Special Issue: Current Research in Thin Film Deposition: Applications, Theory, Processing, and Characterisation
Conflicts of Interest
References
- Papadopoulos, N.; Qiu, W.; Ameys, M.; Smout, S.; Willegems, M.; Deroo, F.; van der Steen, J.; Kronemeijer, A.J.; Dehouwer, M.; Mityashin, A.; et al. Touchscreen tags based on thin-film electronics for the Internet of Everything. Nat. Electron. 2019, 2, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Klee, M.; Beelen, D.; Keurl, W.; Kiewitt, R.; Kumar, B.; Mauczokl, R.; Reimann, K.; Renders, C.; Roest, A.; Roozeboom, F.; et al. Application of Dielectric, Ferroelectric and Piezoelectric Thin Film Devices in Mobile Communication and Medical Systems. In Proceedings of the 15th IEEE International Symposium on the Applications of Ferroelectrics, Sunset Beach, NC, USA, 30 July–2 August 2006; Volume 2006, pp. 9–16. [Google Scholar] [CrossRef]
- Fleming, L.; Gibson, D.; Song, S.; Li, C.; Reid, S. Reducing N2O induced cross-talk in a NDIR CO2 gas sensor for breath analysis using multilayer thin film optical interference coatings. Surf. Coat. Technol. 2018, 336, 9–16. [Google Scholar] [CrossRef]
- Birney, R.; Steinlechner, J.; Tornasi, Z.; MacFoy, S.; Vine, D.; Bell, A.; Gibson, D.; Hough, J.; Rowan, S.; Sortais, P.; et al. Amorphous Silicon with Extremely Low Absorption: Beating Thermal Noise in Gravitational Astronomy. Phys. Rev. Lett. 2018, 121, 191101. [Google Scholar] [CrossRef] [PubMed]
- Ștefanov, T.; Vardhan, H.; Maraka, R.; Meagher, P.; Rice, J.; Sillekens, W.; Browne, D. Thin film metallic glass broad-spectrum mirror coatings for space telescope applications. J. Non Cryst. Solids X 2020, 7, 100050. [Google Scholar] [CrossRef]
- Craig, K.; Steinlechner, J.; Murray, P.; Bell, A.; Birney, R.; Haughian, K.; Hough, J.; MacLaren, I.; Penn, S.; Reid, S.; et al. Mirror Coating Solution for the Cryogenic Einstein Telescope. Phys. Rev. Lett. 2019, 122, 231102. [Google Scholar] [CrossRef]
- Robertson, S.; Gibson, D.; MacKay, W.; Reid, S.; Williams, C.; Birney, R. Investigation of the antimicrobial properties of modified multilayer diamond-like carbon coatings on 316 stainless steel. Surf. Coat. Technol. 2017, 314, 72–78. [Google Scholar] [CrossRef]
- Schaefer, C.; Bräuer, G.; Szczyrbowski, J. Low emissivity coatings on architectural glass. Surf. Coat. Technol. 1997, 93, 37–45. [Google Scholar] [CrossRef]
- Peumans, P.; Uchida, S.; Forrest, S. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Mater. Sustain. Energy 2010, 94–98. [Google Scholar] [CrossRef]
- Fthenakis, V. Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Sustain. Energy Rev. 2009, 13, 2746–2750. [Google Scholar] [CrossRef]
- Duyar, Ö.; Placido, F.; Durusoy, H.Z. Optimization of TiO2 films prepared by reactive electron beam evaporation of Ti3O5. J. Phys. D Appl. Phys. 2008, 41, 9. [Google Scholar] [CrossRef]
- Song, S.; Keating, M.; Chen, Y.; Placido, F. Reflectance and surface enhanced Raman scattering (SERS) of sculptured silver films deposited at various vapor incident angles. Meas. Sci. Technol. 2012, 23, 8. [Google Scholar] [CrossRef]
- Lappschies, M.; Gӧrtz, B.; Ristau, D. Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering. Appl. Opt. 2006, 45, 1502–1506. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Lu, S.; Tehrani, M.; Volk, C. Ion Beam Sputtering of Optical Coatings. In Proceedings of the SPIE 2114, Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 27–29 October 1993. [Google Scholar] [CrossRef]
- Birney, R.; Cumming, A.; Campsie, P.; Gibson, D.; Hammond, G.; Hough, J.; Martin, I.; Reid, S.; Rowan, S.; Song, S.; et al. Coatings and surface treatments for future gravitational wave detectors. Class. Quantum Gravity 2017, 34, 235012. [Google Scholar] [CrossRef]
- Larsen, M. Chemical Vapour Deposition of Large Area Graphene. Ph.D. Thesis, Danmarks Tekniske Universitet (DTU Nanotech), Lyngby, Danmark, 2015. Available online: https://orbit.dtu.dk/files/110881784/PhD_thesis_Martin_Benjamin_Larsen.pdf (accessed on 11 December 2020).
- Mackenzie, D.; Buron, J.; Whelan, P.; Jessen, B.; Silajdźić, A.; Pesquera, A.; Centeno, A.; Zurutuza, A.; Bøggild, P.; Petersen, D. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization. 2D Mater. 2015, 2, 045003. [Google Scholar] [CrossRef]
- Faller, F.; Hurrle, A. High-temperature CVD for crystalline-silicon thin-film solar cells. IEEE Trans. Electron. Devices 1999, 46, 10. [Google Scholar] [CrossRef]
- Ponon, N.; Appleby, D.; Arac, E.; King, P.; Ganti, S.; Kwa, K.; O’Neill, A. Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films. Thin Solid Film. 2015, 578, 31–37. [Google Scholar] [CrossRef]
- Vajente, G.; Birney, R.; Ananyeva, A.; Angelova, S.; Asselin, R.; Baloukas, B.; Bassiri, R.; Billingsley, G.; Fejer, M.; Gibson, D.; et al. Effect of elevated substrate temperature deposition on the mechanical losses in tantala thin film coatings. Class. Quantum Gravity 2018, 35, 7. [Google Scholar] [CrossRef]
- Mazur, M.; Wojcieszak, D.; Domaradzki, J.; Kaczmarek, D.; Song, S.; Placido, F. TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering. Opto Electron. Rev. 2013, 21, 233–238. [Google Scholar] [CrossRef]
- Johnson, R.; Hultqvist, A.; Bent, S. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- George, S. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Hsieh, Y.; Kau, L.; Huang, H.; Lee, C.; Fuh, Y.; Li, T. In Situ Plasma Monitoring of PECVD nc-Si:H Films and the Influence of Dilution Ratio on Structural Evolution. Coatings 2018, 8, 238. [Google Scholar] [CrossRef]
- Schwinger, L.; Lehmann, S.; Zielbauer, L.; Scharfe, B.; Gerdes, T. Aluminium Coated Micro Glass Spheres to Increase the Infrared Reflectance. Coatings 2019, 9, 187. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, T.; Hu, D.; Lv, Y.; Li, W.; Dong, X.; Zhang, Y.; Feng, Z.; Zhang, B. Study on β-Ga2O3 Films Grown with Various VI/III Ratios by MOCVD. Coatings 2019, 9, 281. [Google Scholar] [CrossRef]
- Sriubas, M.; Kainbayev, N.; Virbukas, D.; Bočkutė, K.; Rutkūnienė, Ž.; Laukaitis, G. Structure and Conductivity Studies of Scandia and Alumina Doped Zirconia Thin Films. Coatings 2019, 9, 317. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Lee, J.; Kwak, J. Fabrication of a Conjugated Fluoropolymer Film Using One-Step iCVD Process and its Mechanical Durability. Coatings 2019, 9, 430. [Google Scholar] [CrossRef]
- Stachiv, I.; Gan, L. Simple Non-Destructive Method of Ultrathin Film Material Properties and Generated Internal Stress Determination Using Microcantilevers Immersed in Air. Coatings 2019, 9, 486. [Google Scholar] [CrossRef]
- Tillmann, W.; Kokalj, D.; Stangier, D.; Schӧppner, V.; Malatyali, H. Combining Thermal Spraying and Magnetron Sputtering for the Development of Ni/Ni-20Cr Thin Film Thermocouples for Plastic Flat Film Extrusion Processes. Coatings 2019, 9, 603. [Google Scholar] [CrossRef]
- Zhang, G.; Fu, X.; Song, S.; Guo, K.; Zhang, J. Influences of Oxygen Ion Beam on the Properties of Magnesium Fluoride Thin Film Deposited Using Electron Beam Evaporation Deposition. Coatings 2019, 9, 834. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.; Liu, Z.; Fu, Y. Polarization Controlled Dual Functional Reflective Planar Metalens in Near Infrared Regime. Coatings 2020, 10, 389. [Google Scholar] [CrossRef]
- Smolik, J.; Kacprzyńska-Gołacka, J.; Sowa, S.; Piasek, A. The Analysis of Resistance to Brittle Cracking of Tungsten Doped TiB2 Coatings Obtained by Magnetron Sputtering. Coatings 2020, 10, 807. [Google Scholar] [CrossRef]
- Skordaris, G.; Kotsanis, T.; Boumpakis, A.; Stergioudi, F. Improvement of the Interfacial Fatigue Strength and Milling Behavior of Diamond Coated Tools via Appropriate Annealing. Coatings 2020, 10, 821. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birney, I. Special Issue: Current Research in Thin Film Deposition: Applications, Theory, Processing, and Characterisation. Coatings 2020, 10, 1228. https://doi.org/10.3390/coatings10121228
Birney I. Special Issue: Current Research in Thin Film Deposition: Applications, Theory, Processing, and Characterisation. Coatings. 2020; 10(12):1228. https://doi.org/10.3390/coatings10121228
Chicago/Turabian StyleBirney, Imogen. 2020. "Special Issue: Current Research in Thin Film Deposition: Applications, Theory, Processing, and Characterisation" Coatings 10, no. 12: 1228. https://doi.org/10.3390/coatings10121228
APA StyleBirney, I. (2020). Special Issue: Current Research in Thin Film Deposition: Applications, Theory, Processing, and Characterisation. Coatings, 10(12), 1228. https://doi.org/10.3390/coatings10121228