Effect of SiC/Fly Ash Reinforcement on Surface Properties of Aluminum 7075 Hybrid Composites
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Materials
2.2. Deposition Method and Processing
2.3. Wear and Microhardness Tests
3. Results and Discussion
3.1. Microstructure
3.2. Wear Properties
3.3. Microhardness
4. Conclusions
- The extent of uniform dispersion of SiC/fly ash reinforcements inside the AA7075 base alloy was found to be most important aspect in inducing the improvement in microhardness and wear resistance behavior into the composites.
- The interaction effect of SiC/fly ash reinforcement’s volume percentage and hybrid ratio was found to be most significant factor for inducing minimum wear rate and maximum microhardness in the AA7075-SiC/fly ash composites. In addition, the higher tool traverse speeds found to be effective for improvement in wear resistance and microhardness properties.
- Optimum wear rate and microhardness may be induced in the AA7075-SiC/fly ash composites with maximum SiC content. For inducing effective improvement in microhardness and wear behavior, the ratio of fly ash must be less than 20% and 13% in the mixture of SiC/fly ash combination, respectively.
- Wear resistance increased as the wear mechanism changed from adhesion and fatigue in base alloy to abrasion, due to the presence of SiC/fly ash particles in the composites.
- For maximum microhardness and wear resistant composite materials, the required volume percentage of SiC/fly ash into base alloy were found to be converse to each other, i.e., 10–12% and 5–8%, respectively.
- Fly ash particles were found to be fragmented during the process inside the composites and thus higher microhardness and dry sliding wear resistance was observed with maximum SiC reinforced composites.
- Notably, the wear rate was found to be increased with more agglomeration of SiC/fly ash particles, which has induced poor interfacial bonding to pull out reinforcement particles during the wear process.
- The optimum ranges of FSP parameters in the fabrication of Al7075-SiC/fly ash hybrid surface composites with minimum wear rate were observed to be: w: 900–1100 rpm, v: 38–40 mm/min, HR: 87:13–90:10 and vol.%: 5–9%.
- The optimum ranges of parameters for higher microhardness were observed to be: w: 500–1100 rpm, v: 35–40 mm/min, HR: 80:20–90:10 and vol.%: 11–12%.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Source | Sum of Squares | df | Mean Square | f Value | p-Value Prob > f |
---|---|---|---|---|---|
Model | 9.813 × 10−4 | 14 | 6.799 × 10−5 | 20.63 | <0.0001 |
A-w | 3.381 × 10−7 | 1 | 1.109 × 10−6 | 0.34 | 0.5727 |
B-v | 1.552 × 10−4 | 1 | 1.436 × 10−4 | 43.58 | <0.0001 |
C-HR | 6.126 × 10−5 | 1 | 5.410 × 10−5 | 16.41 | 0.0016 |
D-vol.% | 1.086 × 10−5 | 1 | 7.975 × 10−6 | 2.42 | 0.1458 |
AB | 4.296 × 10−6 | 1 | 2.474 × 10−6 | 0.75 | 0.4033 |
AC | 3.730 × 10−5 | 1 | 3.145 × 10−5 | 9.54 | 0.0094 |
AD | 5.340 × 10−5 | 1 | 6.096 × 10−5 | 18.49 | 0.0010 |
BC | 3.406 × 10−5 | 1 | 4.014 × 10−5 | 12.18 | 0.0045 |
BD | 7.045 × 10−6 | 1 | 9.949 × 10−6 | 3.02 | 0.1079 |
CD | 2.372 × 10−4 | 1 | 2.220 × 10−4 | 67.36 | <0.0001 |
A2 | 7.410 × 10−5 | 1 | 7.513 × 10−5 | 22.79 | 0.0005 |
B2 | 1.665 × 10−4 | 1 | 1.650 × 10−4 | 50.05 | <0.0001 |
C2 | 1.006 × 10−4 | 1 | 9.945 × 10−5 | 30.17 | 0.0001 |
D2 | 1.314 × 10−4 | 1 | 1.328 × 10−4 | 40.28 | <0.0001 |
Residual | 4.249 × 10−5 | 12 | 3.296 × 10−6 | – | – |
Lack of Fit | 4.236 × 10−5 | 10 | 3.942 × 10−6 | 60.62 | 0.0163 |
Pure Error | 1.301 × 10−7 | 2 | 6.503 × 10−8 | – | – |
Cor Total | 1.024 × 10−3 | 26 | – | – | - |
Appendix B
Source | Sum of Squares | df | Mean Square | f Value | p-Value Prob > f |
---|---|---|---|---|---|
Model | 15656.89 | 14 | 1118.35 | 8.87 | 0.0003 |
A-w | 2.51 | 1 | 2.51 | 0.020 | 0.8901 |
B-v | 1963.76 | 1 | 1963.76 | 15.58 | 0.0019 |
C-HR | 24.92 | 1 | 24.92 | 0.20 | 0.6645 |
D-vol.% | 3395.43 | 1 | 3395.43 | 26.94 | 0.0002 |
AB | 801.88 | 1 | 801.88 | 6.36 | 0.0268 |
AC | 12.80 | 1 | 12.80 | 0.10 | 0.7554 |
AD | 0.26 | 1 | 0.26 | 2.04 × 10−3 | 0.9647 |
BC | 356.93 | 1 | 356.93 | 2.83 | 0.1182 |
BD | 1745.36 | 1 | 1745.36 | 13.85 | 0.0029 |
CD | 6477.43 | 1 | 6477.43 | 51.40 | <0.0001 |
A2 | 37.57 | 1 | 37.57 | 0.30 | 0.5950 |
B2 | 43.17 | 1 | 43.17 | 0.34 | 0.5692 |
C2 | 151.38 | 1 | 151.38 | 1.20 | 0.2946 |
D2 | 857.14 | 1 | 857.14 | 6.80 | 0.0229 |
Residual | 1512.25 | 12 | 126.02 | – | – |
Lack of Fit | 1490.82 | 10 | 149.08 | 13.91 | 0.0689 |
Pure Error | 21.43 | 2 | 10.72 | – | – |
Cor Total | 17169.14 | 26 | – | – | – |
References
- Dolata-Grosz, A.; Wieczorek, J. Tribological properties of hybrid composites containing two carbide phases. Arch. Mater. Sci. Eng. 2007, 28, 149–155. [Google Scholar]
- Patil, N.A.; Pedapati, S.R.; Mamat, O.B.; Lubis, A.M.H.S. A review on aluminium hybrid surface composite fabrication using friction stir processing. Arch. Metall. Mater. 2020, 65, 441–457. [Google Scholar]
- Bodunrin, M.O.; Alaneme, K.K.; Chown, L.H. Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 2015, 4, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Guo, F.; Xu, M.; Gui, X.; Li, H.; Li, G. Separation of unburned carbon from coal fly ash: A review. Powder Technol. 2019, 353, 372–384. [Google Scholar] [CrossRef]
- Sett, R. Fly ash: Characteristics, problems and possible utilization. Adv. Appl. Sci. Res. 2017, 8, 32–50. [Google Scholar]
- Mahendra, K.V.; Radhakrishna, K. Characterization of stir cast Al—Cu—(fly ash + SiC) hybrid metal matrix composites. J. Compos. Mater. 2009, 44, 989–1005. [Google Scholar] [CrossRef]
- Rao, J.B.; Rao, D.V.; Murthy, I.N.; Bhargava, N. Mechanical properties and corrosion behaviour of fly ash particles reinforced AA 2024 composites. J. Compos. Mater. 2012, 46, 1393–1404. [Google Scholar] [CrossRef]
- Rao, J.B.; Rao, D.V.; Bhargava, N. Development of Light Weight ALFA Composites; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Dinaharan, I.; Nelson, R.; Vijay, S.J.; Akinlabi, E.T. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing. Mater. Charact. 2016, 118, 149–158. [Google Scholar] [CrossRef]
- Reddy, B.R.; Srinivas, C. Fabrication and characterization of silicon carbide and fly ash reinforced aluminium metal matrix hybrid composites. Mater. Today Proc. 2018, 5, 8374–8381. [Google Scholar] [CrossRef]
- Prabhakar, G.V.N.B.; Ravi Kumar, N.; Ratna Sunil, B. Surface metal matrix composites of Al5083-fly ash produced by friction stir processing. Mater. Today Proc. 2012, 5, 8391–8397. [Google Scholar] [CrossRef]
- Wang, W.; Shi, Q.; Liu, P.; Li, H.; Li, T. A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. J. Mater. Process. Tech. 2009, 209, 2099–2103. [Google Scholar] [CrossRef]
- Kurt, A.; Uygur, I.; Cete, E. Surface modification of aluminium by friction stir processing. J. Mater. Process. Tech. 2011, 211, 313–317. [Google Scholar] [CrossRef]
- Miranda, R.M.; Santos, T.G.; Gandra, J.; Lopes, N.; Silva, R.J.C. Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys. J. Mater. Process. Tech. 2013, 213, 1609–1615. [Google Scholar] [CrossRef]
- Rana, H.; Badheka, V. Influence of friction stir processing conditions on the manufacturing of Al-Mg-Zn-Cu alloy/boron carbide surface composite. J. Mater. Process. Tech. 2018, 255, 795–807. [Google Scholar] [CrossRef]
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Mohseni, E.; Zalnezhad, E.; Sarhan, A.A.; Bushroa, A. A study on surface modification of Al7075-T6 alloy against fretting fatigue phenomenon. Adv. Mater. Sci. Eng. 2014, 2014, 17. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Prakash, U.; Manoj Kumar, B.V. Surface composites by friction stir processing: A review. J. Mater. Process. Tech. 2015, 224, 117–134. [Google Scholar] [CrossRef]
- ASTM G99-17 Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus; ASTM: West Conshohocken, PA, USA, 2017.
- Patil, N.A.; Pedapati, S.R.; Mamat, O.B.; Hidayat Syah Lubis, A.M. Optimization of friction stir process parameters for enhancement in surface properties of Al 7075-SiC/Gr hybrid surface composites. Coatings 2019, 9, 830. [Google Scholar] [CrossRef] [Green Version]
- Narasimha Murthy, I.; Venkata Rao, D.; Babu Rao, J. Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method. Mater. Des. 2012, 35, 55–65. [Google Scholar] [CrossRef]
- Kumar, P.R.S.; Kumaran, S.; Rao, T.S.; Natarajan, S. High temperature sliding wear behavior of press-extruded AA6061/fly ash composite. Mater. Sci. Eng. A. 2010, 527, 1501–1509. [Google Scholar] [CrossRef]
- Mishra, R.S.; Ma, Z.Y.; Charit, I. Friction stir processing: A novel technique for fabrication of surface composite. Mater. Sci. Eng. A. 2003, 341, 307–310. [Google Scholar] [CrossRef]
- Shafiei-Zarghani, A.; Kashani-Bozorg, S.F.; Zarei-Hanzaki, A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater. Sci. Eng. A. 2009, 500, 84–91. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Borbely, A.; Ji, G.; Zhong, S.Y.; Wu, Y.; Wang, M.L.; Wang, H.W. The effects of nanosized particles on microstructural evolution of an in-situ TiB2/6063Al composite produced by friction stir processing. Mater. Des. 2015, 88, 999–1007. [Google Scholar] [CrossRef]
- Naeem, H.T. Characterizations particulates of crushed particles (Al_Zn_Mg_Cu_Ni) for fabrication of surface composites al-alloy using friction stir processing route. MJET 2016, 4, 56–65. [Google Scholar]
- Mahmoud, S.; Farshid, K.B.S.; Alimohamad, H. Evaluation of wear properties of Al7075/SiC-BN hybrid nano-composite surface layer produced by friction stir processing. Adv. Proces. Mater. 2016, 10, 47–57. [Google Scholar]
- Elangovan, K.; Balasubramanian, V. Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Mater. Charact. 2008, 59, 1168–1177. [Google Scholar] [CrossRef]
- Wang, A.; Rack, H.J. A statistical model for sliding wear of metals in metal/composite systems. Acta Metall. Mater. 1992, 40, 2301–2305. [Google Scholar] [CrossRef]
- Lin, Y.C.; Li, H.C.; Liou, S.S.; Shie, M.T. Mechanism of plastic deformation of powder metallurgy metal matrix composites of Cu–Sn/SiC and 6061/SiC under compressive stress. Mater. Sci. Eng. A. 2004, 373, 363–369. [Google Scholar] [CrossRef]
- Chen, H.; Alpas, A.T. Sliding wear map for the magnesium alloy Mg-9Al-0.9 Zn (AZ91). Wear 2000, 246, 106–116. [Google Scholar] [CrossRef]
- Majzoobi, G.; Soori, M. Fretting and plain fatigue behavior of Al 7075-T651 at elevated temperatures. Proc. Inst. Mech. Eng. J. Eng. Tribol. 2013, 227, 1386–1398. [Google Scholar] [CrossRef]
- Sato, Y.S.; Kokawa, H.; Enomoto, M.; Jogan, S. Microstructural evolution of 6063 aluminium during friction-stir welding. Metall. Mater. Trans. A. 1999, 30, 2429–2437. [Google Scholar] [CrossRef]
- Bauri, R.; Yadav, D.; Shyam Kumar, C.N.; Balaji, B. Tungsten particle reinforced Al 5083 composite with high strength and ductility. Mater. Sci. Eng. A. 2015, 620, 67–75. [Google Scholar] [CrossRef]
- Kumar, H.; Prasad, R.; Srivastava, A.; Vashista, M.; Khan, M.Z. Utilisation of industrial waste (Fly ash) in synthesis of copper based surface composite through friction stir processing route for wear applications. J. Clean. Prod. 2018, 196, 460–468. [Google Scholar] [CrossRef]
Parameter | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Tool Rotational Speed (w rpm) | 500 | 1000 | 1500 |
Tool Traverse Speed (v mm/min) | 20 | 30 | 40 |
Reinforcement Hybrid Ratio (HR) | 60:40 | 75:25 | 90:10 |
Reinforcement Volume Percentage (vol.%) | 4 | 8 | 12 |
Run No. | A: w-Tool Rotational Speed (rpm) | B: v-Tool Traverse Speed (mm/min) | C: HR-Hybrid Ratio | D: vol.% | Wear Rate (mg/m) | Micro Hardness (HV) |
---|---|---|---|---|---|---|
1 | 500 | 20 | 60 | 4 | 0.02507 | 184.95 |
2 | 1500 | 20 | 60 | 4 | 0.02475 | 209.50 |
3 | 500 | 40 | 60 | 4 | 0.01768 | 206.45 |
4 | 1500 | 40 | 60 | 4 | 0.02299 | 184.10 |
5 | 500 | 20 | 90 | 4 | 0.01383 | 147.85 |
6 | 1500 | 20 | 90 | 4 | 0.01636 | 170.95 |
7 | 500 | 40 | 90 | 4 | 0.01432 | 164.90 |
8 | 1500 | 40 | 90 | 4 | 0.01349 | 143.70 |
9 | 500 | 20 | 60 | 12 | 0.03360 | 160.10 |
10 | 1500 | 20 | 60 | 12 | 0.02210 | 152.65 |
11 | 500 | 40 | 60 | 12 | 0.01277 | 210.34 |
12 | 1500 | 40 | 60 | 12 | 0.01415 | 213.45 |
13 | 500 | 20 | 90 | 12 | 0.02823 | 204.20 |
14 | 1500 | 20 | 90 | 12 | 0.02289 | 225.45 |
15 | 500 | 40 | 90 | 12 | 0.02356 | 241.20 |
16 | 1500 | 40 | 90 | 12 | 0.01591 | 230.12 |
17 | 500 | 30 | 75 | 8 | 0.02652 | 191.95 |
18 | 1500 | 30 | 75 | 8 | 0.02829 | 175.12 |
19 | 1000 | 20 | 75 | 8 | 0.01415 | 158.65 |
20 | 1000 | 40 | 75 | 8 | 0.01240 | 207.75 |
21 | 1000 | 30 | 60 | 8 | 0.01841 | 172.40 |
22 | 1000 | 30 | 90 | 8 | 0.01315 | 186.85 |
23 | 1000 | 30 | 75 | 4 | 0.02742 | 194.35 |
24 | 1000 | 30 | 75 | 12 | 0.03095 | 216.76 |
25 | 1000 | 30 | 75 | 8 | 0.02083 | 186.12 |
26 | 1000 | 30 | 75 | 8 | 0.02134 | 192.56 |
27 | 1000 | 30 | 75 | 8 | 0.02108 | 188.32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, N.A.; Pedapati, S.R.; Mamat, O.B.; Hidayat Syah Lubis, A.M. Effect of SiC/Fly Ash Reinforcement on Surface Properties of Aluminum 7075 Hybrid Composites. Coatings 2020, 10, 541. https://doi.org/10.3390/coatings10060541
Patil NA, Pedapati SR, Mamat OB, Hidayat Syah Lubis AM. Effect of SiC/Fly Ash Reinforcement on Surface Properties of Aluminum 7075 Hybrid Composites. Coatings. 2020; 10(6):541. https://doi.org/10.3390/coatings10060541
Chicago/Turabian StylePatil, Namdev Ashok, Srinivasa Rao Pedapati, Othman Bin Mamat, and Abdul Munir Hidayat Syah Lubis. 2020. "Effect of SiC/Fly Ash Reinforcement on Surface Properties of Aluminum 7075 Hybrid Composites" Coatings 10, no. 6: 541. https://doi.org/10.3390/coatings10060541
APA StylePatil, N. A., Pedapati, S. R., Mamat, O. B., & Hidayat Syah Lubis, A. M. (2020). Effect of SiC/Fly Ash Reinforcement on Surface Properties of Aluminum 7075 Hybrid Composites. Coatings, 10(6), 541. https://doi.org/10.3390/coatings10060541