High Response of Ethanol Gas Sensor Based on NiO-Doped Apple Pectin by the Solution Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensor Fabrication
2.3. Characterization
2.4. Device Measurement
3. Result and Discussion
3.1. XPS Analysis
3.2. FTIR Analysis
3.3. AFM Analysis
3.4. Device Morphology, SEM Top View and Energy Dispersive Spectroscopy
3.5. Device Structure, TEM Cross-Section View, and EDS Analysis
3.6. Gas-Sensing Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhama, K.; Patel, S.K.; Kumar, R.; Masand, R.; Rana, J.; Yatoo, M.I.; Tiwari, R.; Sharun, K.; Mohapatra, R.K.; Natesan, S. The role of disinfectants and sanitizers during COVID-19 pandemic: Advantages and deleterious effects on humans and the environment. Environ. Sci. Pollut. Res. 2021, 28, 1–18. [Google Scholar] [CrossRef]
- Musile, G.; Pigaiani, N.; Sorio, D.; Colombari, M.; Bortolotti, F.; Tagliaro, F. Alcohol-associated traffic injuries in Verona territory: A nine-year survey. Med. Sci. Law 2021, 61, 7–13. [Google Scholar] [CrossRef]
- Cho, S.Y.; Yoo, H.W.; Kim, J.Y.; Jung, W.B.; Jin, M.L.; Kim, J.S.; Jeon, H.J.; Jung, H.T. High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds. Nano Lett. 2016, 16, 4508–4515. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Kim, H.; Son, M.; Kim, H.; Lee, H.C.; Lee, C.S. Fabrication of a kinetically sprayed CuO ultra-thin film to evaluate CO gas sensing parameters. New J. Chem. 2019, 43, 7814–7821. [Google Scholar] [CrossRef]
- Din, S.U.; Ul Haq, M.; Sajid, M.; Khatoon, R.; Chen, X.H.; Li, L.; Zhang, M.J.; Zhu, L.P. Development of high-performance sensor based on NiO/SnO(2)heterostructures to study sensing properties towards various reducing gases. Nanotechnology 2020, 31, 13. [Google Scholar] [CrossRef] [PubMed]
- Nakate, U.T.; Patil, P.; Na, S.I.; Yu, Y.T.; Suh, E.K.; Hahn, Y.B. Fabrication and enhanced carbon monoxide gas sensing performance of p-CuO/n-TiO2 heterojunction device. Colloid Surf. A-Physicochem. Eng. Asp. 2021, 612, 8. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Chang, S.J.; Ji, L.W.; Hsiao, Y.J.; Tang, I.T.; Lu, H.Y.; Chu, Y.L. High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode. ACS Omega 2018, 3, 13798–13807. [Google Scholar] [CrossRef] [PubMed]
- Umar, A.; Lee, J.H.; Kumar, R.; Al-Dossary, O.; Ibrahim, A.A.; Baskoutas, S. Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures. Mater. Des. 2016, 105, 16–24. [Google Scholar] [CrossRef]
- Wang, C.; Cui, X.B.; Liu, J.Y.; Zhou, X.; Cheng, X.Y.; Sun, P.; Hu, X.L.; Li, X.W.; Zheng, J.; Lu, G.Y. Design of Superior Ethanol Gas Sensor Based on Al-Doped NiO Nanorod-Flowers. ACS Sens. 2016, 1, 131–136. [Google Scholar] [CrossRef]
- Cao, S.X.; Han, T.; Peng, L.L. Surfactant-free synthesis of 3D hierarchical flower-like NiO nanostructures with enhanced ethanol-sensing performance. J. Mater. Sci. Mater. Electron. 2020, 31, 17291–17296. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, D.; Zhu, Q.; Wu, J.; Huang, Q.; Xie, C. Effect of Nickel Vacancies on the Room-Temperature NO2 Sensing Properties of Mesoporous NiO Nanosheets. J. Phys. Chem. C 2016, 120, 3936–3945. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, D.W.; Zhu, Q.; Wu, J.J.; Huang, Q.W.; Zhang, W.; Xie, C.S. Enhanced room temperature NO2 response of NiO-SnO2 nanocomposites induced by interface bonds at the p-n heterojunction (vol 18, pg 5386, 2016). Phys. Chem. Chem. Phys. 2017, 19, 10695–10697. [Google Scholar] [CrossRef] [Green Version]
- Bai, G.M.; Dai, H.X.; Deng, J.G.; Liu, Y.X.; Ji, K.M. Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion. Catal. Commun. 2012, 27, 148–153. [Google Scholar] [CrossRef]
- Bai, G.M.; Dai, H.X.; Deng, J.G.; Liu, Y.X.; Qiu, W.G.; Zhao, Z.X.; Li, X.W.; Yang, H.G. The microemulsion preparation and high catalytic performance of mesoporous NiO nanorods and nanocubes for toluene combustion. Chem. Eng. J. 2013, 219, 200–208. [Google Scholar] [CrossRef]
- Lin, L.; Liu, T.; Miao, B.; Zeng, W. Hydrothermal fabrication of uniform hexagonal NiO nanosheets: Structure, growth and response. Mater. Lett. 2013, 102, 43–46. [Google Scholar] [CrossRef]
- Miao, R.; Zeng, W. Hydrothermal synthesis of flake-flower NiO architectures: Structure, growth and gas-sensing properties. Mater. Lett. 2016, 171, 200–203. [Google Scholar] [CrossRef]
- Rai, P.; Yoon, J.-W.; Jeong, H.-M.; Hwang, S.-J.; Kwak, C.-H.; Lee, J.-H. Design of highly sensitive and selective Au@ NiO yolk–shell nanoreactors for gas sensor applications. Nanoscale 2014, 6, 8292–8299. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Nag, S.; Santra, S.; Ray, S.K.; Guha, P.K. Voltage-controlled NiO/ZnO p-n heterojunction diode: A new approach towards selective VOC sensing. Microsyst. Nanoeng. 2020, 6, 9. [Google Scholar] [CrossRef]
- Marikutsa, A.; Novikova, A.; Rumyantseva, M.; Khmelevsky, N.; Gaskov, A. Comparison of Au-functionalized semiconductor metal oxides in sensitivity to VOC. Sens. Actuator B-Chem. 2021, 326, 12. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Tshabalala, Z.P.; Hillie, K.T.; Swart, H.C.; Motaung, D.E. The blue luminescence of p-type NiO nanostructured material induced by defects: H2S gas sensing characteristics at a relatively low operating temperature. Appl. Surf. Sci. 2020, 525, 19. [Google Scholar] [CrossRef]
- Codorniu Pujals, D.; Rodríguez Garcés, D.; Arias de Fuentes, O.; Desdín García, L.F. XPS of carbon nanostructures obtained by underwater arc discharge of graphite electrodes. Nucleus (La Habana) 2018, 51, 15–18. [Google Scholar]
- Zhang, W.; Zhou, Z. Citrus pectin-derived carbon microspheres with superior adsorption ability for methylene blue. Nanomaterials 2017, 7, 161. [Google Scholar] [CrossRef] [PubMed]
- Acikgoz, C. Extraction and characterization of pectin obtained from quince fruits (Cydonia vulgaris Pers.) grown in Turkey. Asian J. Chem. 2011, 23, 149. [Google Scholar]
- Mishra, R.K.; Datt, M.; Pal, K.; Banthia, A. Preparation and characterization of amidated pectin based hydrogels for drug delivery system. J. Mater. Sci. Mater. Med. 2008, 19, 2275–2280. [Google Scholar] [CrossRef]
- Qiao, H.; Wei, Z.; Yang, H.; Zhu, L.; Yan, X. Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J. Nanomater. 2009, 2009, 795928. [Google Scholar] [CrossRef] [Green Version]
- Shuihab, A.; Khalf, S. Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2018; p. 020026. [Google Scholar]
- Zanella, K.; Taranto, O.P. Influence of the drying operating conditions on the chemical characteristics of the citric acid extracted pectins from ‘pera’sweet orange (Citrus sinensis L. Osbeck) albedo and flavedo. J. Food Eng. 2015, 166, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.M.; Hon, M.H.; Leu, I.C. Influence of Size and Density of Au Nanoparticles on ZnO Nanorod Arrays for Sensing Reducing Gases. J. Electrochem. Soc. 2013, 160, B170–B176. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, T.; Shi, T.; Sun, B.; Tang, Z.; Liao, G. Au modified ZnO nanowires for ethanol gas sensing. Sci. China Technol. Sci. 2017, 60, 71–77. [Google Scholar] [CrossRef]
- Young, S.J.; Chu, Y.L. Platinum Nanoparticle-Decorated ZnO Nanorods Improved the Performance of Methanol Gas Sensor. J. Electrochem. Soc. 2020, 167, 6. [Google Scholar] [CrossRef]
- Yu, L.M.; Wei, J.S.; Luo, Y.Y.; Tao, Y.L.; Lei, M.; Fan, X.H.; Yan, W.; Peng, P. Dependence of Al3+ on the growth mechanism of vertical standing ZnO nanowalls and their NO2 gas sensing properties. Sens. Actuator B-Chem. 2014, 204, 96–101. [Google Scholar] [CrossRef]
Element | Working Temperature (°C) | Gas | Gas Concentration (ppm) | Response | Ref. |
---|---|---|---|---|---|
NiO nanosheets | 250 | Ethanol | 50 | 65 | [15] |
NiO flake-flower | 300 | Ethanol | 400 | 32 | [16] |
Au@NiO NPs | 400 | Ethanol | 5 | ~3 | [17] |
NiO/ZnO | 300 | Ethanol | 95 | ~1 | [18] |
NiO–Au functionalized | 150 | Acetone and Methanol | 20 | <1 | [19] |
NiO-8 h | 75 | H2S | 60 | 74 | [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, J.-C.; Chang, Y.-C.; Chang, S.-P.; Chang, S.-J. High Response of Ethanol Gas Sensor Based on NiO-Doped Apple Pectin by the Solution Process. Coatings 2021, 11, 1073. https://doi.org/10.3390/coatings11091073
Jian J-C, Chang Y-C, Chang S-P, Chang S-J. High Response of Ethanol Gas Sensor Based on NiO-Doped Apple Pectin by the Solution Process. Coatings. 2021; 11(9):1073. https://doi.org/10.3390/coatings11091073
Chicago/Turabian StyleJian, Jia-Cheng, Yu-Chi Chang, Sheng-Po Chang, and Shoou-Jinn Chang. 2021. "High Response of Ethanol Gas Sensor Based on NiO-Doped Apple Pectin by the Solution Process" Coatings 11, no. 9: 1073. https://doi.org/10.3390/coatings11091073
APA StyleJian, J.-C., Chang, Y.-C., Chang, S.-P., & Chang, S.-J. (2021). High Response of Ethanol Gas Sensor Based on NiO-Doped Apple Pectin by the Solution Process. Coatings, 11(9), 1073. https://doi.org/10.3390/coatings11091073