High-Temperature Dielectric and Microwave Absorption Property of Atmospheric Plasma Sprayed Al2O3-MoSi2-Cu Composite Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Spraying Feedstock
2.2. Plasma Spraying Experiment
2.3. Micromorphology of Coating
2.4. Properties of the Coating
3. Results and Discussion
3.1. Phase Analysis of the Coating
3.2. Thermal Analysis
3.3. Dielectric Properties of the Coating
3.4. Absorbing Performance of the Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, J.; Zhou, W.; Liu, Y.; Qing, Y.; Luo, F.; Zhu, D. High-Temperature Dielectric and Microwave Absorption Property of Plasma Sprayed Ti3SiC2/Cordierite Coatings. J. Mater. Sci. Mater. Electron. 2016, 27, 2460–2466. [Google Scholar] [CrossRef]
- Zhou, Q.; Yin, X.; Ye, F.; Tang, Z.; Mo, R.; Cheng, L. High Temperature Electromagnetic Wave Absorption Properties of SiCf/Si3N4 Composite Induced by Different SiC Fibers. Ceram. Int. 2019, 45, 6514–6522. [Google Scholar] [CrossRef]
- Shao, T.; Ma, H.; Wang, J.; Feng, M.; Yan, M.; Wang, J.; Yang, Z.; Zhou, Q.; Luo, H.; Qu, S. High Temperature Absorbing Coatings with Excellent Performance Combined Al2O3 and TiC Material. J. Eur. Ceram. Soc. 2020, 40, 2013–2019. [Google Scholar] [CrossRef]
- Hou, Y.; Xiao, B.; Sun, Z.; Yang, W.; Wu, S.; Qi, S.; Wen, G.; Huang, X. High Temperature Anti-Oxidative and Tunable Wave Absorbing SiC/Fe3Si/CNTs Composite Ceramic Derived from a Novel Polysilyacetylene. Ceram. Int. 2019, 45, 16369–16379. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, B.; Xiang, H.; Dai, F.; Zhang, Z.; Zhou, Y. Electromagnetic Wave Absorbing Properties of Cr 2 AlB2 Powders and the Effect of High-temperature Oxidation. J. Am. Ceram. Soc. 2021, 104, 2213–2224. [Google Scholar] [CrossRef]
- Pan, J.; Sun, X.; Wang, T.; Zhu, Z.; He, Y.; Xia, W.; He, J. Porous Coin-like Fe@MoSi2 Composite with Optimized Impedance Matching for Efficient Microwave Absorption. Appl. Surf. Sci. 2018, 457, 271–279. [Google Scholar] [CrossRef]
- Wang, S.; Gong, H.; Zhang, Y.; Ashfaq, M.Z. Microwave Absorption Properties of Polymer-Derived SiCN (CNTs) Composite Ceramics. Ceram. Int. 2021, 47, 1294–1302. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, W.; Zhong, C.; Wu, S.; Wu, Y.; Liu, F.; Huang, X.; Wen, G. Thermostable SiCO@BN Sheets with Enhanced Electromagnetic Wave Absorption. Chem. Eng. J. 2019, 378, 122239. [Google Scholar] [CrossRef]
- Jia, H.; Zhou, W.; Nan, H.; Qing, Y.; Luo, F.; Zhu, D. High Temperature Microwave Absorbing Properties of Plasma Sprayed La0.6Sr0.4FeO3-δ/MgAl2O4 Composite Ceramic Coatings. Ceram. Int. 2020, 46, 6168–6173. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, F.; Zhou, W.; Zhu, D. Dielectric and Microwave Absorption Properties of TiC-Al2O3/Silica Coatings at High Temperature. J. Electron. Mater. 2017, 46, 5225–5231. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Bai, C. Microstructure and Oxidation Behavior of Si–MoSi 2 Functionally Graded Coating on Mo Substrate. Ceram. Int. 2017, 43, 6250–6256. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, W.; Luo, F.; Zhu, D. Effect of MoSi2 Content on Dielectric and Mechanical Properties of MoSi2/Al2O3 Composite Coatings. Trans. Nonferrous Met. Soc. China 2012, 22, 111–116. [Google Scholar] [CrossRef]
- Yan, J.; He, Z.; Wang, Y.; Qiu, J.; Wang, Y. Microstructure and Wear Resistance of Plasma-Sprayed Molybdenum Coating Reinforced by MoSi2 Particles. J. Therm. Spray Tech. 2016, 25, 1322–1329. [Google Scholar] [CrossRef]
- Hou, S.; Liu, Z.; Liu, D.; Li, B. Effect of Alloying with Al on Oxidation Behavior of MoSi2 Coatings at 1100 °C. Surf. Coat. Technol. 2012, 206, 4466–4470. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, F.; Zhao, Y.; An, X.; Yang, J. Preparation and Properties of Al2O3/MoSi2 Coating on Al2O3 Base Porous Insulation Materials. Fuhe Cailiao Xuebao/Acta Mater. Compos. Sin. 2020, 37, 2870–2876. [Google Scholar] [CrossRef]
- Huo, D.; Li, W.-S.; Feng, L.; Hu, C.-X.; Hu, W. Effects of Spraying Process on Microstructure and Properties of MoSi2-Al2O3 Coating. Surf. Technol. 2018, 47, 267–273. [Google Scholar] [CrossRef]
- Singh, S.; Sinha, A.; Zunke, R.H.; Kumar, A.; Singh, D. Double Layer Microwave Absorber Based on Cu Dispersed SiC Composites. Adv. Powder Technol. 2018, 29, 2019–2026. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Xiong, Z.; Shen, Z.; Liu, C.; Xie, Y. Cu2O@nanoporous Carbon Composites Derived from Cu-Based MOFs with Ultrabroad-Bandwidth Electromagnetic Wave Absorbing Performance. Ceram. Int. 2021, 47, 2155–2164. [Google Scholar] [CrossRef]
- Gao, S.; Xing, H.; Li, Y.; Wang, H. Synthesis of Cu2O/Multi-Walled Carbon Nanotube Hybrid Material and Its Microwave Absorption Performance. Res. Chem. Intermed. 2018, 44, 3425–3435. [Google Scholar] [CrossRef]
- Bi, S.; Su, X.; Li, J.; Hou, G.; Liu, Z.; Zhong, C.; Hou, Z. High-Temperature Dielectric Properties and Microwave Absorption Abilities of Bi1−xMgxFeO3 Nanoparticles. Ceram. Int. 2017, 43, 11815–11819. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Y. Strong and Thermostable Boron-Containing Phenolic Resin-Derived Carbon Modified Three-Dimensional Needled Carbon Fiber Reinforced Silicon Oxycarbide Composites with Tunable High-Performance Microwave Absorption Properties. Appl. Sci. 2020, 10, 1924. [Google Scholar] [CrossRef] [Green Version]
- Yakaboylu, G.A.; Yumak, T.; Sabolsky, K.; Sabolsky, E.M. Effect of High Temperature Preoxidation Treatment on the Oxidation Behavior of MoSi2 and WSi2–Al2O3 Composites. J. Alloys Compd. 2020, 816, 152499. [Google Scholar] [CrossRef]
- Taghi-Ramezani, S.; Valefi, Z.; Mirjani, M.; Ghasemi, R. The Influence of Pyrolysing Al2O3 Precursor on the High Temperature Properties of the YSZ-Al2O3 Composite Coating. Surf. Eng. 2020, 1–11. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, S.; Xiao, L.; Fang, Z.; Li, W.; Zhang, B. Oxidation Behavior and Microstructural Evolution of a Slurry Sintered Si-Mo Coating on Mo Alloy at 1650 °C. Surf. Coat. Technol. 2017, 324, 182–189. [Google Scholar] [CrossRef]
- Serrà, A.; Gómez, E.; Michler, J.; Philippe, L. Facile Cost-Effective Fabrication of Cu@Cu2O@CuO–Microalgae Photocatalyst with Enhanced Visible Light Degradation of Tetracycline. Chem. Eng. J. 2021, 413, 127477. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, X.; Liu, W.; Ji, G. Direct Synthesis of MOF-Derived Nanoporous CuO/Carbon Composites for High Impedance Matching and Advanced Microwave Absorption. J. Mater. Chem. C 2016, 4, 11419–11426. [Google Scholar] [CrossRef]
- Benzerga, R.; Badard, M.; Méjean, C.; El Assal, A.; Le Paven, C.; Sharaiha, A. Carbon Fibers Loaded Composites for Microwave Absorbing Application: Effect of Fiber Length and Dispersion Process on Dielectric Properties. J. Electron. Mater. 2020, 49, 2999–3008. [Google Scholar] [CrossRef]
- Debye, P. Polar Moecules; The Chemical Catalogue Company: New York, NY, USA, 1929. [Google Scholar]
- Song, W.; Cao, M.; Hou, Z.; Yuan, J.; Fang, X. High-Temperature Microwave Absorption and Evolutionary Behavior of Multiwalled Carbon Nanotube Nanocomposite. Scr. Mater. 2009, 61, 201–204. [Google Scholar] [CrossRef]
- Cao, M.-S.; Song, W.-L.; Hou, Z.-L.; Wen, B.; Yuan, J. The Effects of Temperature and Frequency on the Dielectric Properties, Electromagnetic Interference Shielding and Microwave-Absorption of Short Carbon Fiber/Silica Composites. Carbon 2010, 48, 788–796. [Google Scholar] [CrossRef]
- Grosse, C. A Program for the Fitting of Debye, Cole–Cole, Cole–Davidson, and Havriliak–Negami Dispersions to Dielectric Data. J. Colloid Interface Sci. 2014, 419, 102–106. [Google Scholar] [CrossRef]
- Gao, H.; Luo, F.; Wen, Q.; Jia, H.; Zhou, W.; Zhu, D. Enhanced High-temperature Dielectric and Microwave Absorption Properties of SiC Fiber-reinforced Oxide Matrix Composites. J. Appl. Polym. Sci. 2019, 136, 47097. [Google Scholar] [CrossRef]
- Zong, M.; Huang, Y.; Wu, H.; Zhao, Y.; Liu, P.; Wang, L. Facile Preparation of RGO/Cu2O/Cu Composite and Its Excellent Microwave Absorption Properties. Mater. Lett. 2013, 109, 112–115. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Arc Current (A) | 400 |
Arc Voltage (V) | 30 |
Primary gas (Ar) flow rate (L/h) | 1800 |
Secondary gas (H2) rate (L/h) | 10 |
Spray distance (mm) | 85 |
Powder carrier gas (Ar) flow rate (L/h) | 200 |
Powder feed rate (g/min) | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Jiang, Y.; Cai, D.; Xu, J.; Ding, J. High-Temperature Dielectric and Microwave Absorption Property of Atmospheric Plasma Sprayed Al2O3-MoSi2-Cu Composite Coating. Coatings 2021, 11, 1029. https://doi.org/10.3390/coatings11091029
Gao C, Jiang Y, Cai D, Xu J, Ding J. High-Temperature Dielectric and Microwave Absorption Property of Atmospheric Plasma Sprayed Al2O3-MoSi2-Cu Composite Coating. Coatings. 2021; 11(9):1029. https://doi.org/10.3390/coatings11091029
Chicago/Turabian StyleGao, Cheng, Yangsheng Jiang, Dayong Cai, Jinyong Xu, and Jia Ding. 2021. "High-Temperature Dielectric and Microwave Absorption Property of Atmospheric Plasma Sprayed Al2O3-MoSi2-Cu Composite Coating" Coatings 11, no. 9: 1029. https://doi.org/10.3390/coatings11091029