett. 2018, 5, 117–122. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Q.; Wu, C.; Li, P.; Xia, S. Fabrication of nanofiltration membrane on MoS2 modified PVDF substrate for excellent permeability, salt rejection, and structural stability. Chem. Eng. J. 2021, 416, 129154. [Google Scholar] [CrossRef]
- Li, S.L.; Shan, X.; Zhao, Y.; Hu, Y. Fabrication of a Novel Nanofiltration Membrane with Enhanced Performance via Interfacial Polymerization through the Incorporation of a New Zwitterionic Diamine Monomer. ACS Appl. Mater Interfaces 2019, 11, 42846–42855. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, K.; Chen, Y.; Hu, Y. Ionic and pH responsive thin membrane composite hollow fiber nanofiltration membrane for molecular separation. Desalination 2020, 496, 114709. [Google Scholar] [CrossRef]
- Du, Y.; Pramanik, B.K.; Zhang, Y.; Dumée, L.; Jegatheesan, V. Recent Advances in the Theory and Application of Nanofiltration: A Review. Curr. Pollut. Rep. 2022, 8, 51–80. [Google Scholar] [CrossRef]
- Li, T.; Xiao, Y.; Guo, D.; Shen, L.; Li, R.; Jiao, Y.; Xu, Y.; Lin, H. In-situ coating TiO 2 surface by plant-inspired tannic acid for fabrication of thin membrane nanocomposite nanofiltration membranes toward enhanced separation and antibacterial performance. J. Colloid Interface Sci. 2020, 572, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zeng, J.; Tao, D.; Zhang, L. Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment. Cellulose 2010, 17, 1159–1169. [Google Scholar] [CrossRef]
- Moriam, K.; DSawada Nieminen, K.; Hummel, M.; Ma, Y.; Rissanen, M.; Sixta, H. Towards regenerated cellulose fibers with high toughness. Cellulose 2021, 28, 9547–9566. [Google Scholar] [CrossRef]
- Zhang, J.; Kitayama, H.; Gotoh, Y.; Potthast, A.; Rosenau, T. Non-woven fabrics of fine regenerated cellulose fibers prepared from ionic-liquid solution via wet type solution blow spinning. Carbohydr. Polym. 2019, 226, 115258. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Huang, F.; Lin, S.; Zhang, H.; Cao, S.; Chen, L.; He, Z.; Lutes, R.; Yang, J.; et al. Preparation and Characterization of Cellulose-Based Nanofiltration Membranes by Interfacial Polymerization with Piperazine and Trimesoyl Chloride. ACS Sustain. Chem. Eng. 2018, 6, 13168–13176. [Google Scholar] [CrossRef]
- Santoro, S.; Estay, H.; Avci, A.H.; Pugliese, L.; Ruby-Figueroa, R.; Garcia, A.; Aquino, M.; Nasirov, S.; Straface, S.; Curcio, E. Membrane technology for a sustainable copper mining industry: The Chilean paradigm. Clean. Eng. Technol. 2021, 2, 100091. [Google Scholar] [CrossRef]
- Jin, P.; Zhu, J.; Yuan, S.; Zhang, G.; Volodine, A.; Tian, M.; Wang, J.; Luis, P.; Van der Bruggen, B. Erythritol-based polyester loose nanofiltration membrane with fast water transport for efficient dye/salt separation. Chem. Eng. J. 2020, 406, 126796. [Google Scholar] [CrossRef]
- Kadhom, M.; Albayati, N.; Salih, S.; Al-Furaiji, M.; Bayati, M.; Deng, B. Role of cellulose micro and nano crystals in thin film and support layer of nanocomposite membranes for brackish water desalination. Membranes 2019, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Shuler, P.J.; Aften, C.W.; Tang, Y. Theoretical studies of hydrolysis and stability of polyacrylamide polymers. Polym. Degrad. Stab. 2015, 121, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Jun, B.-M.; Lee, H.K.; Park, Y.-I.; Kwon, Y.-N. Degradation of full aromatic polyamide NF membrane by sulfuric acid and hydrogen halides: Change of the surface/permeability properties. Polym. Degrad. Stab. 2019, 162, 1–11. [Google Scholar] [CrossRef]
- Lin, D.; Bai, L.; Xu, D.; Wang, H.; Zhang, H.; Li, G.; Liang, H. Nanofiltration scaling influenced by coexisting pollutants considering the interaction between ferric coagulant and natural organic macromolecules. Chem. Eng. J. 2020, 413, 127403. [Google Scholar] [CrossRef]
Number | NMMO (g) | H2O (g) | BC (g) | ZrO2 (wt.%) | CPIP (wt.%) | CTMC (wt.%) |
---|---|---|---|---|---|---|
BCM | 80 | 14 | 4 | 0 | 0 | 0 |
ZrO2/BCM | 80 | 14 | 4 | 1 | 0 | 0 |
NFM1 | 80 | 14 | 4 | 1 | 1 | 0.1 |
NFM2 | 80 | 14 | 4 | 1 | 1 | 0.15 |
NFM3 | 80 | 14 | 4 | 1 | 1 | 0.2 |
NFM4 | 80 | 14 | 4 | 1 | 1.5 | 0.1 |
NFM5 | 80 | 14 | 4 | 1 | 1.5 | 0.15 |
NFM6 | 80 | 14 | 4 | 1 | 1.5 | 0.2 |
NFM7 | 80 | 14 | 4 | 1 | 2 | 0.1 |
NFM8 | 80 | 14 | 4 | 1 | 2 | 0.15 |
NFM9 | 80 | 14 | 4 | 1 | 2 | 0.2 |
Number | CPIP/wt.% | CTMC/wt.% | T/min | Qw/LMH | RNaCl/% |
---|---|---|---|---|---|
1 | 1 | 0.1 | 2 | 56.24 | 17.8 |
2 | 2 | 0.15 | 1.5 | 56.76 | 15.3 |
3 | 1.5 | 0.15 | 2 | 55.21 | 18.3 |
4 | 1 | 0.15 | 2.5 | 56.02 | 16.6 |
5 | 1.5 | 0.15 | 2 | 55.7 | 18.7 |
6 | 1.5 | 0.2 | 1.5 | 56.39 | 17.4 |
7 | 1.5 | 0.15 | 2 | 55.69 | 17.9 |
8 | 1.5 | 0.15 | 2 | 55.12 | 18.6 |
9 | 2 | 0.1 | 2 | 57.21 | 16.3 |
10 | 1 | 0.2 | 2 | 56.18 | 17.1 |
11 | 1.5 | 0.1 | 2.5 | 56.51 | 17.5 |
12 | 2 | 0.15 | 2.5 | 57.61 | 16.3 |
13 | 1 | 0.15 | 1.5 | 56.36 | 17.1 |
14 | 1.5 | 0.2 | 2.5 | 56.41 | 17.4 |
15 | 2 | 0.2 | 2 | 57.32 | 16.6 |
16 | 1.5 | 0.15 | 2 | 55.66 | 18.3 |
17 | 1.5 | 0.1 | 1.5 | 56.21 | 17.5 |
Source | Squares | df | Square | Value | Prob > F |
---|---|---|---|---|---|
Model | 7.34 | 0.82 | 17.11 | 17.11 | 0.0006 |
A–CPIP | 2.10 | 2.10 | 44.07 | 44.07 | 0.0003 |
B–CTMC | 0.00211 | 0.00211 | 0.044 | 0.044 | 0.8393 |
C–TTime | 0.086 | 0.086 | 1.81 | 1.81 | 0.2209 |
AB | 0.007225 | 0.007225 | 0.15 | 0.15 | 0.7086 |
AC | 0.35 | 0.35 | 7.43 | 7.43 | 0.0296 |
BC | 0.020 | 0.020 | 0.41 | 0.41 | 0.5418 |
A2 | 2.59 | 2.59 | 54.35 | 54.35 | 0.0002 |
B2 | 0.96 | 0.96 | 20.09 | 20.09 | 0.0029 |
C2 | 0.77 | 0.77 | 16.10 | 16.10 | 0.0051 |
Residual | 0.33 | 0.048 | |||
Lack of fit | 0.006425 | 0.002142 | 0.026 | 0.026 | 0.9934 |
R–squared | 0.957 |
Source | Squares | df | Square | Value | Prob > F |
---|---|---|---|---|---|
Model | 12.97 | 9 | 1.44 | 23.49 | 00.0002 |
A–CPIP | 2.10 | 1 | 2.10 | 34.25 | 0.0006 |
B–CTMC | 0.045 | 1 | 0.045 | 0.73 | 0.4201 |
C–TTime | 0.031 | 1 | 0.031 | 0.51 | 0.4985 |
AB | 0.25 | 1 | 0.25 | 4.07 | 0.0833 |
AC | 0.56 | 1 | 0.56 | 9.17 | 0.0192 |
BC | 0.000 | 1 | 0.000 | 0.000 | 1.0000 |
A2 | 6.76 | 1 | 6.76 | 110.25 | < 0.0001 |
B2 | 0.086 | 1 | 0.086 | 1.39 | 0.2764 |
C2 | 2.48 | 1 | 2.48 | 40.42 | 0.0004 |
Residual | 0.43 | 7 | 0.061 | ||
Lack of fit | 0.037 | 3 | 0.012 | 0.13 | 0.9389 |
R–squared | 0.968 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, R.; Tian, F.; Huang, X.; Chen, G. IP–ZrO2/BC Nanofiltration Membranes: Preparation and Properties. Coatings 2022, 12, 1823. https://doi.org/10.3390/coatings12121823
Weng R, Tian F, Huang X, Chen G. IP–ZrO2/BC Nanofiltration Membranes: Preparation and Properties. Coatings. 2022; 12(12):1823. https://doi.org/10.3390/coatings12121823
Chicago/Turabian StyleWeng, Rengui, Feng Tian, Xin Huang, and Guohong Chen. 2022. "IP–ZrO2/BC Nanofiltration Membranes: Preparation and Properties" Coatings 12, no. 12: 1823. https://doi.org/10.3390/coatings12121823
APA StyleWeng, R., Tian, F., Huang, X., & Chen, G. (2022). IP–ZrO2/BC Nanofiltration Membranes: Preparation and Properties. Coatings, 12(12), 1823. https://doi.org/10.3390/coatings12121823