Analysis of Metal-Insulator Crossover in Strained SrRuO3 Thin Films by X-ray Photoelectron Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Structural Properties
4. Transport Properties
5. ARPES Experiments
6. Core Level Photoemission Spectroscopy Experiments
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van, V.M. Competition between screening channels in core-level X-ray photoemission as a probe of changes in the ground-state properties of transition-metal compounds. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 74, 085118. [Google Scholar]
- Horiba, K.; Taguchi, M.; Chainani, A.; Takata, Y.; Ikenaga, E.; Miwa, D.; Nishino, Y.; Tamasaku, K.; Awaji, M.; Takeuchi, A.; et al. Nature of the well screened state in hard X-ray Mn 2p core-level photoemission measurements of La1-xSrxMnO3 films. Phys. Rev. Lett. 2004, 93, 236401. [Google Scholar] [CrossRef] [Green Version]
- Offi, F.; Mannella, N.; Pardini, T.; Panaccione, G.; Fondacaro, A.; Torelli, P.; West, M.W.; Mitchell, J.F.; Fadley, C.S. Temperature-dependent electronic structure of the colossal magnetoresistive manganite La0.7Sr0.3MnO3 from hard X-ray photoemission. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 174422. [Google Scholar] [CrossRef]
- Panaccione, G.; Altarelli, M.; Fondacaro, A.; Georges, A.; Huotari, S.; Lacovig, P.; Lichtenstein, A.; Metcalf, P.; Monaco, G.; Offi, F.; et al. Coherent peaks and minimal probing depth in photoemission spectroscopy of mott-hubbard systems. Phys. Rev. Lett. 2006, 97, 116401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandell, A.; Jaworowski, A.J. The Mn 2p core-level photoelectron spectrum of Pd-Mn bimetallic systems on Pd(100). J. Electron Spectrosc. Relat. Phenom. 2004, 135, 7–14. [Google Scholar] [CrossRef]
- Schlueter, C.; Orgiani, P.; Lee, T.L.; Petrov, A.Y.; Galdi, A.; Davidson, B.A.; Zegenhagen, J.; Aruta, C. Evidence of electronic band redistribution in La0.65Sr0.35MnO3-δ by hard X-ray photoelectron spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 86, 155102. [Google Scholar] [CrossRef]
- Pincelli, T.; Lollobrigida, V.; Borgatti, F.; Regoutz, A.; Gobaut, B.; Schlueter, C.; Lee, T.L.; Payne, D.J.; Oura, M.; Tamasaku, K.; et al. Quantifying the critical thickness of electron hybridization in spintronics materials. Nat. Commun. 2017, 8, 16051. [Google Scholar] [CrossRef] [Green Version]
- Koster, G.; Klein, L.; Siemons, W.; Rijnders, G.; Dodge, J.S.; Eom, C.B.; Blank, D.H.A.; Beasley, M.R. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 2012, 84, 253–298. [Google Scholar] [CrossRef] [Green Version]
- Pang, S. Review on electronic correlations and the metal-insulator transition in SrRuO3. Appl. Microsc. 2017, 47, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Nair, H.P.; Liu, Y.; Ruf, J.P.; Schreiber, N.J.; Shang, S.-L.; Baek, D.J.; Goodge, B.H.; Kourkoutis, L.F.; Liu, Z.-K.; Shen, K.M.; et al. Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios. APL Mater. 2018, 6, 046101. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Nair, H.P.; Correa, G.C.; Jeong, J.; Lee, K.; Kim, E.S.; Seidner, A.; Lee, C.S.; Lim, H.J.; Muller, D.A.; et al. Epitaxial integration and properties of SrRuO3 on silicon. APL Mater. 2018, 6, 086101. [Google Scholar] [CrossRef] [Green Version]
- Schraknepper, H.; Baumer, C.; Gunkel, F.; Dittmann, R.; De Souza, R.A. Pulsed laser deposition of SrRuO3 thin-films: The role of the pulse repetition rate. APL Mater. 2016, 4, 126109. [Google Scholar] [CrossRef] [Green Version]
- Klein, L.; Dodge, J.S.; Ahn, C.H.; Reiner, J.W.; Mieville, L.; Geballe, T.H.; Beasley, M.R.; Kapitulnik, A. Transport and magnetization in the badly metallic itinerant ferromagnet SrRuO3. J. Phys. Condens. Matter 1996, 8, 10111–10126. [Google Scholar] [CrossRef]
- Chen, C.L.; Cao, Y.; Huang, Z.J.; Jiang, Q.D.; Zhang, Z.; Sun, Y.Y.; Kang, W.N.; Dezaneti, L.M.; Chu, W.K.; Chu, C.W. Epitaxial SrRuO3 thin films on (001) SrTiO3. Appl. Phys. Lett. 1997, 71, 1047–1049. [Google Scholar] [CrossRef]
- Jiang, J.C.; Tian, W.; Pan, X.Q.; Gan, Q.; Eom, C.B. Domain structure of epitaxial SrRuO3 thin films on miscut (001) SrTiO3 substrates. Appl. Phys. Lett. 1998, 72, 2963–2965. [Google Scholar] [CrossRef]
- Gan, Q.; Rao, R.A.; Eom, C.B.; Garrett, J.L.; Lee, M. Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films. Appl. Phys. Lett. 1998, 72, 978–980. [Google Scholar] [CrossRef]
- Orgiani, P.; Aruta, C.; Balestrino, G.; Lavanga, S.; Medaglia, P.G.; Tebano, A. Strain effect on transport properties of SrRuO3 films grown by laser MBE. Eur. Phys. J. B 2002, 26, 23–28. [Google Scholar] [CrossRef]
- Qin, Q.; Liu, L.; Lin, W.; Shu, X.; Xie, Q.; Lim, Z.; Li, C.; He, S.; Chow, G.M.; Chen, J. Emergence of topological hall effect in a SrRuO3 single layer. Adv. Mater. 2019, 31, 1807008. [Google Scholar] [CrossRef]
- Gausepohl, S.C.; Lee, M.; Char, K.; Rao, R.A.; Eom, C.B. Magnetoresistance properties of thin films of the metallic oxide ferromagnet SrRuO3. Phys. Rev. B Condens. Matter Mater. Phys. 1995, 52, 3459–3465. [Google Scholar] [CrossRef]
- Bansal, C.; Kawanaka, H.; Takahashi, R.; Nishihara, Y. Metal-insulator transition in Fe-substituted SrRuO3 bad metal system. J. Alloy Compd. 2003, 360, 47–53. [Google Scholar] [CrossRef]
- Orgiani, P.; Ciancio, R.; Galdi, A.; Amoruso, S.; Maritato, L. Physical properties of La0.7Ba0.3MnO3-δ complex oxide thin films grown by pulsed laser deposition technique. Appl. Phys. Lett. 2010, 96, 032501. [Google Scholar] [CrossRef]
- Orgiani, P.; Bigi, C.; Kumar Das, P.; Fujii, J.; Ciancio, R.; Gobaut, B.; Galdi, A.; Sacco, C.; Maritato, L.; Torelli, P.; et al. Structural and electronic properties of Bi2Se3 topological insulator thin films grown by pulsed laser deposition. Appl. Phys. Lett. 2017, 110, 171601. [Google Scholar] [CrossRef] [Green Version]
- Golalikhani, M.; Lei, Q.; Chandrasena, R.U.; Kasaei, L.; Park, H.; Bai, J.; Orgiani, P.; Ciston, J.; Sterbinsky, G.E.; Arena, D.A.; et al. Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films. Nat. Commun. 2018, 9, 2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windt, D.L. IMD—Software for modeling the optical properties of multilayer films. Comput. Phys. 1998, 12, 360. [Google Scholar] [CrossRef] [Green Version]
- Sánchez del Río, M.; Dejus, R.J. XOP v2.4: Recent developments of the X-ray optics software toolkit. Adv. Comput. Methods X-ray Opt. II 2011, 8141, 814115. [Google Scholar]
- Orgiani, P.; Perucchi, A.; Knez, D.; Ciancio, R.; Bigi, C.; Chaluvadi, S.K.; Fujii, J.; Vobornik, I.; Panaccione, G.; Rossi, G.; et al. Tuning the optical absorption of anatase thin films across the visible-to-near-infrared spectral region. Phys. Rev. Appl. 2020, 13, 044011. [Google Scholar] [CrossRef]
- Bigi, C.; Orgiani, P.; Nardi, A.; Troglia, A.; Fujii, J.; Panaccione, G.; Vobornik, I.; Rossi, G. Robustness of topological states in Bi2Se3 thin film grown by Pulsed Laser Deposition on (001)-oriented SrTiO3 perovskite. Appl. Surf. Sci. 2019, 473, 190–193. [Google Scholar] [CrossRef]
- Kan, D.; Aso, R.; Kurata, H.; Shimakawa, Y. Epitaxial strain effect in tetragonal SrRuO3 thin films. J. Appl. Phys. 2013, 113, 173912. [Google Scholar] [CrossRef]
- Jeong, H.; Jeong, S.G.; Mohamed, A.Y.; Lee, M.; Noh, W.S.; Kim, Y.; Bae, J.S.; Choi, W.S.; Cho, D.Y. Thickness-dependent orbital hybridization in ultrathin SrRuO3 epitaxial films. Appl. Phys. Lett. 2019, 115, 092906. [Google Scholar] [CrossRef]
- Kim, D.; Lim, H.; Ha, S.S.; Seo, O.; Lee, S.S.; Kim, J.; Kim, K.J.; Perez Ramirez, L.; Gallet, J.J.; Bournel, F.; et al. Correlation between structural phase transition and surface chemical properties of thin film SrRuO3/SrTiO3 (001). J. Chem. Phys. 2020, 152, 034704. [Google Scholar] [CrossRef] [Green Version]
- Chopdekar, R.V.; Takamura, Y.; Suzuki, Y. Disorder-induced carrier localization in ultrathin strained SrRuO3 epitaxial films. J. Appl. Phys. 2006, 99, 08F503. [Google Scholar] [CrossRef]
- Shen, X.; Qiu, X.; Su, D.; Zhou, S.; Li, A.; Wu, D. Thickness-dependent metal-insulator transition in epitaxial SrRuO3 ultrathin films. J. Appl. Phys. 2015, 117, 015307. [Google Scholar] [CrossRef] [Green Version]
- Maria, J.P.; Trolier-McKinstry, S.; Schlom, D.G.; Hawley, M.E.; Brown, G.W. The influence of energetic bombardment on the structure and properties of epitaxial SrRuO3 thin films grown by pulsed laser deposition. J. Appl. Phys. 1998, 83, 4373–4379. [Google Scholar] [CrossRef] [Green Version]
- Capogna, L.; Mackenzie, A.P.; Mackenzie, A.P.; Perry, R.S.; Grigera, S.A.; Galvin, L.M.; Raychaudhuri, P.; Schofield, A.J.; Alexander, C.S.; Cao, G.; et al. Sensitivity to disorder of the metallic state in the ruthenates. Phys. Rev. Lett. 2002, 88, 766021–766024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panaccione, G.; Vobornik, I.; Fujii, J.; Krizmancic, D.; Annese, E.; Giovanelli, L.; Maccherozzi, F.; Salvador, F.; De Luisa, A.; Benedetti, D.; et al. Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation. Rev. Sci. Instrum. 2009, 80, 043105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobaut, B.; Orgiani, P.; Sambri, A.; Di Gennaro, E.; Aruta, C.; Borgatti, F.; Lollobrigida, V.; Céolin, D.; Rueff, J.P.; Ciancio, R.; et al. Role of oxygen deposition pressure in the formation of Ti defect states in TiO2 (001) anatase thin films. ACS Appl. Mater. Interfaces 2017, 9, 23099–23106. [Google Scholar] [CrossRef] [Green Version]
- Bigi, C.; Orgiani, P.; Sławińska, J.; Fujii, J.; Irvine, J.T.; Picozzi, S.; Panaccione, G.; Vobornik, I.; Rossi, G.; Payne, D.; et al. Direct insight into the band structure of SrNbO3. Phys. Rev. Mater. 2020, 4, 025006. [Google Scholar] [CrossRef]
- Bigi, C.; Tang, Z.; Pierantozzi, G.M.; Orgiani, P.; Das, P.K.; Fujii, J.; Vobornik, I.; Pincelli, T.; Troglia, A.; Lee, T.L.; et al. Distinct behavior of localized and delocalized carriers in anatase TiO2 (001) during reaction with O2. Phys. Rev. Mater. 2020, 4, 025801. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, K.; Okamoto, J.; Mizokawa, T.; Fujimori, A.; Hase, I.; Abbate, M.; Lin, H.J.; Chen, C.T.; Takeda, Y.; Takano, M. Electronic structure of SrRuO3. Phys. Rev. B 1997, 56, 6380. [Google Scholar] [CrossRef]
- Yang, H.F.; Fan, C.C.; Liu, Z.T.; Yao, Q.; Li, M.Y.; Liu, J.S.; Jiang, M.H.; Shen, D.W. Comparative angle-resolved photoemission spectroscopy study of CaRuO3 and SrRuO3 thin films: Pronounced spectral weight transfer and possible precursor of lower Hubbard band. Phys. Rev. B 2016, 94, 115151. [Google Scholar] [CrossRef]
- Shai, D.E.; Adamo, C.; Shen, D.W.; Brooks, C.M.; Harter, J.W.; Monkman, E.J.; Burganov, B.; Schlom, D.G.; Shen, K.M. Quasiparticle mass enhancement and temperature dependence of the electronic structure of ferromagnetic SrRuO3 thin films. Phys. Rev. Lett. 2013, 110, 087004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, H.; Ishida, Y.; Kim, B.; Kim, J.R.; Kim, W.J.; Kohama, Y.; Imajo, S.; Yang, Z.; Kyung, W.; Hahn, S.; et al. Electronic band structure of (111) SrRuO3 thin film—An angle-resolved photoemission spectroscopy study. arXiv 2020, arXiv:2002.04256. [Google Scholar] [CrossRef]
- Yang, H.F.; Liu, Z.T.; Fan, C.C.; Yao, Q.; Xiang, P.; Zhang, K.L.; Li, M.Y.; Li, H.; Liu, J.S.; Shen, D.W.; et al. Origin of the kink in the band dispersion of the ferromagnetic perovskite SrRuO3: Electron-phonon coupling. Phys. Rev. B 2016, 93, 121102. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.D.; Noh, H.J.; Kim, K.H.; Oh, S.J. Core-level X-ray photoemission satellites in ruthenates: A new mechanism revealing the Mott transition. Phys. Rev. Lett. 2004, 93, 126404. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Chung, J.; Oh, S.J. In situ photoemission study on SrRuO3/SrTiO3 films grown by pulsed laser deposition. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 71, 121406. [Google Scholar] [CrossRef]
- Siemons, W.; Koster, G.; Vailionis, A.; Yamamoto, H.; Blank, D.H.A.; Beasley, M.R. Dependence of the electronic structure of SrRuO3 and its degree of correlation on cation off-stoichiometry. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 075126. [Google Scholar] [CrossRef] [Green Version]
- Barlaz, D.E.; Haasch, R.T.; Seebauer, E.G. Epitaxial SrRuO3/SrTiO3 (100) analyzed using X-ray photoelectron spectroscopy. Surf. Sci. Spectra 2017, 24, 024002. [Google Scholar] [CrossRef]
- Galal, A.; Hassan, H.K.; Atta, N.F.; Abdel-Mageed, A.M.; Jacob, T. Synthesis, structural and morphological characterizations of nano-Ru-based perovskites/RGO composites. Sci. Rep. 2019, 9, 7948. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, M.; Toyota, D.; Wadati, H.; Chikamatsu, A.; Kumigashira, H.; Fujimori, A.; Oshima, M.; Fang, Z.; Lippmaa, M.; Kawasaki, M.; et al. Manifestation of correlation effects in the photoemission spectra of Ca1-xSrxRuO3. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 060404. [Google Scholar] [CrossRef] [Green Version]
- Panaccione, G.; Manju, U.; Offi, F.; Annese, E.; Vobornik, I.; Torelli, P.; Zhu, Z.H.; Hossain, M.A.; Simonelli, L.; Fondacaro, A.; et al. Depth dependence of itinerant character in Mn-substituted Sr3Ru2O7. New J. Phys. 2011, 13, 053059. [Google Scholar] [CrossRef]
- Cox, P.A.; Egdell, R.G.; Goodenough, J.B.; Hamnett, A.; Naish, C.C. The metal-to-semiconductor transition in ternary ruthenium (IV) oxides: A study by electron spectroscopy. J. Phys. C Solid State Phys. 1983, 16, 6221–6239. [Google Scholar] [CrossRef]
- Morgan, D.J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 1072–1079. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardi, A.; Bigi, C.; Kumar Chaluvadi, S.; Ciancio, R.; Fujii, J.; Vobornik, I.; Panaccione, G.; Rossi, G.; Orgiani, P. Analysis of Metal-Insulator Crossover in Strained SrRuO3 Thin Films by X-ray Photoelectron Spectroscopy. Coatings 2020, 10, 780. https://doi.org/10.3390/coatings10080780
Nardi A, Bigi C, Kumar Chaluvadi S, Ciancio R, Fujii J, Vobornik I, Panaccione G, Rossi G, Orgiani P. Analysis of Metal-Insulator Crossover in Strained SrRuO3 Thin Films by X-ray Photoelectron Spectroscopy. Coatings. 2020; 10(8):780. https://doi.org/10.3390/coatings10080780
Chicago/Turabian StyleNardi, Andrea, Chiara Bigi, Sandeep Kumar Chaluvadi, Regina Ciancio, Jun Fujii, Ivana Vobornik, Giancarlo Panaccione, Giorgio Rossi, and Pasquale Orgiani. 2020. "Analysis of Metal-Insulator Crossover in Strained SrRuO3 Thin Films by X-ray Photoelectron Spectroscopy" Coatings 10, no. 8: 780. https://doi.org/10.3390/coatings10080780
APA StyleNardi, A., Bigi, C., Kumar Chaluvadi, S., Ciancio, R., Fujii, J., Vobornik, I., Panaccione, G., Rossi, G., & Orgiani, P. (2020). Analysis of Metal-Insulator Crossover in Strained SrRuO3 Thin Films by X-ray Photoelectron Spectroscopy. Coatings, 10(8), 780. https://doi.org/10.3390/coatings10080780