Luminescent Solar Concentrators from Waterborne Polymer Coatings
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. LSC Preparation
2.3. Equipment and techniques
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goetzberger, A.; Greube, W. Solar energy conversion with fluorescent collectors. Appl. Phys. 1977, 14, 123–139. [Google Scholar] [CrossRef]
- Recast, E. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Off. J. Eur. Union 2010, 18, 2010. [Google Scholar]
- Commissie, E. A Roadmap for Moving to A Competitive Low Carbon Economy in 2050; Europese Commissie: Brussel, Belgium, 2011. [Google Scholar]
- Kanellakis, M.; Martinopoulos, G.; Zachariadis, T. European energy policy—A review. Energy Policy 2013, 62, 1020–1030. [Google Scholar] [CrossRef]
- Sartori, I.; Napolitano, A.; Voss, K. Net zero energy buildings: A consistent definition framework. Energy Build. 2012, 48, 220–232. [Google Scholar] [CrossRef]
- Chai, J.; Huang, P.; Sun, Y. Differential evolution—Based system design optimization for net zero energy buildings under climate change. Sustain. Cities Soc. 2020, 55, 102037. [Google Scholar] [CrossRef]
- Kivimaa, P.; Primmer, E.; Lukkarinen, J. Intermediating policy for transitions towards net-zero energy buildings. Environ. Innov. Soc. Transit. 2020. [Google Scholar] [CrossRef]
- Lin, W.; Ma, Z.; McDowell, C.; Baghi, Y.; Banfield, B. Optimal design of a thermal energy storage system using phase change materials for a net-zero energy Solar Decathlon house. Energy Build. 2020, 208, 109626. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Liu, Z.; Yu, J.; Xu, X.; Su, X. Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system. Appl. Energy 2020, 258, 114066. [Google Scholar] [CrossRef]
- Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. Solar electricity and solar fuels: Status and perspectives in the context of the energy transition. Chem.–Eur. J. 2016, 22, 32–57. [Google Scholar] [CrossRef]
- Ter Schiphorst, J.; Cheng, M.L.M.K.H.Y.K.; Van Der Heijden, M.; Hageman, R.L.; Bugg, E.L.; Wagenaar, T.J.L.; Debije, M. Printed luminescent solar concentrators: Artistic renewable energy. Energy Build. 2020, 207. [Google Scholar] [CrossRef]
- Wiegman, J.; Van der Kolk, E. Building integrated thin film luminescent solar concentrators: Detailed efficiency characterization and light transport modelling. Sol. Energy Mater. Sol. Cells 2012, 103, 41–47. [Google Scholar] [CrossRef]
- Ferreira, R.A.S.; Correia, S.F.H.; Monguzzi, A.; Liu, X.; Meinardi, F. Spectral converters for photovoltaics—What’s ahead. Mater. Today 2020, 33, 105–121. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zhang, Y.; Dong, R.; Luscombe, C.K. Review on the role of polymers in luminescent solar concentrators. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 201–215. [Google Scholar] [CrossRef]
- Beverina, L.; Sanguineti, A. Organic fluorophores for luminescent solar concentrators. Solar Cell Nanotechnol. 2013, 317–355. [Google Scholar]
- Li, Z.; Zhao, X.; Huang, C.; Gong, X. Recent advances in green fabrication of luminescent solar concentrators using nontoxic quantum dots as fluorophores. J. Mater. Chem. C 2019, 7, 12373–12387. [Google Scholar] [CrossRef]
- Fattori, V.; Melucci, M.; Ferrante, L.; Zambianchi, M.; Manet, I.; Oberhauser, W.; Giambastiani, G.; Frediani, M.; Giachi, G.; Camaioni, N. Poly (lactic acid) as a transparent matrix for luminescent solar concentrators: A renewable material for a renewable energy technology. Energy Environ. Sci. 2011, 4, 2849–2853. [Google Scholar] [CrossRef]
- Chowdhury, F.I.; Dick, C.; Meng, L.; Mahpeykar, S.M.; Ahvazi, B.; Wang, X. Cellulose nanocrystals as host matrix and waveguide materials for recyclable luminescent solar concentrators. RSC Adv. 2017, 7, 32436–32441. [Google Scholar] [CrossRef]
- Sadeghi, S.; Melikov, R.; Jalali, H.B.; Karatum, O.; Srivastava, S.B.; Conkar, D.; Firat-Karalar, E.N.; Nizamoglu, S. Ecofriendly and efficient luminescent solar concentrators based on fluorescent proteins. ACS Appl. Mater. Interfaces 2019, 11, 8710–8716. [Google Scholar] [CrossRef]
- Melucci, M.; Durso, M.; Favaretto, L.; Capobianco, M.L.; Benfenati, V.; Sagnella, A.; Ruani, G.; Muccini, M.; Zamboni, R.; Fattori, V.; et al. Silk doped with a bio-modified dye as a viable platform for eco-friendly luminescent solar concentrators. RSC Adv. 2012, 2, 8610–8613. [Google Scholar] [CrossRef]
- Geervliet, T.A.; Gavrila, I.; Iasilli, G.; Picchioni, F.; Pucci, A. Luminescent solar concentrators based on renewable polyester matrices. Chem.–Asian J. 2019, 14, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, Y.; Fang, C.; Li, S.; Cheng, Y.; Lei, W.; Meng, X. Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. J. Mater. Sci. Technol. 2015, 31, 708–722. [Google Scholar] [CrossRef]
- Peruzzo, P.J.; Anbinder, P.S.; Pardini, O.R.; Vega, J.; Costa, C.A.; Galembeck, F.; Amalvy, J.I. Waterborne polyurethane/acrylate: Comparison of hybrid and blend systems. Prog. Org. Coat. 2011, 72, 429–437. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Raju, K.V.S.N. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. (Oxf. ) 2007, 32, 352–418. [Google Scholar] [CrossRef]
- Padget, J.C. Polymers for water-based coatings—A systematic overview. J. Coat. Technol. 1994, 66, 89–105. [Google Scholar]
- Muniz-Miranda, F.; Minei, P.; Contiero, L.; Labat, F.; Ciofini, I.; Adamo, C.; Bellina, F.; Pucci, A. Aggregation effects on pigment coatings: Pigment red 179 as a case study. ACS Omega 2019, 4, 20315–20323. [Google Scholar] [CrossRef]
- Martini, F.; Minei, P.; Lessi, M.; Contiero, L.; Borsacchi, S.; Ruggeri, G.; Geppi, M.; Bellina, F.; Pucci, A. Structural order and NIR reflective properties of perylene bisimide pigments: Experimental evidences from a combined multi-technique study. Dye. Pigment. 2020, 179. [Google Scholar] [CrossRef]
- Minei, P.; Lessi, M.; Contiero, L.; Borsacchi, S.; Martini, F.; Ruggeri, G.; Geppi, M.; Bellina, F.; Pucci, A. Boosting the NIR reflective properties of perylene organic coatings with thermoplastic hollow microspheres: Optical and structural properties by a multi-technique approach. Sol. Energy 2020, 198, 689–695. [Google Scholar] [CrossRef]
- Christie, R.M. Fluorescent dyes. In Handbook of Textile and Industrial Dyeing; Clark, M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; Volume 1, pp. 562–587. [Google Scholar]
- Chapter 3 Phenomena Involving Absorption of Energy Followed by Emission of Light. In Chromic Phenomena: Technological Applications of Colour Chemistry, 2nd ed.; The Royal Society of Chemistry: London, UK, 2010; pp. 234–365.
- Gulrajani, M.L. Disperse dyes. In Handbook of Textile and Industrial Dyeing; Clark, M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; Volume 1, pp. 365–394. [Google Scholar]
- Albano, G.; Colli, T.; Nucci, L.; Charaf, R.; Biver, T.; Pucci, A.; Aronica, L.A. Synthesis of new bis [1-(thiophenyl) propynones] as potential organic dyes for colorless luminescent solar concentrators (LSCs). Dye. Pigment. 2020, 174, 108100. [Google Scholar] [CrossRef]
- Albano, G.; Colli, T.; Biver, T.; Aronica, L.A.; Pucci, A. Photophysical properties of new p-phenylene- and benzodithiophene-based fluorophores for luminescent solar concentrators (LSCs). Dye. Pigment. 2020, 178, 108368. [Google Scholar] [CrossRef]
- Iasilli, G.; Francischello, R.; Lova, P.; Silvano, S.; Surace, A.; Pesce, G.; Alloisio, M.; Patrini, M.; Shimizu, M.; Comoretto, D.; et al. Luminescent solar concentrators: Boosted optical efficiency by polymer dielectric mirrors. Mater. Chem. Front. 2019, 3, 429–436. [Google Scholar] [CrossRef]
- Mori, R.; Iasilli, G.; Lessi, M.; Munoz-Garcia, A.B.; Pavone, M.; Bellina, F.; Pucci, A. Luminescent solar concentrators based on PMMA films obtained from a red-emitting ATRP initiator. Polym. Chem. 2018, 9, 1168–1177. [Google Scholar] [CrossRef]
- De Nisi, F.; Francischello, R.; Battisti, A.; Panniello, A.; Fanizza, E.; Striccoli, M.; Gu, X.; Leung, N.L.C.; Tang, B.Z.; Pucci, A. Red-emitting AIEgen for luminescent solar concentrators. Mater. Chem. Front. 2017, 1, 1406–1412. [Google Scholar] [CrossRef]
- Lucarelli, J.; Lessi, M.; Manzini, C.; Minei, P.; Bellina, F.; Pucci, A. N-alkyl diketopyrrolopyrrole-based fluorophores for luminescent solar concentrators: Effect of the alkyl chain on dye efficiency. Dye. Pigment. 2016, 135, 154–162. [Google Scholar] [CrossRef]
- Carlotti, M.; Fanizza, E.; Panniello, A.; Pucci, A. A fast and effective procedure for the optical efficiency determination of luminescent solar concentrators. Sol. Energy 2015, 119, 452–460. [Google Scholar] [CrossRef]
- Sottile, M.; Tomei, G.; Borsacchi, S.; Martini, F.; Geppi, M.; Ruggeri, G.; Pucci, A. Epoxy resin doped with Coumarin 6: Example of accessible luminescent collectors. Eur. Polym. J. 2017, 89, 23–33. [Google Scholar] [CrossRef]
- Gianfaldoni, F.; De Nisi, F.; Iasilli, G.; Panniello, A.; Fanizza, E.; Striccoli, M.; Ryuse, D.; Shimizu, M.; Biver, T.; Pucci, A. A push-pull silafluorene fluorophore for highly efficient luminescent solar concentrators. RSC Adv. 2017, 7, 37302–37309. [Google Scholar] [CrossRef]
- Drake, J.M.; Lesiecki, M.L.; Sansregret, J.; Thomas, W.R.L. Organic dyes in PMMA in a planar luminescent solar collector: A performance evaluation. Appl. Opt. 1982, 21, 2945–2952. [Google Scholar] [CrossRef]
- Batchelder, J.S.; Zewail, A.H.; Cole, T. Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies. Appl. Opt. 1981, 20, 3733–3754. [Google Scholar] [CrossRef]
- Shinde, S.S.; Sreenath, M.C.; Chitrambalam, S.; Joe, I.H.; Sekar, N. Spectroscopic, DFT and Z-scan approach to study linear and nonlinear optical properties of Disperse Red 277. Opt. Mater. 2020, 99, 109536. [Google Scholar] [CrossRef]
- ASTM G-173-03 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface; ASTM International: West Conshohocken, PA, USA, 2012.
- Fu, D.; Zhi, W.; Lv, L.; Luo, Y.; Xiong, X.; Kang, X.; Hou, W.; Yan, J.; Zhao, H.; Zheng, L. Construction of ratiometric hydrogen sulfide probe with two reaction sites and its applications in solution and in live cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117391. [Google Scholar] [CrossRef] [PubMed]
- Debije, M.G.; Verbunt, P.P.C. Thirty years of luminescent solar concentrator research: Solar energy for the built environment. Adv. Energy Mater. 2012, 2, 12–35. [Google Scholar] [CrossRef]
- Carlotti, M.; Ruggeri, G.; Bellina, F.; Pucci, A. Enhancing optical efficiency of thin-film luminescent solar concentrators by combining energy transfer and stacked design. J. Lumin. 2016, 171, 215–220. [Google Scholar] [CrossRef]
- Pezzati, N.; Minei, P.; Iasilli, G.; Ruggeri, G.; Pucci, A. Manuscript in preparation.
- Pucci, A. Luminescent solar concentrators based on aggregation induced emission. Isr. J. Chem. 2018, 58, 837–844. [Google Scholar] [CrossRef]
- Van Sark, W.G.; Barnham, K.W.; Slooff, L.H.; Chatten, A.J.; Büchtemann, A.; Meyer, A.; McCormack, S.J.; Koole, R.; Farrell, D.J.; Bose, R.; et al. Luminescent solar concentrators—A review of recent results. Opt. Express 2008, 16, 21773–21792. [Google Scholar] [CrossRef]
- McKenna, B.; Evans, R.C. Towards efficient spectral converters through materials design for luminescent solar devices. Adv. Mater. (Weinh. Ger.) 2017, 29, 1606491. [Google Scholar] [CrossRef]
- Parola, I.; Zaremba, D.; Evert, R.; Kielhorn, J.; Jakobs, F.; Illarramendi, M.A.; Zubia, J.; Kowalsky, W.; Johannes, H.H. High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers. Sol. Energy Mater. Sol. Cells 2018, 178, 20–28. [Google Scholar] [CrossRef]
- Griffini, G. Host matrix materials for luminescent solar concentrators: Recent achievements and forthcoming challenges. Front. Mater. 2019, 6. [Google Scholar] [CrossRef]
- Jakubowski, K.; Huang, C.S.; Gooneie, A.; Boesel, L.F.; Heuberger, M.; Hufenus, R. Luminescent solar concentrators based on melt-spun polymer optical fibers. Mater. Des. 2020, 189. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Zhang, Y. Luminescent solar concentrators performing under different light conditions. Sol. Energy 2019, 188, 1248–1255. [Google Scholar] [CrossRef]
- Credi, C.; Pintossi, D.; Bianchi, C.L.; Levi, M.; Griffini, G.; Turri, S. Combining stereolithography and replica molding: On the way to superhydrophobic polymeric devices for photovoltaics. Mater. Des. 2017, 133, 143–153. [Google Scholar] [CrossRef]
- Van Sark, W.G.J.H.M. Luminescent solar concentrators—A low cost photovoltaics alternative. Renew. Energy 2013, 49, 207–210. [Google Scholar] [CrossRef]
LSC | Fluorophore Content (wt.%) | C | ηopt (%) |
---|---|---|---|
BY40/Polidisp® 7788 | 0.3 | 1.36 ± 0.01 | 8.2 ± 0.1 |
BY40/Polidisp® 7788 | 0.6 | 1.41 ± 0.01 | 8.5 ± 0.2 |
BY40/Polidisp® 7788 | 1.0 | 1.44 ± 0.01 | 8.6 ± 0.1 |
BY40/Polidisp® 7788 | 1.5 | 1.20 ± 0.01 | 7.2 ± 0.2 |
BY40/Polidisp® 7602 | 0.5 | 1.40 ± 0.01 | 8.5 ± 0.1 |
BY40/Polidisp® 7602 | 1.0 | 1.36 ± 0.01 | 8.2 ± 0.2 |
BY40/Polidisp® 7602 | 1.5 | 1.57 ± 0.01 | 9.5 ± 0.2 |
BY40/Polidisp® 7602 | 2.0 | 1.31 ± 0.01 | 7.9 ± 0.2 |
BY40/Tecfin P40 | 0.3 | 1.18 ± 0.01 | 7.1 ± 0.1 |
BY40/Tecfin P40 | 0.5 | 1.25 ± 0.01 | 7.5 ± 0.1 |
BY40/Tecfin P40 | 0.6 | 1.26 ± 0.01 | 7.6 ± 0.1 |
BY40/Tecfin P40 | 1.0 | 1.29 ± 0.01 | 7.8 ± 0.1 |
BY40/Tecfin P40 | 2.0 | 1.46 ± 0.01 | 8.7 ± 0.2 |
DR277/Polidisp® 7602 | 0.5 | 1.20 ± 0.01 | 7.2 ± 0.1 |
DR277/Polidisp® 7602 | 1.0 | 1.26 ± 0.01 | 7.6 ± 0.2 |
DR277/Polidisp® 7602 | 1.5 | 1.37 ± 0.01 | 8.3 ± 0.3 |
DR277/Polidisp® 7602 | 2.0 | 1.05 ± 0.01 | 6.3 ± 0.2 |
LR/PMMA | 0.2 | 1.14 ± 0.02 | 6.9 ± 0.3 |
LR/PMMA | 0.6 | 1.38 ± 0.03 | 8.3 ± 0.3 |
LR/PMMA | 1.0 | 1.54 ± 0.01 | 9.3 ± 0.2 |
LR/PMMA | 1.4 | 1.69 ± 0.02 | 10.2 ± 0.3 |
LR/PMMA | 1.8 | 1.43 ± 0.02 | 8.6 ± 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minei, P.; Iasilli, G.; Ruggeri, G.; Pucci, A. Luminescent Solar Concentrators from Waterborne Polymer Coatings. Coatings 2020, 10, 655. https://doi.org/10.3390/coatings10070655
Minei P, Iasilli G, Ruggeri G, Pucci A. Luminescent Solar Concentrators from Waterborne Polymer Coatings. Coatings. 2020; 10(7):655. https://doi.org/10.3390/coatings10070655
Chicago/Turabian StyleMinei, Pierpaolo, Giuseppe Iasilli, Giacomo Ruggeri, and Andrea Pucci. 2020. "Luminescent Solar Concentrators from Waterborne Polymer Coatings" Coatings 10, no. 7: 655. https://doi.org/10.3390/coatings10070655
APA StyleMinei, P., Iasilli, G., Ruggeri, G., & Pucci, A. (2020). Luminescent Solar Concentrators from Waterborne Polymer Coatings. Coatings, 10(7), 655. https://doi.org/10.3390/coatings10070655