Study on Damage Behavior of NiCoCrAlY/MSZ Plasma-Sprayed Coating in Neutral Salt Spray Environment
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Raw Materials
2.2. Preparation of the Coatings
2.3. Salt Spray Test
2.4. Ablation Test
2.5. Characterization
3. Results and Discussion
3.1. Macroscopic Morphologies of the Coatings
3.2. Microstructures and Composition Distributions of the Coatings
3.3. Electrochemical Properties of the Coatings
3.4. Bonding Strengths and Anti-Ablation Properties of the Coatings
4. Conclusions
- The volume expansion and overflow of loose corrosion products increased the coating stress and aggravated the defect propagation inside the coating. As a result, the porosities of N-0, N-2, N-4 and N-6 gradually increased, reaching 8.5%, 12.7%, 14.6% and 15.2%, respectively.
- With an increase in salt spray time, the accumulation of loose corrosion products damaged the mechanical bond between the BC and the substrate. As a result, the bonding strengths of N-0, N-2, N-4 and N-6 decreased obviously, reaching 42.0 MPa, 37.1 MPa, 26.5 MPa and 7.2 MPa, respectively.
- Under the combined effect of the decrease in density and bonding strength, the maximum service life of the NiCoCrAlY/MSZ coatings in the neutral salt spray environment was about 192 h. After that, more unobstructed corrosion channels induced accelerated corrosion and caused a marked decline in thermal insulation and anti-ablation properties.
- The degradation trend of the thermal insulation and anti-ablation properties of NiCoCrAlY/MSZ coatings in a neutral salt spray environment was nonlinear. This phenomenon is useful for predicting the service life of the coatings in a natural environment, and it will be the main research interest in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Huang, S.; He, A. Composite ceramics thermal barri er coatings of yttria stabilized zirconia for aero-engines. J. Mater. Sci. Technol. 2019, 35, 2814–2823. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Lashmi, P.G.; Ananthapadmanabhan, P.V.; Unnikrishnan, G.; Aruna, S.T. Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems. J. Eur. Ceram. Soc. 2020, 40, 2731–2745. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Liu, Z.; Liu, G.X.; Mu, R.; He, L.M.; Dai, J.W. GdYbZrO thermal barrier coatings by EB-PVD: Phase, microstructure, thermal properties and failure. Surf. Interfaces 2021, 24, 101123. [Google Scholar] [CrossRef]
- Qiu, S.Y.; Wu, C.W.; Huang, C.G.; Ma, Y.; Guo, H.B. Microstructure dependence of effective thermal conductivity of EB-PVD TBCs. Materials 2021, 14, 1838. [Google Scholar] [CrossRef] [PubMed]
- Feuerstein, A.; Knapp, J.; Taylor, T.; Ashary, A.; Bolcavage, A.; Hitchman, N. Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EB-PVD: A review. J. Therm. Spray Technol. 2008, 17, 199–213. [Google Scholar] [CrossRef]
- Lu, J. Design and Oxidation Mechanism of High Performance MCrAlYHf (M = Ni, Co, Fe) Bond Coat Material for Thermal Barrier Coatings; Shanghai Jiao Tong University: Shanghai, China, 2020. [Google Scholar]
- Thakare, J.G.; Pandey, C.; Mahapatra, M.M.; Mulik, R.S. Thermal barrier coatings-a state of the art review. Met. Mater. Int. 2021, 27, 1947–1968. [Google Scholar] [CrossRef]
- Meng, G.-H.; Liu, H.; Liu, M.-J.; Xu, T.; Yang, G.-J.; Li, C.-X.; Li, C.-J. Highly oxidation resistant MCrAlY bond coats prepared by heat treatment under low oxygen content. Surf. Coat. Technol. 2019, 368, 192–201. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, H.; Chen, Y.; Zhao, X.; Guo, F.; Xiao, P. Effect of microstructure of a NiCoCrAlY coating fabricated by high-velocity air fuel on the isothermal oxidation. Corros. Sci. 2019, 159, 108126. [Google Scholar] [CrossRef]
- Yang, Y.Q. Existent forms and effects of yttrium in laser claddings of MCrAlY. J. South China Univ. Technol. (Nat. Sci. Ed.) 1998, 26, 65–68. [Google Scholar]
- Chen, W.R.; Wu, X.; Dduzinski, D.; Patnaik, P.C. Modification of oxide layer in plasma-sprayed thermal barrier coatings. Surf. Coat. Technol. 2006, 200, 5863–5868. [Google Scholar] [CrossRef]
- Li, B.; Gao, Y.; Li, C.; Guo, H.; Zheng, Q.; Li, Y.; Kang, Y.; Zhao, S. Tribocorrosion properties of NiCrAlY coating in different corrosive environments. Materials 2020, 13, 1864. [Google Scholar] [CrossRef]
- Sadeghimeresht, E.; Markocsan, N.; Nylén, P. Microstructure effect of intermediate coat layer on corrosion behavior of HVAF-sprayed bi-layer coatings. J. Therm. Spray Technol. 2017, 26, 243–253. [Google Scholar] [CrossRef]
- Bhatty, M.B.; Khalid, F.A.; Khan, A.N. Behavior of calcia-stabilized zirconia coating at high temperature, deposited by air plasma spraying system. J. Therm. Spray Technol. 2012, 21, 121–131. [Google Scholar] [CrossRef]
- Thakare, J.G.; Pandey, C.; Mulik, R.S.; Mahapatra, M.M. Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceram. Int. 2018, 44, 6980–6989. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.; Liu, Y.; Ning, X. Investigation of ternary rare earth oxide-doped YSZ and its high temperature stability. J. Alloy. Compd. 2019, 806, 580–586. [Google Scholar] [CrossRef]
- Khan, A.N.; Qureshi, I.N. Microstructural evaluation of ZrO2-MgO coatings. J. Mater. Process. Technol. 2009, 209, 488–496. [Google Scholar] [CrossRef]
- Baig, M.N.; Khalid, F.A.; Khan, F.N.; Ning, X. Properties and residual stress distribution of plasma sprayed magnesia stabilized zirconia thermal barrier coatings. Ceram. Int. 2014, 40, 4853–4868. [Google Scholar] [CrossRef]
- Sahith, M.S.; Giridhara, G.; Kumar, R.S. Development and analysis of thermal barrier coatings on gas turbine blades—A Review. Mater. Today Proc. 2018, 5, 2746–2751. [Google Scholar] [CrossRef]
- Fang, X.; Liu, B.; Xu, H.; Zhang, K. Research on Evaluation Method of Ship Equipment Environmental Adaptability. In Proceedings of the 2018 Prognostics and System Health Management Conference (PHM-Chongqing), Chongqing, China, 26–28 October 2018; IEEE: Piscataway, NJ, USA; pp. 77–80.
- Wu, W.; Cheng, X.; Hou, H.; Liu, B.; Li, X. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere. Appl. Surf. Sci. 2018, 436, 80–89. [Google Scholar] [CrossRef]
- Luo, C.; Li, M.; Sun, Z.; Tang, Z.; Lu, F. Environmental damage and environmental adaptability of the aircraft in marine atmosphere. J. Aeronaut. Mater. 2016, 36, 101–107. [Google Scholar]
- Evans, A.G.; Mumm, D.R.; Hutchinson, J.W.; Meier, G.H.; Pettit, F.S. Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 2001, 46, 505–553. [Google Scholar] [CrossRef]
- Qian, F.; Zhuang, Y.; Ye, Y.; Xiao, F. Research on environmental adaptability evaluation of optical communication equipment. In AOPC 2019: Optical Fiber Sensors and Communication; SPIE: Bellingham, DC, USA, 2019; Volume 11340, pp. 270–275. [Google Scholar]
- Zhou, C.; Wang, C.; Song, Y. Evaluation of cyclic oxidation of thermal barrier coatings exposed to NaCl vapor by finite element method. Mater. Sci. Eng. A 2008, 490, 351–358. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, C.; Xu, H. Corrosion behavior of thermal barrier coatings exposed to NaCl plus water vapor at 1050 °C. Thin Solid Film. 2008, 516, 5686–5689. [Google Scholar] [CrossRef]
- Chen, C.; Liang, Y.; Liang, T.; Man, Q.; Luo, Y.; Zhang, X.; Zeng, J. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+ NaVO3 Salts. J. Chin. Soc. Corros. Prot. 2019, 39, 291–298. [Google Scholar]
- Li, R.W.; Gong, W.B. High temperature molten salt corrosion behavior and failure mechanism of CeO2/ ZrO2–Y2O3 nano thermal barrier coatings. J. Mater. Heat Treat. 2016, 3, 145–149. [Google Scholar]
- Liang, Y.F. Study on Physical Properties and CMAS Hot Corrosion Behavior of Multi Rare Earth Doped ZrO2; Guangxi University: Nanning, China, 2018. [Google Scholar]
- Zaghloul, M.M.Y.; Mohamed, Y.S.; El-Gamal, H. Fatigue and tensile behaviors of fiber-reinforced thermosetting composites embedded with nanoparticles. J. Compos. Materials. 2019, 53, 709–718. [Google Scholar] [CrossRef]
- GJB150.11 A-2009; Laboratory Environmental Test Methods for Military Materiel—Part 11: Salt Fog Test. The General Reserve Department of PLA: Beijing, China, 2009.
- GJB323A-96; Test Methods for Ablation of Ablators. Commission of Science, Technology and Industry for National Defense: Beijing, China, 1996.
- Wu, J.H.; Liu, C.; Ni, L.Y.; Yang, X.Z.; Yang, Y.R. Microstructure and Thermal-physical Properties of Plasma Sprayed Nanosturctured ZrO2 Coating. J. Therm. Spray Technol. 2017, 9, 30–33. [Google Scholar]
- Fan, X.; Zou, B.; Gu, L.; Wang, C.; Wang, Y.; Huang, W.; Zhu, L.; Cao, X. Investigation of the bond coats for thermal barrier coatings on Mg alloy. Appl. Surf. Sci. 2013, 265, 264–273. [Google Scholar] [CrossRef]
- Natishan, P.M.; O’grady, W.E. Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: A review. J. Electrochem. Soc. 2014, 161, C421. [Google Scholar] [CrossRef]
- Monnier, J.; Réguer, S.; Foy, E.; Testemale, D.; Mirambet, F.; Saheb, M.; Dillmann, P.; Guillot, I. XAS and XRD in situ characterisation of reduction and reoxidation processes of iron corrosion products involved in atmospheric corrosion. Corros. Sci. 2014, 78, 293–303. [Google Scholar] [CrossRef]
Element | C | Cr | Mn | Si | Impurity | Fe |
---|---|---|---|---|---|---|
Content (wt.%) | 0.28~0.34 | 0.8~1.1 | 0.8~1.1 | 0.9~1.2 | ≤0.1 | rest |
Parameter | NiCoCrAlY | MSZ |
---|---|---|
Spray power/kW | 28 | 36 |
Primary gas flow (Ar)/m3·h−1 | 2.56 | 2.83 |
Second gas flow (H2)/m3·h−1 | 0.42 | 0.66 |
Spray distance/mm | 150 | 80 |
Feeding rate/kg·h−1 | 1.2 | 1.6 |
Parameter | Value |
---|---|
Salt solution concentration (wt.%) | 5.1 |
Chamber temperature (°C) | 35~36 |
Salt solution (pH) | 6.83~6.86 |
Sedimentation (mL/80 cm3·h) | 1.70 |
Chamber pressure (kPa) | 96.53–124.11 |
Samples | Ecorr (V/SCE) | icorr (A·cm−2) | ba (mV·dec−1) | −bc (mV·dec−1) |
---|---|---|---|---|
N-0 | −0.4516 | 5.6 × 10−9 | 406.52 | 286.69 |
N-2 | −0.5423 | 1.2 × 10−8 | 326.22 | 273.43 |
N-4 | −0.6345 | 2.2 × 10−8 | 376.41 | 164.71 |
N-6 | −0.7382 | 2.3 × 10−5 | 662.01 | 381.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wu, H.; Bai, Y.; Cong, D.; Huang, A.; Song, K.; Zhang, M.; Wei, Z.; Ding, X.; Wang, X.; et al. Study on Damage Behavior of NiCoCrAlY/MSZ Plasma-Sprayed Coating in Neutral Salt Spray Environment. Coatings 2022, 12, 1611. https://doi.org/10.3390/coatings12111611
Li Z, Wu H, Bai Y, Cong D, Huang A, Song K, Zhang M, Wei Z, Ding X, Wang X, et al. Study on Damage Behavior of NiCoCrAlY/MSZ Plasma-Sprayed Coating in Neutral Salt Spray Environment. Coatings. 2022; 12(11):1611. https://doi.org/10.3390/coatings12111611
Chicago/Turabian StyleLi, Zhongsheng, Hulin Wu, Yixin Bai, Dalong Cong, Anwei Huang, Kaiqiang Song, Min Zhang, Zixiang Wei, Xingxing Ding, Xuan Wang, and et al. 2022. "Study on Damage Behavior of NiCoCrAlY/MSZ Plasma-Sprayed Coating in Neutral Salt Spray Environment" Coatings 12, no. 11: 1611. https://doi.org/10.3390/coatings12111611
APA StyleLi, Z., Wu, H., Bai, Y., Cong, D., Huang, A., Song, K., Zhang, M., Wei, Z., Ding, X., Wang, X., & Peng, D. (2022). Study on Damage Behavior of NiCoCrAlY/MSZ Plasma-Sprayed Coating in Neutral Salt Spray Environment. Coatings, 12(11), 1611. https://doi.org/10.3390/coatings12111611