The Performance Improvement of Using Hole Transport Layer with Lithium and Cobalt for Inverted Planar Perovskite Solar Cell
Abstract
:1. Introduction
2. Experimental and Results
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Becquerel, A.E. Photoelctrochemical effect. CR Acad. Sci. Paris 1839, 9, 14. [Google Scholar]
- Yin, W.J.; Shi, T.; Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J.T.-W.; Stranks, S.D.; Snaith, H.J.; Nicholas, R.J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys. 2015, 11, 582–587. [Google Scholar] [CrossRef] [Green Version]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Park, N.G.; Grätzel, M.; Miyasaka, T. Organic-Inorganic Halide Perovskite Photovoltaics; Springer International Publishing: Basel, Switzerland, 2016. [Google Scholar]
- Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf (accessed on 2 August 2019).
- Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A.J.; Gupta, G.; Crochet, J.J.; Chhowalla, M.; Tretiak, S.; Alam, M.A. Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Yuan, Y.B.; Huang, J. Correlation of energy disorder and open circuit voltage in hybrid perovskite solar cells. Nat. Energy 2016, 1, 15001. [Google Scholar] [CrossRef]
- Kim, H.S.; Morasero, I.; Gonzalezpedro, V.; Fabregatsantiago, F.; Juarezperez, E.J.; Park, N.G.; Bisquert, J. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 2013, 4, 2242. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Fu, K.; Boix, P.P.; Wong, L.H.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S.G.; Grimsdale, A.C. Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells. ChemsusChem 2014, 7, 3420. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, L. Recent progress on hole transporting materials for emerging organometal halide perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500213. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L. A dopant free hole transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 2014, 7, 2963–2967. [Google Scholar] [CrossRef]
- Jin, H.H.; Sang, H.I.; Noh, J.H.; Mandal, T.N.; Lim, C.S.; Chang, J.A.; Yong, H.L.; Kim, H.J.; Sarkar, A.; Nazeeruddin, M.K. Efficient inorganic organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486–491. [Google Scholar]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high performance inorganic organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.H.; Im, S.H.; Noh, J.H.; Mandal, T.N.; Lim, C.-S.; Chang, J.A.; Lee, Y.H.; Kim, H.J.; Sarkar, A.; Nazeeruddin, M.K. Photoenergy and Thin Film Materials. Nat. Photonics 2013, 7, 486–491. [Google Scholar] [CrossRef]
- Malinkiewicz, O.; Yella, A.; Yong, H.L.; Espallargas, G.M.; Graetzel, M.; Nazeeruddin, M.K.; Bolink, H.J. Perovskite solar cells emplying organic charge transport layers. Nat. Photonics 2014, 8, 128–132. [Google Scholar] [CrossRef]
- Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M.K.; Grätzel, M. Inorganic hole conductor based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 2014, 5, 3834. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.K.; Li, M.; Yuan, D.X.; Shi, X.B.; Ma, H.; Liao, L.S. Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. ACS Appl. Mater. Interfaces 2015, 7, 9645. [Google Scholar] [CrossRef]
- Hu, L.; Wang, W.; Liu, H.; Peng, J.; Cao, H.; Shao, G.; Xia, Z.; Ma, W.; Tang, J. A room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells. J. Mater. Chem. A 2015, 3, 515–518. [Google Scholar] [CrossRef]
- della Gaspera, E.; Peng, Y.; Hou, Q.; Spiccia, L.; Bach, U.; Jasieniak, J.J.; Cheng, Y.-B. Search ResultsWeb resultsUltra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 2015, 13, 249–257. [Google Scholar] [CrossRef]
- Hou, F.; Su, Z.; Jin, F.; Yan, X.; Wang, L.; Zhao, H.; Zhu, J.; Chu, B.; Li, W. Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 2015, 7, 9427–9432. [Google Scholar] [CrossRef]
- You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y.; Chang, W.-H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; et al. Improved air stability of perovskite solar cells via exsitu solution processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F.; et al. High-performance hole extraction layer of sol-gel-processed NiO nanocrystals for inverted planner perovskite soclar cells. Angew. Chem. Int. Ed. 2014, 126, 12779–12783. [Google Scholar] [CrossRef]
- Subbiah, A.S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S.K. Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1748–1753. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Gr-tzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Tiwana, P.; Docampo, P.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS Nano 2011, 5, 5158–5166. [Google Scholar] [CrossRef]
- Snaith, H.J.; Ducati, C. SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Lett. 2010, 10, 1259–1265. [Google Scholar] [CrossRef]
- Baena, J.P.C.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T.J.; Kandada, A.R.S.; Zakeeruddin, S.M.; et al. Highly Efficient Planar Perovskite Solar Cells through Band Alignment Engineering. Energy Environ. Sci. 2015, 8, 2928–2934. [Google Scholar] [CrossRef] [Green Version]
- Kumari, N.; Patel, S.R.; Gohel, J.V. Current Progress and Future Prespective of Perovskite Solar Cells: A Comprehensive Review. Rev. Adv. Mater. Sci. 2018, 53, 161–186. [Google Scholar] [CrossRef]
- Xia, X.F.; Jiang, Y.H.; Wan, Q.X. Lithium and Silver Co-Doped Nickel Oxide Hole Transporting Layer Boosting the Efficiency and Stability of Inverted Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 44501–44510. [Google Scholar] [CrossRef]
Condition | Jsc (mA/cm2) | Voc (V) | FF | PCE (%) |
---|---|---|---|---|
pristine | 19.8 ± 0.8 | 0.98 ± 0.03 | 0.64 ± 0.04 | 13.8 ± 0.8 |
Pristine (best) | 20.09 | 1 | 0.7 | 14.1 |
10 mg/mL Li | 20.0 ± 0.7 | 1.02 ± 0.02 | 0.66 ± 0.03 | 15.4 ± 0.6 |
10 mg/mL Li (best) | 21.1 | 0.98 | 0.71 | 14.79 |
10 mg/mL Li + 1 mg/mL Co | 21.1 ± 0.5 | 1.03 ± 0.02 | 0.69 ± 0.03 | 16.6 ± 0.5 |
10 mg/mL Li + 1 mg/mL Co (best) | 21.5 | 1.06 | 0.73 | 16.7 |
10 mg/mL Li + 5 mg/mL Co | 20.8 ± 0.3 | 1.02 ± 0.01 | 0.73 ± 0.02 | 18.3 ± 0.3 |
10 mg/mL Li + 5 mg/mL Co (best) | 21.7 | 1.06 | 0.75 | 18.7 |
10 mg/mL Li + 10 mg/mL Co | 18.6 ± 0.6 | 0.85 ± 0.05 | 0.57 ± 0.05 | 12.6 ± 0.4 |
10 mg/mL Li + 10 mg/mL Co (best) | 18.7 | 0.86 | 0.6 | 12.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Guan, H.; Yin, Y.; Zhang, C. The Performance Improvement of Using Hole Transport Layer with Lithium and Cobalt for Inverted Planar Perovskite Solar Cell. Coatings 2020, 10, 354. https://doi.org/10.3390/coatings10040354
Wang S, Guan H, Yin Y, Zhang C. The Performance Improvement of Using Hole Transport Layer with Lithium and Cobalt for Inverted Planar Perovskite Solar Cell. Coatings. 2020; 10(4):354. https://doi.org/10.3390/coatings10040354
Chicago/Turabian StyleWang, Shaoxi, He Guan, Yue Yin, and Chunfu Zhang. 2020. "The Performance Improvement of Using Hole Transport Layer with Lithium and Cobalt for Inverted Planar Perovskite Solar Cell" Coatings 10, no. 4: 354. https://doi.org/10.3390/coatings10040354
APA StyleWang, S., Guan, H., Yin, Y., & Zhang, C. (2020). The Performance Improvement of Using Hole Transport Layer with Lithium and Cobalt for Inverted Planar Perovskite Solar Cell. Coatings, 10(4), 354. https://doi.org/10.3390/coatings10040354