Effects of Defects and Doping on an Al Atom Adsorbed on Graphene: A First-Principles Investigation
Abstract
:1. Introduction
2. Calculations and Computational Details
2.1. Computational Details
2.2. Computational Model
3. Results and Discussion
3.1. Adsorption Energy and Charge Transfer
3.2. Electronic Properties
3.3. Optical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282. [Google Scholar] [CrossRef] [PubMed]
- Bartolucci, S.F.; Paras, J.; Rafiee, M.A.; Rafiee, J.; Lee, S.; Kapoor, D.; Koratkar, N. Graphene–aluminum nanocomposites. Mat. Sci. Eng. A 2011, 528, 7933–7937. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater. 2012, 66, 594–597. [Google Scholar] [CrossRef] [Green Version]
- Tjong, S.C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R Rep. 2013, 74, 281–350. [Google Scholar] [CrossRef]
- Seyed, P.N.; Asgharzadeh, H. Aluminum Matrix Composites Reinforced with Graphene: A Review on Production, Microstructure, and Properties. Crit. Rev. Solid State Mater. Sci. 2019. [Google Scholar] [CrossRef]
- Singh, J.; Chauhan, A. Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables. Ceram. Int. 2016, 42, 56–81. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Shi, X.; Wang, M.; Zhang, S.; Kong, X. Microstructure and wear resistance of graphene-reinforced aluminum matrix composites. Mater. Res. Express 2018, 6, 026517. [Google Scholar] [CrossRef]
- Chen, L.Y.; Konishi, H.; Fehrenbacher, A.; Ma, C.; Xu, J.Q.; Choi, H.; Xu, H.F.; Pfefferkorn, F.E.; Li, X.C. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Mater. 2012, 67, 29–32. [Google Scholar] [CrossRef]
- Jagannadham, K. Electrical Conductivity of Copper-graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets. J. Vac. Sci. Technol. B 2012, 30, 6887–6890. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Guan, R.G.; Guan, X.H.; Feng, Z.X.; Chen, H.; Chen, Y. Microstructures and properties of graphene-Cu/Al composite prepared by a novel process through clad forming and improving wettability with copper. Adv. Eng. Mater. 2015, 17, 663–668. [Google Scholar] [CrossRef]
- Politano, G.G.; Cazzanelli, E.; Versace, C.; Castriota, M.; Desiderio, G.; Davoli, M.; Vena, C.; Bartolino, R. Micro-Raman investigation of Ag/graphene oxide/Au sandwich structure. Mater. Res. Express 2019, 6, 075605. [Google Scholar] [CrossRef]
- Castriota, M.; Politano, G.G.; Vena, C.; De Santo, M.P.; Desiderio, G.; Davoli, M.; Cazzanelli, E.; Versace, C. Variable angle spectroscopic ellipsometry investigation of CVD-grown monolayer graphene. Appl. Surf. Sci. 2019, 467, 213–220. [Google Scholar] [CrossRef]
- Fan, Z.; Hu, M.; Liu, J.; Luo, X.; Zhang, K.; Tang, Z. First-Principles Investigation of Adsorption of Ag on Defected and Ce-doped Graphene. Materials 2019, 12, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; An, L.; Gong, L. First-principles study of Cu adsorption on vacancy-defected/Au-doped graphene. Mod. Phys. Lett. B 2018, 32, 1850139. [Google Scholar] [CrossRef]
- Rad, A.S. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf. Sci. 2016, 645, 6–12. [Google Scholar] [CrossRef]
- Dazhi, F.; Guili, L.; Shuang, Z. Effects of vacancy and deformation on an Al atom adsorbed on graphene. Chin. J. Phys. 2018, 56, 689–695. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Payne, M.C. First principles methods using castep. Z. Kristallogr 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1993, 48, 4978. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.H. Convergence properties of the BFGS algoritm. SIAM J. Optim. 2002, 13, 693–701. [Google Scholar] [CrossRef]
- Lin, K.H.; Sun, C.; Ju, S.P.; Smith, S.C. Density functional theory study on adsorption of Pt nanoparticle on graphene. Int. J. Hydrogen Energ. 2013, 38, 6283–6287. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Wu, G.; Chen, J.; Li, Y. DFT study on the electronic structure and optical properties of N, Al, and N-Al doped graphene. Appl. Surf. Sci. 2018, 459, 354–362. [Google Scholar] [CrossRef]
- Wan, W.; Wang, H. First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene. Materials 2015, 8, 6163–6178. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Shen, T.; Liu, H. DFT study on electronic and optical properties of graphene modified by phosphorus. Mater. Res. Express 2019, 6, 085635. [Google Scholar] [CrossRef]
- Surya, V.J.; Iyakutti, K.; Mizusek, H.; Kawazoe, Y. Tuning electronic structure of graphene: A first-principles study. IEEE Trans. Nanotechnol. 2012, 11, 534–541. [Google Scholar] [CrossRef]
- NE, M.L.O.; Boujnah, M.; Benyoussef, A.; El Kenz, A. Comparative study of electronic and optical properties of graphene and germanene: DFT study. Optik 2018, 158, 693–698. [Google Scholar]
- Yu, W.J.; Liao, L.; Chae, S.H.; Lee, Y.H.; Duan, X. Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. Nano Lett. 2011, 11, 4759–4763. [Google Scholar] [CrossRef] [Green Version]
Structure | D/Å | Ead/eV | Q/e |
---|---|---|---|
pristine graphene | 2.228 | 1.412 | 0.16 |
VG | 1.989 | 5.763 | 0.21 |
B-doped graphene | 2.145 | 2.024 | 0.45 |
N-doped graphene | 2.216 | 1.805 | 0.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Shen, T.; Chen, J.; Liu, H. Effects of Defects and Doping on an Al Atom Adsorbed on Graphene: A First-Principles Investigation. Coatings 2020, 10, 131. https://doi.org/10.3390/coatings10020131
Dai X, Shen T, Chen J, Liu H. Effects of Defects and Doping on an Al Atom Adsorbed on Graphene: A First-Principles Investigation. Coatings. 2020; 10(2):131. https://doi.org/10.3390/coatings10020131
Chicago/Turabian StyleDai, Xiaoshuang, Tao Shen, Jiaojiao Chen, and Hongchen Liu. 2020. "Effects of Defects and Doping on an Al Atom Adsorbed on Graphene: A First-Principles Investigation" Coatings 10, no. 2: 131. https://doi.org/10.3390/coatings10020131
APA StyleDai, X., Shen, T., Chen, J., & Liu, H. (2020). Effects of Defects and Doping on an Al Atom Adsorbed on Graphene: A First-Principles Investigation. Coatings, 10(2), 131. https://doi.org/10.3390/coatings10020131