Investigations into the Photocatalytic and Antibacterial Activity of the Nitrogen-Annealed Titanium Oxide/Silver Structure
Abstract
1. Introduction
2. Material Preparation and Experimental Procedure
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, G.; Pathania, D.; Naushad, M.; Kothiyal, N.C. Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: Efficient removal of toxic metal ions from water. Chem. Engineer. J. 2014, 251, 413–421. [Google Scholar] [CrossRef]
- Akbarnejad, S.; Amooey, A.A.; Ghasemi, S. High effective adsorption of acid fuchsin dye using magnetic biodegradable polymer-based nanocomposite from aqueous solutions. Microchem. J. 2019, 149, 103966. [Google Scholar] [CrossRef]
- Babu, D.S.; Singh, T.S.A.; Nidheesh, P.V.; Kumar, M.S. Industrial wastewater treatment by electrocoagulation process. Sep. Sci. Technol. 2020, 55, 3195–3227. [Google Scholar] [CrossRef]
- Erusappan, E.; Thiripuranthagan, S.; Radhakrishnan, R.; Durai, M.; Kumaravel, S.; Vembuli, T.; Kaleekkal, N.J. Fabrication of mesoporous TiO2/PVDF photocatalytic membranes for efficient photocatalytic degradation of synthetic dyes. J. Environ. Chem. Eng. 2021, 4, 105776. [Google Scholar] [CrossRef]
- Lishchynskyi, O.; Shymborska, Y.; Stetsyshyn, Y.; Raczkowska, J.; Skirtach, A.G.; Peretiatko, T.; Budkowski, A. Passive antifouling and active self-disinfecting antiviral surface. Chem. Engineer. J. 2022, 446, 137048. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, F.; Ikeda, S.; Kamikariya, N. Photocatalytic decompositions of gaseous HCHO over thin films of anatase titanium oxide converted from amorphous in a heated air and in an aqueous solution of hydrogen peroxide. Chem. Engineer. J. 2009, 148, 234–241. [Google Scholar] [CrossRef]
- Amano, F.; Prieto-Mahaney, O.O.; Terada, Y.; Yasumoto, T.; Shibayama, T.; Ohtani, B. Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity. Chem. Mat. 2009, 21, 2601–2603. [Google Scholar] [CrossRef]
- Wei, Z.W.; Wei, X.C.; Zheng, Y.X.; He, D.Y. Self-combustion fabrication of anatase/rutile titanium oxides encapsulated in thin carbon shells and their photocatalytic performance. Mater. Lett. 2013, 113, 163–166. [Google Scholar] [CrossRef]
- Tizazu, G.; Adawi, A.M.; Leggett, G.J.; Lidzey, D.G. Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium. Langmuir 2009, 25, 10746–10753. [Google Scholar] [CrossRef]
- Murakami, N.; Kawakami, S.; Tsubota, T.; Ohno, T. Dependence of photocatalytic activity on particle size of a shape-controlled anatase titanium(IV) oxide nanocrystal. J. Mol. Catal. A-Chem. 2012, 358, 106–111. [Google Scholar] [CrossRef]
- Shih, P.C.; Huang, C.H.; Chen, T.H.; Lai, L.W.; Lu, Y.S.; Liu, D.S. Enhancement on Photocatalytic Activity of an Amorphous Titanium Oxide Film with Nano-Textured Surface by Selective-Fluorination Etching Process. Mater. Res. Bull. 2014, 52, 177–182. [Google Scholar] [CrossRef]
- Gainanova, A.A.; Kuźmicheva, G.M.; Vasiĺeva, I.G. Nanosized low-temperature phase of titanium(IV) oxide with anatase and eta-phase structure: Composition, structure, and photocatalytic properties. Russ. Chem. Bull. 2018, 67, 1350–1363. [Google Scholar] [CrossRef]
- Enesca, A.; Andronic, L.; Duta, A. The influence of surfactants on the crystalline structure, electrical and photocatalytic properties of hybrid multi-structured (SnO2, TiO2 and WO3) thin films. Appl. Surf. Sci. 2012, 258, 4339–4346. [Google Scholar] [CrossRef]
- Navabpour, P.; Ostovarpour, S.; Hampshire, J.; Kelly, P.; Verran, J.; Cooke, K. The effect of process parameters on the structure, photocatalytic and self-cleaning properties of TiO2 and Ag-TiO2 coatings deposited using reactive magnetron sputtering. Thin Solid Films 2014, 571, 75–83. [Google Scholar] [CrossRef]
- Chen, J.Z.; Chen, T.H.; Lai, L.W.; Li, P.Y.; Liu, H.W.; Hong, Y.Y.; Liu, D.S. Preparation and characterization of the surface photocatalytic activity with NiO/TiO2 nanocomposite structure. Materials 2015, 8, 4273–4286. [Google Scholar] [CrossRef]
- Mandari, K.K.; Do, J.Y.; Vattikuti, S.V.P.; Police, A.K.R.; Kang, M. Solar light response with noble metal-free highly active copper(II) phosphate/titanium dioxide nanoparticle/copper(II) oxide nanocomposites for photocatalytic hydrogen production. J. Alloy. Compd. 2018, 750, 292–303. [Google Scholar] [CrossRef]
- Mehr, M.E.; Maleki-Ghaleh, H.; Yarahmadi, M.; Kavanlouei, M.; Siadati, M.H. Synthesis and characterization of photocatalytic zinc oxide/titanium oxide (core/shell) nanocomposite. J. Alloy. Compd. 2021, 882, 160777. [Google Scholar] [CrossRef]
- Lee, M.K.; Shih, T.H.; Shih, C.M. Highly visible photocatalytic activity of fluorine and nitrogen co-doped nanocrystalline anatase phase titanium oxide converted from ammonium oxotrifluorotitanate. IEEE Trans. Nanotechnol. 2007, 6, 316–319. [Google Scholar] [CrossRef]
- Hu, C.C.; Hsu, T.C.; Kao, L.H. One-step cohydrothermal synthesis of nitrogen-doped titanium oxide nanotubes with enhanced visible light photocatalytic activity. Int. J. Photoenergy 2012, 2012, 391958. [Google Scholar] [CrossRef]
- Lazaro-Navas, S.; Prashar, S.; Fajardo, M.; Gomez-Ruiz, S. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium-fluorine-doped titanium oxide nanoparticles. J. Nanopart. Res. 2015, 17, 94. [Google Scholar] [CrossRef]
- Huang, S.R.; Huang, P.J. Visible-light driven graphene oxide/titanium dioxide hydrogels for photocatalytic reduction of nitrite. J. Environ. Chem. Eng. 2021, 10, 106902. [Google Scholar] [CrossRef]
- Oktay, B.; Kayaman-Apohan, N. Polydimethylsiloxane (PDMS)-based antibacterial organic-inorganic hybrid coatings. J. Coat. Technol. Res. 2013, 10, 785–798. [Google Scholar] [CrossRef]
- Pereyra, A.M.; Gonzalez, M.R.; Rosato, V.G.; Basaldella, E.I. A-type zeolite containing Ag+/Zn2+ as inorganic antifungal for waterborne coating formulation. Prog. Org. Coat. 2014, 77, 213–218. [Google Scholar] [CrossRef]
- Ferraris, S.; Perero, S.; Costa, P.; di Confiengo, G.G.; Cochis, A.; Rimondini, L.; Renaus, F.; Verne, E.; Ferraris, M.; Spriano, S. Antibacterial inorganic coating on metallic surface for temporary fixation devices. Appl. Surf. Sci. 2020, 508, 144707. [Google Scholar] [CrossRef]
- Stefanello, A.; Fracari, J.C.; Silva, M.; Lemos, J.G.; Garcia, M.V.; dos Santos, B.A.; Copetti, M.V. Influence of type, concentration, exposure time, temperature, and pressure of organic load on the antifungal efficacy of industrial sanitizers against Aspergillus brasiliensis (ATCC 16404). Food Microbiol. 2021, 97, 103740. [Google Scholar] [CrossRef]
- Miao, R.Y.; Liu, H.; Lei, Q.; Zhong, L.L.; Zhang, L.; He, J.Z.; Ma, Z.H.; Yao, Y. Single-organic component g-C3.6N4 achieves superior photoactivity antibacterial. Chem. Engineer. J. 2022, 440, 35873. [Google Scholar] [CrossRef]
- Hui, A.P.; Yang, F.F.; Yan, R.; Kang, Y.R.; Wang, A.Q. Palygorskite-based organic-inorganic hybrid nanocomposite for enhanced antibacterial activities. Nanomaterials 2022, 11, 3230. [Google Scholar] [CrossRef]
- Tarimala, S.; Kothari, N.; Abidi, N.; Hequet, E.; Fralick, J.; Dao, L.L. New approach to antibacterial treatment of cotton fabric with silver nanoparticle-doped silica using sol-gel process. J. Appl. Polym. Sci. 2006, 101, 2938–2943. [Google Scholar] [CrossRef]
- Kumar, V.; Jolivalt, C.; Pulpytel, J.; Jafari, R.; Arefi-Khonsari, F. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. J. Biomed. Mater. Res. 2013, 101, 1121–1132. [Google Scholar] [CrossRef]
- Khan, B.A.; Chevali, V.S.; Na, H.N.; Zhu, J.; Warner, P.; Wang, H. Process and properties of antibacterial silver nanoparticle-loaded hemp hurd/poly (lactic acid) biocomposites. Compos. Pt. B-Eng. 2016, 100, 10–18. [Google Scholar] [CrossRef]
- Sheikh, F.A.; Kanjwal, M.A.; Kim, H.; Pandeya, D.R.; Hong, S.T.; Kim, H.Y. Fabrication of titanium oxide nanofibers containing silver nanoparticles. J. Ceram. Process. Res. 2010, 11, 685–691. [Google Scholar]
- Song, D.H.; Uhm, S.H.; Kim, S.E.; Kwon, J.S.; Han, J.G.; Kim, K.N. Synthesis of titanium oxide thin films containing antibacterial silver nanoparticles by a reactive magnetron co-sputtering for application in biomedical implants. Mater. Res. Bull. 2012, 47, 2994–2998. [Google Scholar] [CrossRef]
- Bian, H.; Zhang, Z.; Xu, X.; Gao, Y.; Wang, T. Photocatalytic activity of Ag/ZnO/AgO/TiO2 composite. Physica E 2020, 124, 114236. [Google Scholar] [CrossRef]
- Deekshitha, S.; Vidya, K. Solar light active biogenic titanium dioxide embedded silver oxide (AgO/Ag2O@TiO2) nanocomposite structures for dye degradation by photocatalysis. Mater. Sci. Semicond. Process. 2021, 132, 105923. [Google Scholar] [CrossRef]
- Kacprzyńska-Gołacka, J.; Łożyńska, M.; Barszcz, W.; Sowa, S.; Wieciński, P.; Woskowicz, E. Microfiltration membranes modified with composition of titanium oxide and silver oxide by magnetron sputtering. Polymers 2021, 13, 141. [Google Scholar] [CrossRef]
- Thukkaram, M.; Cools, P.; Nikiforov, A.; Rigole, P.; Coenye, T.; Voort, P.V.D.; Laing, G.D.; Vercruysse, C.; Declercq, H.; Morent, R.; et al. Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation. Appl. Surf. Sci. 2020, 500, 144235. [Google Scholar] [CrossRef]
- Wu, C.Y.; Chiang, B.S.; Chang, S.; Liu, D.S. Determination of photocatalytic activity in amorphous and crystalline titanium oxide films prepared using plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 2011, 257, 1893–1897. [Google Scholar] [CrossRef]
- Maier, S.A.; Atwater, H.A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005, 98, 011101. [Google Scholar] [CrossRef]
- Willets, K.A.; Wan Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef]
- Xu, W.F.; Chin, C.C.; Hung, D.W.; Wei, P.K. Transparent electrode for organic solar cells using multilayer structures with nanoporous silver film. Sol. Energy Mater. Sol. Cells 2013, 118, 81–89. [Google Scholar] [CrossRef]
- Zhang, S.G.; Zhang, X.W.; Yin, Z.G.; Wang, J.X.; Si, F.T.; Gao, H.L.; Dong, J.J.; Liu, X. Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localizer surface plasmon. J. Appl. Phys. 2012, 112, 013112. [Google Scholar] [CrossRef]
- Mogensen, K.B.; Kneipp, K. Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: Monitoring the onset of the surface screening effects. J. Phys. Chem. C 2014, 118, 28075–28083. [Google Scholar] [CrossRef]
- Xu, Z.W.; Zhang, Y.K.; Chen, T.H.; Chang, J.H.; Lee, T.H.; Li, P.L.; Liu, D.S. Enhancement on the Surface Hydrophobicity and Oleophobicity of an Organosilicon Film by Conformity Deposition and Surface Fluorination Etching. Materials 2018, 11, 1089. [Google Scholar] [CrossRef]
- Patakfalvi, R.; Papp, S.; Dékány, I. The kinetics of homogeneous nucleation of silver nanoparticles stabilized by polymers. J. Nanopart. Res. 2007, 9, 353–364. [Google Scholar] [CrossRef]
- Ikramullah, A.; Thakur, A.; Salve, D.; Pai, G.; Rathore, M.; Joshi, D.S. Synthesis of homogenous colloidal silver nanoparticles. J. Nanosci. Nanoengineer. 2011, 1, 59–66. [Google Scholar]
- Li, W.; Liang, R.; Hu, A.; Huang, Z.; Zhou, N. Generation of oxygen vacancies in visible light activated one-dimensional TiO2 photocatalysts. RSC Adv. 2014, 4, 36959. [Google Scholar] [CrossRef]
- Lanje, A.S.; Sharma, S.J.; Pode, R.B. Synthesis of silver nanoparticles: A safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res. 2010, 2, 478–483. [Google Scholar]
- Zhang, F.; Wolf, G.K.; Wang, X.; Liu, X. Surface properties of silver doped titanium oxide films. Surf. Coat. Technol. 2001, 148, 65–70. [Google Scholar] [CrossRef]
- Gao, X.Y.; Wang, S.Y.; Li, J.; Zheng, Y.X.; Zhang, R.J.; Zhou, P.; Yang, Y.M.; Chen, L.Y. Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPs methods. Thin Solid Films 2004, 455, 438–442. [Google Scholar] [CrossRef]
- Lützenkirchen-Hecht, D.; Strehblow, H.H. Anodic silver (II) oxides investigated by combined electrochemistry, ex situ XPS and in situ X-ray absorption spectroscopy. Surf. Interface Anal. 2009, 41, 820–829. [Google Scholar] [CrossRef]
- Vintsitskly, D.A.; Lazarev, M.K.; Kardash, T.Y.; Fedorova, E.A.; Slavinskaya, E.M.; Boronin, A.I. Mixed silver-nickel oxide AgNiO2: Probing by CO during XPS study. J. Chem. Phys. 2020, 132, 044707. [Google Scholar]
- Steveson, M.; Arora, P.S.; Smart, R.S.C. XPS studies of low-temperature plasma-produced graded oxide-silicate-silica layers on titanium. Surf. Interface Anal. 1998, 26, 1027–1034. [Google Scholar] [CrossRef]
- Hashimoto, S.; Tanaka, A. Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment. Surf. Interface Anal. 2002, 34, 262–265. [Google Scholar] [CrossRef]
- Lin, X.; Rong, F.; Fu, D.; Yuan, C. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants. Powder Technol. 2012, 219, 173–178. [Google Scholar] [CrossRef]
- Temperton, R.H.; Gibson, A.; O’Shea, J.N. In situ XPS analysis of the atomic layer deposition of aluminium oxide on titanium dioxide. Phys. Chem. Chem. Phys. 2019, 21, 1393–1398. [Google Scholar] [CrossRef]
- Li, P.Y.; Liu, H.W.; Chen, T.H.; Chang, C.H.; Lu, Y.S.; Liu, D.S. Characterization of an Amorphous Titanium Oxide Film Deposited onto a Nano-Textured Fluorination Surface. Materials 2016, 9, 429–439. [Google Scholar] [CrossRef]
- Barrère, F.; Lebugle, A.; Van Blitterswijk, C.A.; De Groot, K.; Layrolle, P.; Rey, C. Calcium phosphate interactions with titanium oxide and alumina substrates: An XPS study. J. Mater. Sci.-Mater. Med. 2003, 14, 419–425. [Google Scholar] [CrossRef]
- Jin, Z.; Gao, H.; Hu, L. Removal of Pb(II) by nano-titanium oxide investigated by batch, XPS and model techniques. RSC Adv. 2015, 5, 88520. [Google Scholar] [CrossRef]
- Ajmal, H.M.S.; Khan, F.; Ul Huda, N.; Lee, S.; Nam, K.; Kim, H.Y.; Eom, T.H.; Kim, S.D. High-performance flexible ultraviolet photodetectors with Ni/Cu-codoped ZnO nanorods grown on PET substrates. Materials 2019, 9, 1067. [Google Scholar] [CrossRef]
- Ajmal, H.M.S.; Khan, F.; Nam, K.; Kim, H.Y.; Kim, S.D. Ultraviolet photodetection based on high-performance Co-plus-Ni doped ZnO nanorods grown by hydrothermal method on transparent plastic substrate. Nanomaterials 2020, 10, 1225. [Google Scholar] [CrossRef]
- Li, H.; Zhao, G.; Han, G.; Song, B. Hydrophilicity and photocatalysis of Ti1−xVxO2 films prepared by sol–gel method. Surf. Coat. Technol. 2007, 201, 7615–7618. [Google Scholar] [CrossRef]
- Pathania, D.; Sharma, G.; Naushad, M.; Kumar, A. Synthesis and characterization of a new nanocomposite cation exchanger polyacrylamide Ce(IV) silicophosphate: Photocatalytic and antimicrobial applications. J. Ind. Eng. Chem. 2014, 20, 3596–3603. [Google Scholar] [CrossRef]
- Gupta, V.K.; Sharma, G.; Pathania, D.; Kothiyal, N.C. Nanocoposite pectin Zr(IV) selenotungstophosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dye from aqueous system. J. Ind. Eng. Chem. 2015, 21, 957–964. [Google Scholar] [CrossRef]
- Zhang, J.W.; Wang, S.; Liu, F.S.; Fu, X.J.; Ma, G.Q.; Hou, M.S.; Tang, Z. Preparation of defective TiO2-x hollow microsphere for photocatalytic degradation of methylene blue. Acta. Phys.-Chim. Sin. 2019, 35, 885–895. [Google Scholar] [CrossRef]
- Guo, L.; Okinaka, N.; Zhang, L.; Watanabe, S. Facile synthesis of ZnFe2O4/SnO2 composites for efficient photocatalytic degradation of methylene blue. Mater. Chem. Phys. 2021, 262, 124273. [Google Scholar] [CrossRef]
- Dikici, T.; Demirci, S.; Tünçay, M.M.; Yildirim, B.K.; Kaya, N. Effect of heating rate on structure, morphology and photocatalytic properties of TiO2 particles: Thermal kinetic and thermodynamic studies. J. Sol.-Gel Sci. Technol. 2021, 97, 622–637. [Google Scholar] [CrossRef]
- Sarkandi, A.F.; Montazer, M.; Harifi, T.; Rad, M.M. Innovative preparation of bacterial cellulose/silver nanocomposite hydrogels: In situ green synthesis, characterization, and antibacterial properties. J. Appl. Polym. Sci. 2020, 138, 49824. [Google Scholar] [CrossRef]
- Qing, Y.A.; Cheng, L.; Li, R.Y.; Liu, G.C.; Zhang, Y.B.; Tang, X.F.; Wang, J.C.; Liu, H.; Qin, Y.G. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018, 13, 3311–3327. [Google Scholar] [CrossRef]
- Sabry, R.S.; Al-fouadi, A.H.A.; Habool, H.K. Enhanced antibacterial activity of anodic aluminum oxide membranes embedded with nano-silver-titanium dioxide. J. Adhes. Sci. Technol. 2018, 32, 874–888. [Google Scholar] [CrossRef]
Ag | TiOx | As-Deposited TiOx/Ag | 500 °C-Annealed TiOx/Ag | |
---|---|---|---|---|
k (min−1) | 0.0029 | 0.0102 | 0.0110 | 0.0141 |
R (%) | 44 | 40 | 65 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.-K.; You, K.-S.; Huang, C.-H.; Shih, P.-J.; Liu, D.-S. Investigations into the Photocatalytic and Antibacterial Activity of the Nitrogen-Annealed Titanium Oxide/Silver Structure. Coatings 2022, 12, 1671. https://doi.org/10.3390/coatings12111671
Zhang J-K, You K-S, Huang C-H, Shih P-J, Liu D-S. Investigations into the Photocatalytic and Antibacterial Activity of the Nitrogen-Annealed Titanium Oxide/Silver Structure. Coatings. 2022; 12(11):1671. https://doi.org/10.3390/coatings12111671
Chicago/Turabian StyleZhang, Jun-Kai, Kui-Shou You, Chen-Hao Huang, Pin-Jyun Shih, and Day-Shan Liu. 2022. "Investigations into the Photocatalytic and Antibacterial Activity of the Nitrogen-Annealed Titanium Oxide/Silver Structure" Coatings 12, no. 11: 1671. https://doi.org/10.3390/coatings12111671
APA StyleZhang, J.-K., You, K.-S., Huang, C.-H., Shih, P.-J., & Liu, D.-S. (2022). Investigations into the Photocatalytic and Antibacterial Activity of the Nitrogen-Annealed Titanium Oxide/Silver Structure. Coatings, 12(11), 1671. https://doi.org/10.3390/coatings12111671