One-Step Reinforcement and Deacidification of Paper Documents: Application of Lewis Base—Chitosan Nanoparticle Coatings and Analytical Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Chitosan Nanoparticles
2.3. Conservation Procedure and Characterization Methods
3. Results and Discussion
3.1. Characterization of Chitosan Nanoparticles
3.2. Conservation Applications of Chitosan Nanocomposites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foladi, S.; Hedayati, M.; Shokohi, T.; Mayahi, S. Study on fungi in archives of offices, with a particular focus on stachybotrys chartarum. J. Mycol. Med. 2013, 23, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Havlínová, B.; Katuščák, S.; Petrovičová, M.; Maková, A.; Brezová, V. A study of mechanical properties of papers exposed to various methods of accelerated ageing. Part I. The effect of heat and humidity on original wood-pulp papers. J. Cult. Herit. 2009, 10, 222–231. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter De Gruyter.: Berlin, Germany; New York, NY, USA, 1984. [Google Scholar]
- Orr, R.S.; Weiss, L.C.; Humphreys, G.C.; Mares, T.; Grant, J.N. Degradation of cotton fibers and yarns by heat and moisture. Text. Res. J. 1954, 24, 399–406. [Google Scholar] [CrossRef]
- Harris, J.F. Acid hydrolysis and dehydration reactions for utilizing plant carbohydrates. Appl. Polym. Symp. 1975, 28, 131–144. [Google Scholar]
- Banait, N.S.; Jencks, W.P. Reactions of anionic nucleophiles with alpha-dglucopyranosyl fluoride in aqueous solution through a concerted, ANDN (SN2) mechanism. J. Am. Chem. Soc. 1991, 113, 7951–7958. [Google Scholar] [CrossRef]
- Zhang, Y.; Bommuswamy, J.; Sinnott, M.L. Kinetic isotope effect study of transition states for the hydrolyses of alpha- and beta-glucopyranosyl fluorides. J. Am. Chem. Soc. 1994, 116, 7557–7563. [Google Scholar] [CrossRef]
- Lundgaard, L.E.; Hansen, W.; Linhjell, D.; Painter, T.J. Aging of oil-impregnated paper in power transformers. Power Deliv. IEEE Trans. 2004, 19, 230–239. [Google Scholar] [CrossRef]
- Zervos, S.; Alexopoulou, I. Paper conservation methods: A literature review. Cellulose 2015, 22, 2859–2897. [Google Scholar] [CrossRef]
- Baty, J.W.; Maitland, C.L.; Minter, W.; Hubbe, M.A.; Jordan-Mowery, S.K. Deacidification for the conservation and preservation of paper-based works: A review. Bioresources 2010, 5, 1955–2023. [Google Scholar] [CrossRef]
- Bansa, H. Aqueous deacidification-with calcium or with magnesium? Restaurator 1998, 19, 1–40. [Google Scholar] [CrossRef]
- Baty, J.W.; Sinnott, M.L. The kinetics of the spontaneous, proton-and AlIII-catalysed hydrolysis of 1,5-anhydrocellobiitol models for cellulose depolymerization in paper aging and alkaline pulping, and a benchmark for cellulase efficiency. Can. J. Chem. 2005, 83, 1516–1524. [Google Scholar] [CrossRef]
- Botti, L.; Mantovani, O.; Orrù, M.A.; Ruggiero, D. The effect of sodium and calcium ions in the deacidification of paper: A chemo-physical study using thermal analysis. Restaurator 2006, 27, 9–23. [Google Scholar] [CrossRef]
- Giorgi, R.; Dei, L.; Ceccato, M.; Schettino, C.; Baglioni, P. Nanotechnologies for conservation of cultural heritage: Paper and canvas deacidification. Langmuir 2002, 21, 8198–8203. [Google Scholar] [CrossRef]
- Banik, G. Mass deacidification technology in Germany and its quality control. Restaurator 2005, 26, 63–75. [Google Scholar] [CrossRef]
- Cernic Letnar, M.; Vodopivec, J. Protection and conservation of materials on paper. Evaluation of permanence and durability of the laminated material on paper. Restaurator 1997, 18, 177–190. [Google Scholar]
- D’Orazio, L.; Gentile, G.; Mancarella, C.; Martuscelli, E.; Massa, V. Water-dispersed polymers for the conservation and restoration of cultural heritage: A molecular, thermal, structural and mechanical characterization. Polym. Test. 2001, 20, 227–240. [Google Scholar] [CrossRef]
- Jiang, F.; Yang, Y.; Weng, J.; Zhang, X. Layer-by-layer self-assembly for reinforcement of aged papers. Ind. Eng. Chem. Res. 2016, 55, 10544–10554. [Google Scholar] [CrossRef]
- Li, Q.; Xi, S.; Zhang, X. Conservation of paper relics by electrospun PVDF fiber membranes. J. Cult. Herit. 2014, 15, 359–364. [Google Scholar] [CrossRef]
- Zhang, M.F.; Jiang, F.Z. One-step lining and deacidification of aged newspapers with double-sided writing. Restaurator 2017, 18, 1–18. [Google Scholar] [CrossRef]
- Jia, M.H.; Zhang, X.G.; Weng, J.J.; Zhang, J.; Zhang, M.F. Protective coating of paper works: ZnO/cellulose nanocrystal composites and analytical characterization. J. Cult. Herit. 2019, 38, 64–74. [Google Scholar] [CrossRef]
- Poggi, G.; Sistach, M.C.; Marin, E.; Garcia, J.F.; Giorgi, R.; Baglioni, P. Calcium hydroxide nanoparticles in hydroalcoholic gelatin solutions (GeolNan) for the deacidification and strengthening of papers containing iron gall ink. J. Cult. Herit. 2016, 18, 250–257. [Google Scholar] [CrossRef]
- Isca, C.; Maggio, R.D.; Collado, N.P.; Predieri, G.; Lottici, P.P. The use of polyamidoamines for the conservation of iron gall inked paper. Cellulose 2019, 26, 1277–1296. [Google Scholar] [CrossRef]
- Dutta, P.K.; Dutta, J.; Tripathi, V.S. Chitin and chitosan: Chemistry, properties and applications. J. Sci. Ind. Res. India 2004, 63, 20–23. [Google Scholar]
- Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials: A short review. Carbohydr. Polym. 2010, 82, 227–232. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Nair, S.; Tamura, H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv. 2010, 28, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Ghadi, A.; Mahjoub, S.; Tabandeh, F.; Talebnia, F. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Casp. J. Int. Med. 2014, 5, 156–161. [Google Scholar]
- Ghadi, A.; Tabandeh, F.; Mahjoub, S.; Mohsenifar, A.; Roshan, F.T.; Alavije, R.S. Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase. J. Oleo. Sci. 2015, 64, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Malmiri, H.J.; Jahanian, M.A.G.; Berenjian, A. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol. 2012, 8, 203–219. [Google Scholar]
- Lopez-Leon, T.; Carvalho, E.L.S.; Seijo, B.; Ortega-Vinuesa, J.L.; Bastos-Gonzailez, D. Physicochemical characterization of chitosan nanoparticles: Electrokinetic and stability behavior. J. Colloid Interface Sci. 2005, 283, 344–351. [Google Scholar] [CrossRef]
- Perera, U.; Rajapakse, N. Chitosan nanoparticles: Preparation, characterization, and applications. In Seafood Processing by-Products: Trends and Applications; Kim, S.K., Ed.; Springer: New York, NY, USA, 2013; pp. 371–387. [Google Scholar]
- Shi, L.E.; Tang, Z.X.; Yi, Y.; Chen, J.S.; Xiong, W.Y.; Ying, G.Q. Immobilization of nuclease p1 on chitosanmicro-spheres. Chem. Biochem. Eng. Q. 2011, 25, 83–88. [Google Scholar]
- Rajalakshmi, A.; Krithiga, N.; Jayachitra, A. Antioxidant activity of the chitosan extracted from shrimp exoskeleton. Middle East. J. Sci. Res. 2013, 16, 1446–1451. [Google Scholar]
- Lin, S.B.; Chen, S.H.; Peng, K.C. Preparation of antibacterial chito-oligosaccharide by altering the degree of deacetylation of β-chitosan in a Trichoderma harzianum chitinase-hydrolysing process. J. Sci. Food Agric. 2009, 89, 238–244. [Google Scholar] [CrossRef]
- Huang, Y.C.; Li, R.Y. Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar. Drugs 2014, 12, 4379–4398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kardas, I.; Struszczyk, M.H.; Kucharska, M.; Van den Broek, L.A.M.; Van Dam, J.E.G.; Ciechanska, D. Chitin and chitosan as functional biopolymers for industrial applications. In The European Polysaccharide Network of Excellence (EPNOE); Research Initiatives and Results; Navard, P., Ed.; Springer-Verlag Wien: Vienna, Austria, 2012; pp. 329–375. [Google Scholar]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef]
- Van, T.N.; Hanh, T.T. Application of chitosan solutions for rice production in vietnam. Afr. J. Biotechnol. 2013, 12, 382–384. [Google Scholar]
- Wang, M.; Chen, Y.; Zhang, R.; Wang, W.; Zhao, X.; Du, Y.; Yin, H. Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars (Triticum aestivum L.) in northwest china. Field. Crop. Res. 2015, 172, 11–20. [Google Scholar] [CrossRef]
- Saavedra, G.M.; Figueroa, N.E.; Poblete, L.A.; Cherian, S.; Figueroa, C.R. Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of fragaria chiloensis fruit. Food. Chem. 2016, 190, 448–453. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Bhardwaj, N.K.; Negi, Y.S. Cleaner approach for improving the papermaking from agro and hardwood blended pulps using biopolymers. J. Clean. Prod. 2019, 213, 134–142. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Paper Board and Pulp-Determination of Acidity or Alkalinity; GB/T 1545-2008; Chinese Standard: Beijing, China, 2008.
- Paper, Board and Pulps-Standard Atmosphere for Conditioning and Testing; GB/T 10739-2002; Chinese Standard: Beijing, China, 2002.
- Paper, Board and Pulps-Standard Atmosphere for Conditioning and Testing and Procedure for Monitoring the Atmosphere and Conditioning of Samples; ISO 187:1990; ISO: Geneva, Switzerland, 1990.
- Paper and Board-Determination of Tensile Properties-Part 2: Constant Rate of Elongation Method (20 mm/min); ISO 1924-2:1994; ISO: Geneva, Switzerland, 1994.
- Paper—Determination of Folding Endurance; ISO 5626:1993; ISO: Geneva, Switzerland, 1993.
- Paper and Board—Accelerated Ageing—Part 1: Dry Heat Treatment at 105 Degrees C; ISO 5630-1:1991; ISO: Geneva, Switzerland, 1991.
- Paper and Board-Accelerated Ageing-Moist Heat Treatment at 80 °C and 65% Relative Humidity; GB/T 22894-2008; Chinese Standard: Beijing, China, 2008.
- Microbiological Examination of food Hygiene-Enumeration of Molds and Yeasts; GB/T 4789.15-2003; Chinese Standard: Beijing, China, 2003.
- Microbiolgical Examination of Food Hygiene—Stainning Methods, Culture Mediums and Reagents; GB/T 4789.28-2003; Chinese Standard: Beijing, China, 2003.
- Florian, M. Fungal Facts—Solving Fungal Problems in Heritage Collections; Archetype Publications: London, UK, 2002. [Google Scholar]
- Sequeira, S.O.; Cabrita, E.J.; Macedo, M.F. Fungal biodeterioration of paper: How are paper and book conservators dealing with it? An international survey. Restaurator 2014, 35, 181–199. [Google Scholar] [CrossRef]
- Sequeira, S.O.; Phillips, A.J.L.; Cabrita, E.J.; Macedo, M.F. Ethanol as an antifungal treatment for paper: Short-term and long-term effects. Stud. Conserv. 2017, 62, 33–42. [Google Scholar] [CrossRef]
- Ansari, N.A.; Khan, M.W.; Muheet, A. Evaluation of some fungicides for seed treatment and foliar application in management of damping-off of seedlings and blight of rapeseed caused by Alternaria brassicae. Mycopathologia 1990, 110, 163–167. [Google Scholar] [CrossRef]
- Amiri, E.; Rahmaninia, M.; Khosravani, A. Effect of chitosan molecular weight on the performance of chitosan silica nanoparticle system in recycled pulp. BioResources 2019, 14, 7687–7701. [Google Scholar]
- Sabazoodkhiz, R.; Rahmaninia, M.; Ramezani, O. Interaction of chitosan biopolymer with silica nanoparticles as a novel retention/drainage and reinforcement aid in recycled cellulosic fibers. Cellulose 2017, 24, 3433–3444. [Google Scholar] [CrossRef]
- Kaya, M.; Seyyar, O.; Baran, T.; Turkes, T. Bat guano as new and attractive chitin and chitosan source. Front. Zool. 2014, 11, 1–10. [Google Scholar] [CrossRef]
- Gbenebor, O.P.; Akpan, E.I.; Adeosun, S.O. Thermal, structural and acetylation behavior of snail and periwinkle shells chitin. Prog. Biomater. 2017, 6, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Zemljic, L.F.; Valh, J.V.; Kreze, T. Preparation of antimicrobial paper sheets using chitosan. Cellul. Chem. Technol. 2017, 51, 75–81. [Google Scholar]
- Muley, A.B.; Ladole, M.R.; Suprasanna, P.; Dalvi, S.G. Intensification in biological properties of chitosan after γ-irradiation. Int. J. Biol. Macromol. 2019, 131, 435–444. [Google Scholar] [CrossRef]
- Conte, A.M.; Pulci, O.; Sole, R.D.; Knapik, A.; Bagniuk, J.; Lojewska, J.; Teodonio, L.; Missori, M. Experimental and theoretical study of the yellowing of ancient paper. Surf. Sci. Nanotechnol. 2012, 10, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.L.; Cameron, R.E. A review of the relationship between thermally accelerated ageing of paper and hornifification. Cellulose 1999, 6, 23–40. [Google Scholar] [CrossRef]
- Amaral, I.F.; Granja, P.L.; Barbosa, M.A. Chemical modification of chitosan by phosphorylation: An XPS, FT-IR and SEM study. J. Biomater. Sci. Polymer Ed. 2005, 16, 1575–1593. [Google Scholar] [CrossRef] [PubMed]
- Domard, A. Advances in Chitin Science. In Proceedings of the 7th International Conference on Chitin Chitosan and Euchis’97, Lyon, France, 3–5 September 1997; Jacques Andre: Lyon, France, 1997; Volume 410. [Google Scholar]
- Matica, A.; Menghiu, G.; Ostafe, V. Antifungal Properties of Chitosans. New Front. Chem. 2017, 26, 55–63. [Google Scholar]
Samples | Aspergillus niger | Aspergillus flavus | Aspergillus fumigatus | Chaetomium globosum |
---|---|---|---|---|
Uncoated paper samples | 4 ± 2 | 52 ± 7 | 35 ± 4 | 26 ± 3 |
Coated paper samples | 100 ± 0 | 100 ± 0 | 92 ± 0 | 100 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Yang, C.; Zhao, F.; Chao, X.; Li, Y.; Xing, H. One-Step Reinforcement and Deacidification of Paper Documents: Application of Lewis Base—Chitosan Nanoparticle Coatings and Analytical Characterization. Coatings 2020, 10, 1226. https://doi.org/10.3390/coatings10121226
Jia Z, Yang C, Zhao F, Chao X, Li Y, Xing H. One-Step Reinforcement and Deacidification of Paper Documents: Application of Lewis Base—Chitosan Nanoparticle Coatings and Analytical Characterization. Coatings. 2020; 10(12):1226. https://doi.org/10.3390/coatings10121226
Chicago/Turabian StyleJia, Zhihui, Chun Yang, Fangnan Zhao, Xiaolian Chao, Yuhu Li, and Huiping Xing. 2020. "One-Step Reinforcement and Deacidification of Paper Documents: Application of Lewis Base—Chitosan Nanoparticle Coatings and Analytical Characterization" Coatings 10, no. 12: 1226. https://doi.org/10.3390/coatings10121226
APA StyleJia, Z., Yang, C., Zhao, F., Chao, X., Li, Y., & Xing, H. (2020). One-Step Reinforcement and Deacidification of Paper Documents: Application of Lewis Base—Chitosan Nanoparticle Coatings and Analytical Characterization. Coatings, 10(12), 1226. https://doi.org/10.3390/coatings10121226