Effect of Modified Hexagonal Boron Nitride Nanoparticles on the Emulsion Stability, Viscosity and Electrochemical Behavior of Nanostructured Acrylic Coatings for the Corrosion Protection of AISI 304 Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods and Characterization
2.2.1. Surface Modification of Nanoparticles
2.2.2. Preparation of Acrylic Nanostructured Coatings
2.2.3. Substrate Preparation and Deposition
3. Results and Discussion
3.1. Surface Modification of h-BN Nanoparticles with Plasma Functionalization
3.2. Effect of h-BN Surface Modification on Acrylic Resin Stability and Rheological Behavior
3.3. Effect of h-BN Surface Modification on Viscosity Behavior
3.4. Anticorrosive Performance of Acrylic/h-BN Coatings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, G.; Qu, L.; Lu, Y.; Wang, Y.; Li, H.; Qin, Z.; Lu, X. Corrosion resistance improvement of 45 steel by Fe-based amorphous coating. Vacuum 2018, 153, 39–42. [Google Scholar] [CrossRef]
- Koch, G.H.; Thompson, N.G.; Moghissi, O.; Payer, J.H.; Varney, J. IMPACT (International Measures of Prevention, Application, and Economics of Corrosion Technologies Study); Report No. OAPUS310GKOCH (AP110272); NACE International: Houston, TX, USA, 2016. [Google Scholar]
- Cui, M.; Ren, S.; Chen, J.; Liu, S.; Zhang, G.; Zhao, H.; Wang, L.; Xue, Q. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets. Appl. Surf. Sci. 2017, 397, 77–86. [Google Scholar] [CrossRef]
- Li, J.; Yao, C.; Liu, Y.; Li, D.; Zhou, B.; Cai, W. The hazardous hexavalent chromium formed on trivalent chromium conversion coating: The origin, influence factors and control measures. J. Hazard. Mater. 2012, 221, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Alzieu, C. Tributyltin: Case study of a chronic contaminant in the coastal environment. Ocean Coast. Manag. 1998, 40, 23–36. [Google Scholar] [CrossRef]
- Oliveira, R.; Gonçalves, J.; Ueda, M.; Oswald, S.; Baldissera, S. Improved corrosion resistance of tool steel H13 by means of cadmium ion implantation and deposition. Surf. Coat. Technol. 2010, 204, 2981–2985. [Google Scholar] [CrossRef]
- Wu, B.; Lu, S.; Xu, W.; Cui, S.; Li, J.; Han, P. Study on corrosion resistance and photocatalysis of cobalt superhydrophobic coating on aluminum substrate. Surf. Coat. Technol. 2017, 330, 42–52. [Google Scholar] [CrossRef]
- Chasse, K.R.; Scardino, A.J.; Swain, G.W. Corrosion and fouling study of copper-based antifouling coatings on 5083 aluminum alloy. Prog. Org. Coat. 2020, 141, 105555. [Google Scholar] [CrossRef]
- Nine, J.; Cole, M.A.; Tran, D.N.H.; Losic, D. Graphene: A multipurpose material for protective coatings. J. Mater. Chem. A 2015, 3, 12580–12602. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Tri, P.N.; Nguyen, T.D.; El Aidani, R.; Trinh, V.T.; Decker, C. Accelerated degradation of water borne acrylic nanocomposites used in outdoor protective coatings. Polym. Degrad. Stab. 2016, 128, 65–76. [Google Scholar] [CrossRef]
- Mariz, I.F.A.; Millichamp, I.S.; de la Cal, J.C.; Leiza, J.R. High performance water-borne paints with high volume solids based on bimodal latexes. Prog. Org. Coat. 2010, 68, 225–233. [Google Scholar] [CrossRef]
- Karger-Kocsis, J. Paints, coatings and solvents. Compos. Sci. Technol. 1994, 51, 613–614. [Google Scholar] [CrossRef]
- Forsgren, A. Corrosion Control Through Organic Coatings, 1st ed.; Corrosion Technology; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 55–57. ISBN 978-0-8493-7278-0. [Google Scholar]
- Yu, F.; Xu, X.; Lin, N.; Liu, X.Y. Structural engineering of waterborne polyurethane for high performance waterproof coatings. RSC Adv. 2015, 5, 72544–72552. [Google Scholar] [CrossRef]
- Kugler, S.; Kowalczyk, K.; Spychaj, T. Influence of dielectric nanoparticles addition on electroconductivity and other properties of carbon nanotubes-based acrylic coatings. Prog. Org. Coat. 2016, 92, 66–72. [Google Scholar] [CrossRef]
- Wang, N.; Fu, W.; Sun, M.; Zhang, J.; Fang, Q. Effect of different structured TiO2 particle on anticorrosion properties of waterborne epoxy coatings. Corros. Eng. Sci. Technol. 2016, 51, 365–372. [Google Scholar] [CrossRef]
- Palimi, M.J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B.; Mahdavian, M. A study on the corrosion inhibition properties of silane-modified Fe2O3 nanoparticle on mild steel and its effect on the anticorrosion properties of the polyurethane coating. J. Coat. Technol. Res. 2015, 12, 277–292. [Google Scholar] [CrossRef]
- Ates, M. A review on conducting polymer coatings for corrosion protection. J. Adhes. Sci. Technol. 2016, 30, 1–27. [Google Scholar] [CrossRef]
- Dennis, R.V.; Patil, V.; Andrews, J.; Aldinger, J.P.; Yadav, G.D.; Banerjee, S. Hybrid nanostructured coatings for corrosion protection of base metals: A sustainability perspective. Mater. Res. Express 2015, 2, 32001. [Google Scholar] [CrossRef]
- Olajire, A.A. Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures. J. Mol. Liq. 2018, 269, 572–606. [Google Scholar] [CrossRef]
- Li, J.; Gan, L.; Liu, Y.; Mateti, S.; Lei, W.; Chen, Y.; Yang, J. Boron nitride nanosheets reinforced waterborne polyurethane coatings for improving corrosion resistance and antifriction properties. Eur. Polym. J. 2018, 104, 57–63. [Google Scholar] [CrossRef]
- Cui, M.; Ren, S.; Qin, S.; Xue, Q.; Zhao, H.; Wang, L. Non-covalent functionalized hexagonal boron nitride nanoplatelets to improve corrosion and wear resistance of epoxy coatings. RSC Adv. 2017, 7, 44043–44053. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.-H.; Lin, Y.-Y.; Lin, C.-H.; Chan, C.-C.; Huang, Y.-C. High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym. Chem. 2014, 5, 535–550. [Google Scholar] [CrossRef]
- Günthner, M.; Kraus, T.; Krenkel, W.; Motz, G.; Dierdorf, A.; Decker, D. Particle-filled PHPS silazane-based coatings on steel. Int. J. Appl. Ceram. Technol. 2009, 6, 373–380. [Google Scholar] [CrossRef]
- Husain, E.; Narayanan, T.N.; Taha-Tijerina, J.; Vinod, S.; Vajtai, R.; Ajayan, P.M. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel. ACS Appl. Mater. Interfaces 2013, 5, 4129–4135. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, E.; Neira-Velázquez, M.; Valle, L.R.-D.; Ponce, A.; Weinkauf, D. Changing the surface characteristics of CNF, from hydrophobic to hydrophilic, via plasma polymerization with acrylic acid. J. Nano Res. 2010, 9, 45–53. [Google Scholar] [CrossRef]
- Ramos-Devalle, L.F.; Neira-Velázquez, M.G.; Hernández-Hernández, E. Surface modification of CNFs via plasma polymerization of styrene monomer and its effect on the properties of PS/CNF nanocomposites. J. Appl. Polym. Sci. 2007, 107, 1893–1899. [Google Scholar] [CrossRef]
- Neira-Velázquez, M.G.; Borjas-Ramos, J.; Hernández-Hernández, E.; Hernández-Ramos, C.G.; Narro-Céspedes, R.I.; Hernández-Gámez, J.F.; De Valle, L.F.R. Nanocomposites Prepared with high density polyethylene and carbon nanofibers modified by ethylene plasma. Plasma Process. Polym. 2015, 12, 477–485. [Google Scholar] [CrossRef]
- Neira-Velázquez, M.G.; Ramos-De Valle, L.F.; Hernández-Hernández, E.; Pedraza, A.P.; Solís-Rosales, S.G.; Sánchez-Valdez, S.; Bartolo-Pérez, P.; Gonzalez-Gonzalez, V.A. Surface modification of nanoclays by plasma polymerization of ethylene. Plasma Process. Polym. 2011, 8, 842–849. [Google Scholar] [CrossRef]
- Solís-Gómez, A.; Neira-Velázquez, M.G.; Morales, J.; Sánchez-Castillo, M.A.; Perez, E. Improving stability of TiO2 particles in water by RF-plasma polymerization of poly(acrylic acid) on the particle surface. Colloids Surfaces A: Physicochem. Eng. Asp. 2014, 451, 66–74. [Google Scholar] [CrossRef]
- Navarro-Rosales, M.; Ávila-Orta, C.A.; Neira-Velázquez, M.G.; Ortega-Ortíz, H.; Hernández-Hernández, E.; Solís-Rosales, S.G.; Sánchez, B.L.E.; González-Morones, P.; Jiménez, R.; Sánchez-Valdes, S.; et al. Effect of plasma modification of copper nanoparticles on their antibacterial properties. Plasma Process. Polym. 2014, 11, 685–693. [Google Scholar] [CrossRef]
- Covarrubias-Gordillo, C.A.; Corral, F.S.; Ávila-Orta, C.A.; Cruz-Delgado, V.; Neira-Velázquez, M.G.; Hernández-Hernández, E.; Hernández-Gámez, J.F.; De León-Martínez, P.A. Surface modification of carbon nanofibers and graphene platelets mixtures by plasma polymerization of propylene. J. Nanomater. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Cho, D.-H.; Kim, J.-S.; Kwon, S.-H.; Lee, C.; Lee, Y.-Z. Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water. Wear 2013, 302, 981–986. [Google Scholar] [CrossRef]
- Lin, Y.; Williams, T.; Xu, T.-B.; Cao, W.; Elsayed-Ali, H.E.; Connell, J.W. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: Critical role of water. J. Phys. Chem. C 2011, 115, 2679–2685. [Google Scholar] [CrossRef]
- Duan, J.; Xue, R.; Xu, Y.; Sun, C. Low temperature synthesis of h-BN nanoflakes. Mater. Lett. 2008, 62, 3355–3357. [Google Scholar] [CrossRef]
- Singla, P.; Goel, N.; Kumar, V.; Singhal, S. Boron nitride nanomaterials with different morphologies: Synthesis, characterization and efficient application in dye adsorption. Ceram. Int. 2015, 41, 10565–10577. [Google Scholar] [CrossRef]
- Kostoglou, N.; Polychronopoulou, K.; Rebholz, C. Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum 2015, 112, 42–45. [Google Scholar] [CrossRef]
- Petisco-Ferrero, S.; Sánchez-Ilárduya, M.B.; Díez, A.; Martín, L.; Meaurio Arrate, E.; Sarasua, J.R. Surface functionalization of an osteoconductive filler by plasma polymerization of poly(ϵ-caprolactone) and poly(acrylic acid) films. Appl. Surf. Sci. 2016, 386, 327–336. [Google Scholar] [CrossRef]
- Lu, X.; Tan, C.Y.; Xu, J.; He, C. Thermal degradation of electrical conductivity of polyacrylic acid doped polyaniline: Effect of molecular weight of the dopants. Synth. Met. 2003, 138, 429–440. [Google Scholar] [CrossRef]
- Sheng, L.; Huang, S.; Sui, M.; Zhang, L.; She, L.; Chen, Y. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment. Front. Environ. Sci. Eng. 2014, 9, 625–633. [Google Scholar] [CrossRef]
- Shi, Y.; Hamsen, C.; Jia, X.; Kim, K.K.; Reina, A.; Hofmann, M.; Hsu, A.L.; Zhang, K.; Li, H.; Juang, Z.-Y.; et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139. [Google Scholar] [CrossRef]
- Nocua, J.E.; Morell, G.; Piazza, F.; Weiner, B.R. Síntesis y caracterización de nanoestructuras estequiométricas de nitruro de boro. Superf. y Vacio 2012, 25, 194–198. [Google Scholar]
- Borjas-Ramos, J.; Ramos-De Valle, L.F.; Velázquez, M.G.N.; Hernández-Hernández, E.; Saucedo-Salazar, E.M.; Soria, G. Thermal conductivity of nanocomposites based in high density polyethylene and surface modified hexagonal boron nitride via cold ethylene plasma. Plasma Chem. Plasma Process. 2017, 38, 429–441. [Google Scholar] [CrossRef]
- Achour, H.; Achour, A.; Solaymani, S.; Islam, M.; Vizireanu, S.; Arman, A.; Ahmadpourian, A.; Dinescu, G. Plasma surface functionalization of boron nitride nano-sheets. Diam. Relat. Mater. 2017, 77, 110–115. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Q.; Fan, W.; Qiu, X. Boron nitride encapsulated copper nanoparticles: A facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate. Sci. Rep. 2015, 5, 16736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, X.; Wu, X.; Liu, Q.; Huang, C. The release of hydrogen from ammonia borane over copper/hexagonal boron nitride composites. RSC Adv. 2016, 6, 106211–106217. [Google Scholar] [CrossRef]
- Sudeep, P.M.; Vinod, S.; Sruthi, R.; Anantharaman, M.R.; Ozden, S.; Kukovecz, Á.; Kónya, Z.; Vajtai, R.; Ajayan, P.M.; Narayanan, T.N. Functionalized boron nitride porous solids. RSC Adv. 2015, 5, 93964–93968. [Google Scholar] [CrossRef]
- Hernandez-Hernandez, E. Funcionalización de Nanopartículas por Plasma y su Efecto en las Propiedades de Nanocompuestos Poliméricos; Centro de Investigación en Química Aplicada: Saltillo, Mexico, 2011. [Google Scholar]
- O’Toole, L.; Beck, A.J.; Short, R.D. Characterization of plasma polymers of acrylic acid and propanoic acid. Macromolecules 1996, 29, 5172–5177. [Google Scholar] [CrossRef]
- Lan, Y.; You, Q.; Cheng, C.; Zhang, S.; Ni, G.; Meng, Y. Graft polymerization of acrylic acid on a polytetrafluoroethylene panel by an inductively coupled plasma. Plasma Sci. Technol. 2011, 13, 88–92. [Google Scholar] [CrossRef]
- Jarvis, K.; McArthur, S. Exploiting reactor geometry to manipulate the properties of plasma polymerized acrylic acid films. Materials 2019, 12, 2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhi, C.; Xu, Y.; Bando, Y.; Golberg, D. Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 2011, 5, 6571–6577. [Google Scholar] [CrossRef]
- Prieto García, F.; Prieto Méndez, J.; de Ita Gutiérrez, S.; Méndez Marzo, M.A.; Román Gutiérrez, A.D. Correlación de Potencial Zeta y Parámetros Fisicoquímicos en Extractos de Saturación de Suelos del Distrito de Riego-03, Valle del Mezquital, Hidalgo, México. Trop. Subtrop. Agroecosystems 2009, 10, 161–167. [Google Scholar]
- Cho, D.; Lee, S.; Frey, M.W. Characterizing zeta potential of functional nanofibers in a microfluidic device. J. Colloid Interface Sci. 2012, 372, 252–260. [Google Scholar] [CrossRef]
- Yilmaz, O.; Cheaburu, C.N.; Gülümser, G.; Vasile, C. Rheological behaviour of acrylate/montmorillonite nanocomposite latexes and their application in leather finishing as binders. Prog. Org. Coat. 2011, 70, 52–58. [Google Scholar] [CrossRef]
- De Oliveira, A.R.; Abrishamkar, A.; Veloso, E.M.; De Oliveira, F.C.; Da Silva, J.G.; Pereira, J.R.; Diniz, L.F.; Denadai, Â.M.L. Effect of composition on rheological behavior of iron oxides produced by hydrothermal method. Ceram. Int. 2017, 43, 7436–7442. [Google Scholar] [CrossRef]
- Zolper, T.J.; Seyam, A.M.; Chen, C.; Jungk, M.; Stammer, A.; Stoegbauer, H.; Marks, T.J.; Chung, Y.-W.; Wang, Q. Energy efficient siloxane lubricants utilizing temporary shear-thinning. Tribol. Lett. 2013, 49, 525–538. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, J.; Zhang, R.; Yuan, S.; Lu, Q.; Yu, Y. Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification. Carbohydr. Polym. 2018, 181, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Saucy, D. Avoiding Viscosity Loss on Tinting. Paint Coat. Ind. 2008, 24, 34–38. [Google Scholar]
- Bhavsar, R.A.; Nehete, K.M. Rheological approach to select most suitable associative thickener for water-based polymer dispersions and paints. J. Coat. Technol. Res. 2019, 16, 1089–1098. [Google Scholar] [CrossRef]
- Román, A.S.; Barrientos, M.S.; Harms, F.; Marcelamendez, C.; Estherares, A. Resistencia corrosión de acero inoxidable AISI 304L en biodiesel de soja corrosion resistance of AISI 304L stainless steel in soybean biodiesel. An. Afa 2016, 271, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Ruhi, G.; Modi, O.; Dhawan, S. Chitosan-polypyrrole-SiO2 composite coatings with advanced anticorrosive properties. Synth. Met. 2015, 200, 24–39. [Google Scholar] [CrossRef]
- Pakdel, A.; Zhi, C.; Bando, Y.; Nakayama, T.; Golberg, D. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano 2011, 5, 6507–6515. [Google Scholar] [CrossRef]
- Liang, J.; Srinivasan, P.B.; Blawert, C.; Dietzel, W. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corros. Sci. 2009, 51, 2483–2492. [Google Scholar] [CrossRef] [Green Version]
- Mishra, M.K.; Gunasekaran, G.; Rao, A.G.; Kashyap, B.P.; Prabhu, N. Effect of multipass friction stir processing on mechanical and corrosion behavior of 2507 super duplex stainless steel. J. Mater. Eng. Perform. 2016, 26, 849–860. [Google Scholar] [CrossRef]
- Sah, S.P. Corrosion of 304 stainless steel in carbonates melt—A state of enhanced dissolution of corrosion products. Corros. Sci. 2020, 169, 108535. [Google Scholar] [CrossRef]
- Zou, B.; Chang, X.; Yang, J.; Wang, S.; Xu, J.; Wang, S.; Samukawa, S.; Wang, L. Plasma treated h-BN nanoflakes as barriers to enhance anticorrosion of acrylic coating on steel. Prog. Org. Coat. 2019, 133, 139–144. [Google Scholar] [CrossRef]
Element | N (at.%) | B (at.%) | C (at.%) | O (at.%) | |
---|---|---|---|---|---|
Sample | |||||
h-BN | 45.2 | 43.6 | 5.3 | 5.9 | |
mh-BN | 29.9 | 29.4 | 11.7 | 29.0 |
Sample | Zeta Potential (mV) |
---|---|
Resin | −216.8 |
h-BN0.1 | −73.5 |
h-BN0.5 | −92.7 |
h-BN1 | −72.6 |
mh-BN0.1 | −130.4 |
mh-BN0.5 | −124.4 |
mh-BN1 | −125.3 |
Sample | Impedance |Z| (Ω·cm2) |
---|---|
SS-304 | 3.86 × 104 |
Resin | 8.40 × 106 |
h-BN0.1 | 1.00 × 108 |
h-BN0.5 | 7.49 × 108 |
h-BN1 | 1.52 × 109 |
mh-BN0.1 | 7.55 × 105 |
mh-BN0.5 | 1.39 × 107 |
mh-BN1 | 5.75 × 108 |
Sample | Rs (Ω) | Rst (Ω) | R1 (Ω) | Qst (F·s(n₁−1)) | n1 | Q1 (F·s(n₁−1)) | W (Ω/s(1/2)) | R2 (Ω) | Q2 (F·s(n₂−1)) |
---|---|---|---|---|---|---|---|---|---|
SS-304 | 5.24 | 6.85 × 104 | – | 5.61 × 10−4 | 0.886 | – | – | – | – |
Resin | 1.31 | – | 7.11 × 104 | – | 0.737 | 9.32 × 10−9 | 1.06 × 103 | 5.64 × 105 | 5.16 × 107 |
h-BN0.1 | 1.10 | – | 6.62 × 106 | – | 0.918 | 3.39 × 10−9 | 2.13 × 105 | – | – |
h-BN0.5 | 0.90 | – | 6.21 × 107 | – | 0.886 | 1.54 × 10−8 | 5.68 × 106 | – | – |
h-BN1 | 0.88 | – | 1.67 × 108 | – | 0.914 | 9.97 × 10−6 | 9.30 × 107 | – | – |
mh-BN0.1 | 1.20 | – | 4.39 × 104 | – | 0.636 | 5.30 × 10−7 | 5.56 × 103 | – | – |
mh-BN0.5 | 1.10 | – | 8.55 × 105 | – | 0.826 | 2.41 × 10−8 | 7.57 × 104 | – | – |
mh-BN1 | 1.02 | – | 4.93 × 107 | – | 0.863 | 1.61 × 10−8 | 5.32 × 108 | – | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ysiwata-Rivera, A.P.; Hernández-Hernández, E.; Cadenas-Pliego, G.; Ávila-Orta, C.A.; González-Morones, P.; Jesús, J.A.V.-d.; Cuara-Díaz, E.; Gallardo-Vega, C.A.; Mata-Padilla, J.M. Effect of Modified Hexagonal Boron Nitride Nanoparticles on the Emulsion Stability, Viscosity and Electrochemical Behavior of Nanostructured Acrylic Coatings for the Corrosion Protection of AISI 304 Stainless Steel. Coatings 2020, 10, 488. https://doi.org/10.3390/coatings10050488
Ysiwata-Rivera AP, Hernández-Hernández E, Cadenas-Pliego G, Ávila-Orta CA, González-Morones P, Jesús JAV-d, Cuara-Díaz E, Gallardo-Vega CA, Mata-Padilla JM. Effect of Modified Hexagonal Boron Nitride Nanoparticles on the Emulsion Stability, Viscosity and Electrochemical Behavior of Nanostructured Acrylic Coatings for the Corrosion Protection of AISI 304 Stainless Steel. Coatings. 2020; 10(5):488. https://doi.org/10.3390/coatings10050488
Chicago/Turabian StyleYsiwata-Rivera, Alma P., Ernesto Hernández-Hernández, Gregorio Cadenas-Pliego, Carlos A. Ávila-Orta, Pablo González-Morones, Juan A. Velásquez-de Jesús, Edgar Cuara-Díaz, Carlos A. Gallardo-Vega, and José M. Mata-Padilla. 2020. "Effect of Modified Hexagonal Boron Nitride Nanoparticles on the Emulsion Stability, Viscosity and Electrochemical Behavior of Nanostructured Acrylic Coatings for the Corrosion Protection of AISI 304 Stainless Steel" Coatings 10, no. 5: 488. https://doi.org/10.3390/coatings10050488
APA StyleYsiwata-Rivera, A. P., Hernández-Hernández, E., Cadenas-Pliego, G., Ávila-Orta, C. A., González-Morones, P., Jesús, J. A. V.-d., Cuara-Díaz, E., Gallardo-Vega, C. A., & Mata-Padilla, J. M. (2020). Effect of Modified Hexagonal Boron Nitride Nanoparticles on the Emulsion Stability, Viscosity and Electrochemical Behavior of Nanostructured Acrylic Coatings for the Corrosion Protection of AISI 304 Stainless Steel. Coatings, 10(5), 488. https://doi.org/10.3390/coatings10050488