Studies on the Oxidation Behavior of a Designed Nanocrystalline Coating on K38 Alloy at 1050 °C
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphologies and Compositions of Coatings before Oxidation
3.2. Oxidation Kinetics
3.3. Oxidation Behavior
3.4. Influence of the Elements Interdiffusion
4. Discussion
4.1. Study on Oxidation Failure Behavior
4.2. Oxidation Resistance of the Nanocrystalline Coatings
4.3. Interdiffusion between the Substrate and SN-N5 Coating
5. Conclusions
- (1)
- A new designed nanocrystalline coating was prepared on the superalloy K38. No notable diffusion of elements was observed at the interface between the cast alloy K38 and its sputtering nanocrystalline coating after oxidation. No TCP phases were found at the interfacial area even after exposure at 1050 °C for as long as 500 h.
- (2)
- The sputtering nanocrystalline coatings enhanced the oxidation resistance of the cast superalloy K38 at 1050 °C for 100 h. However, the SN-K38 nanocrystalline coating did not maintain good oxidation resistance when the oxidation time was extended to 200 h. The oxide scale gained weight rapidly and there is a large area of spalling on the surface.
- (3)
- The sputtered SN-N5 nanocrystalline coating enhanced both the oxidation resistance and spallation resistance of the superalloy substrate at 1050 °C.
Author Contributions
Funding
Conflicts of Interest
References
- Clarke, D.R.; Levi, C.G. Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 2003, 33, 383–417. [Google Scholar] [CrossRef]
- Goward, G.W. Progress in coatings for gas turbine airfoils. Surf. Coat. Technol. 1998, 108, 73–79. [Google Scholar] [CrossRef]
- Sengupta, A.; Putatunda, S.K.; Bartosiewicz, L.; Hangas, J.; Nailos, P.J.; Peputapeck, M.; Alberts, F.E. Tensile behavior of a new single-crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures. J. Mater. Eng. Perform. 1994, 3, 73–81. [Google Scholar] [CrossRef]
- Bond, S.D.; Martin, J.W. Surface recrystallization in a single crystal nickel-based superalloy. J. Mater. Sci. 1984, 19, 3867–3872. [Google Scholar] [CrossRef]
- Gong, S.; Sun, Y.; Jin, L.; Su, Z. Experimental study on fabricating micro-holes in DD5 single-crystal nickel-based superalloy using electrical discharge drilling. Arch. Civ. Mech. Eng. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Yan, H.; Tian, S.; Zhao, G.; Zhang, S. Creep damage of a high Mo single crystal nickel-based superalloy. Mater. High Temp. 2020, 37, 139–144. [Google Scholar] [CrossRef]
- Tu, X.; Peng, H.; Zheng, L.; Qi, W.; He, J.; Guo, H.; Gong, S. Oxidation and microstructure evolution of Al–Si coated Ni3Al based single crystal superalloy with high Mo content. Appl. Surf. Sci. 2015, 325, 20–26. [Google Scholar] [CrossRef]
- Guo, C.; Wang, W.; Cheng, Y.; Zhu, S.; Wang, F. Yttria partially stabilised zirconia as diffusion barrier between NiCrAlY and Ni-base single crystal Rene N5 superalloy. Corros. Sci. 2015, 94, 122–128. [Google Scholar] [CrossRef]
- Ren, P.; Zhu, S.; Wang, F. Characterization and oxidation behavior of a sputtered nanocomposite Ni+CrAlYSiHfN coating. Corrosion 2015, 71, 523–535. [Google Scholar] [CrossRef]
- Yang, Y.F.; Ren, P.; Bao, Z.B.; Zhu, S.L.; Wang, F.H.; Li, W. Microstructure and cyclic oxidation of a Hf-doped (Ni,Pt)Al coating for single-crystal superalloys. J. Mater. Sci. 2020, 55, 11687–11700. [Google Scholar] [CrossRef]
- Hu, Y.; Cai, C.; Wang, Y.; Yu, H.; Zhou, Y.; Zhou, G. YSZ/NiCrAlY interface oxidation of APS thermal barrier coatings. Corros. Sci. 2018, 142, 22–30. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Chen, M.; Yang, L.; Wang, J.; Zhu, S.; Wang, F. Oxidation behavior of Al/Y co-modified nanocrystalline coatings with different Al content on a nickel-based single-crystal superalloy. Corros. Sci. 2020, 170, 108700. [Google Scholar] [CrossRef]
- Li, W.; Zhu, S.; Chen, M.; Wang, C. Development of an oxidation resistant glass-ceramic compositecoating on Ti–47Al–2Cr–2Nb alloy. Appl. Surf. Sci. 2014, 292, 583–590. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Xiao, P. Effect of microstructure on early oxidation of MCrAlY coatings. Acta Mater. 2018, 159, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Richer, P.; Yandouzi, M.; Beauvais, L.; Jodoin, B. Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf. Coat. Technol. 2010, 204, 3962–3974. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Dang, Y.; Xiao, P.; Curry, N.; Markocsan, N.; Nylén, P. Characterization and understanding of residual stresses in a NiCoCrAlY bond coat for thermal barrier coating application. Acta Mater. 2015, 94, 1–14. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, X.; Bai, M.; Chandio, A.; Wu, R.; Xiao, P. Effect of platinum addition on oxidation behaviour of γ/γ’ nickel aluminide. Acta Mater. 2015, 86, 319–330. [Google Scholar] [CrossRef]
- Haynes, J.A.; Pint, B.A.; Zhang, Y.; Wright, I.G. Comparison of the cyclic oxidation behavior of β-NiAl, β-NiPtAl and γ–γ’ NiPtAl coatings on various superalloys. Surf. Coat. Technol. 2007, 202, 730–734. [Google Scholar] [CrossRef]
- Yang, L.; Chen, M.; Cheng, Y.; Wang, J.; Liu, L.; Zhu, S.; Wang, F. Effects of surface finish of single crystal superalloy substrate on cyclicthermal oxidation of its nanocrystalline coating. Corros. Sci. 2016, 111, 313–324. [Google Scholar] [CrossRef]
- Tolpygo, V.K.; Clarke, D.R. On the rumpling mechanism in nickel-aluminide coatings: Part II. Characterization of surface undulations and bond coat swelling. Acta Mater. 2004, 52, 5129–5141. [Google Scholar] [CrossRef]
- Ren, P.; Zhu, S.; Wang, F. Microstructure and oxidation behavior of a Ni+CrAlYSiHfN/AlN multilayer coating fabricated by reactive magnetron sputtering. Corros. Sci. 2016, 104, 197–206. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, H.; Bao, Z.; Ren, P.; Li, W. Modification of NiCoCrAlY with Pt: Part I. Effect of Pt depositing location and cyclic oxidation performance. J. Mater. Sci. Technol. 2019, 35, 341–349. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, S.; Wang, F. Preparation and oxidation behaviour of nanocrystalline Ni+CrAlYSiN composite coating with AlN diffusion barrier on Ni-based superalloy K417. Corros. Sci. 2012, 60, 265–274. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Yang, L.; Zhu, S.; Wang, F. Comparative study of oxidation and interdiffusion behavior of AIP NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy. Corros. Sci. 2015, 98, 530–540. [Google Scholar] [CrossRef]
- Yang, L.; Chen, M.; Wang, J.; Qiao, Y.; Guo, P.; Zhu, S.; Wang, F. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation. J. Mater. Sci. Technol. 2020, 45, 49–58. [Google Scholar] [CrossRef]
- Yang, L.; Chen, M.; Wang, J.; Bao, Z.; Zhu, S.; Wang, F. Oxidation of duplex coatings with different thickness ratio of the inner nanocrystalline layer to the outer NiCrAlY one. Corros. Sci. 2018, 143, 136–147. [Google Scholar] [CrossRef]
- Yang, L.; Chen, M.; Wang, J.; Bao, Z.; Zhu, S.; Wang, F. Diffusion of Ta and its influence on oxidation behavior of nanocrystalline coatings with different Ta, Y and Al contents. Corros. Sci. 2017, 126, 344–355. [Google Scholar] [CrossRef]
- Yang, L.; Chen, M.; Wang, J.; Zhu, S.; Wang, F. A duplex nanocrystalline coating for high-temperature applications on single-crystal superalloy. Corros. Sci. 2016, 102, 72–83. [Google Scholar] [CrossRef]
- Jiang, W.; Yu, P.; Wang, W.; Zhu, S.; Wang, F. Hot Corrosion behavior of sputtered nanocrystalline coating with yttrium addition at 900 °C. Materials 2014, 7, 2882–2889. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, M.; Cheng, Y.; Yang, L.; Bao, Z.; Liu, L.; Zhu, S.; Wang, F. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy. Corros. Sci. 2017, 123, 27–39. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Zhu, S.; Wang, F. Ta effect on oxidation of a nickel-based single-crystal superalloy andits sputtered nanocrystalline coating at 900–1100 °C. Appl. Surf. Sci. 2015, 345, 194–203. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Yang, L.; Liu, L.; Zhu, S.; Wang, F.; Meng, G. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalumin composition. Appl. Surf. Sci. 2016, 366, 245–253. [Google Scholar] [CrossRef]
- Zhu, C.; Javed, A.; Li, P.; Liang, G.; Xiao, P. Study of the effect of laser treatment on the initial oxidation behaviour of Al-coated NiCrAlY bond-coat. Surf. Interface Anal. 2013, 45, 1680–1689. [Google Scholar] [CrossRef]
- Gong, X.; Chen, R.; Wang, Q.; Wang, Y.; Zhang, N.; Zhang, Z.; Fu, H. Cyclic oxidation behavior and oxide scale adhesion of Al/NiCrAlY coating on pure titanium alloy. J. Alloys Compd. 2017, 729, 679–687. [Google Scholar] [CrossRef]
- Yu, P.; Wang, W.; Wang, F.; Zhu, S. High-temperature corrosion behavior of sputtered K38 nanocrystalline coatings with and without yttrium addition in molten sulfate at 900 °C. Surf. Coat. Technol. 2011, 206, 68–74. [Google Scholar] [CrossRef]
- Lou, H.; Wang, F.; Xia, B.; Zhang, L. High-temperature oxidation resistance of sputtered micro-grain superalloy K38G. Oxid. Met. 1992, 38, 299–307. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, S.; Wang, F. High temperature oxidation of NiCrAlY, nanocrystalline and enamel-metal nano-composite coatings under thermal shock. Corros. Sci. 2015, 100, 556–565. [Google Scholar] [CrossRef]
- Richard, C.; Béranger, G.; Lu, J.; Flavenot, J. The influences of heat treatments and interdiffusion on the adhesion of plasma-sprayed NiCrAlY coatings. Surf. Coat. Technol. 1996, 82, 99–109. [Google Scholar] [CrossRef]
- Li, M.; Qian, Y.; Zhou, Y. Oxidation of pre-oxidized GH128 alloy implanted with Ce+ at 1000 °C. Trans. Nonferrous Met. Soc. China 2008, 18, 493–498. [Google Scholar] [CrossRef]
- Pint, B.; Alexander, K. Grain boundary segregation of cation dopants in α-Al2O3 layer. J. Electrochem. Soc. 1998, 145, 1819–1829. [Google Scholar] [CrossRef]
- Guo, C.; Zhou, F.; Chen, M.; Wang, J.; Zhu, S.; Wang, F. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy. J. Mater. Sci. Technol. 2020, 70, 1–11. [Google Scholar] [CrossRef]
- Yu, P.; Shi, L.; Wang, W.; Wang, F.H. Oxidation Behavior of K38 Superalloy with Different Amounts of Yttrium Addition at 1173K in Air. Adv. Mater. Res. 2011, 366, 40–44. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, B.; Chen, M.; Feng, M.; Wang, W.; Zhu, S.; Wang, F. Self-healing metal-enamel composite coating and its protection for TiAl alloy against oxidation under thermal shock in NaCl solution. Corros. Sci. 2020, 167. [Google Scholar] [CrossRef]
- Choi, H.; Jedlinski, J.; Yao, B.; Sohn, Y. Transmission electron microscopy observations on the phase transformation and microstructure of the oxidation scale growth on as-polished and yttrium implanted β-NiAl. Surf. Coat. Technol. 2010, 205, 1206–1210. [Google Scholar] [CrossRef]
Ni | C | Cr | Co | W | Mo | Al | Ti | Fe | Nb | Ta | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|
Bal | 0.1−0.2 | 15.7−16.3 | 8−9 | 2.4−2.8 | 1.5−2 | 3.2−3.7 | 3.0−3.5 | ≤0.5 | 0.6−1.1 | 1.5−2.0 | 0.05−0.15 |
Ni | Co | Cr | Mo | W | Ta | Al | Re |
---|---|---|---|---|---|---|---|
Bal | 7.5 | 7.0 | 1.5 | 5.0 | 6.5 | 6.2 | 3.0 |
Sample | K38 | SN-K38 | SN-N5 |
---|---|---|---|
Hardness (GPa) | 9.896 | 10.195 | 9.985 |
Modulus (GPa) | 242.215 | 255.435 | 256.602 |
Element | O | Ni | Cr | Al | Ti | Others |
---|---|---|---|---|---|---|
1 | 38.65 | 8.55 | 37.28 | 0.77 | 13.15 | 1.6 |
2 | 39.26 | 0.71 | 31.14 | – | 27.64 | 1.25 |
3 | 48.04 | 0.85 | 3.08 | 8.33 | 38.50 | 1.2 |
4 | 47.74 | 1.30 | 2.19 | 43.32 | 5.45 | – |
5 | 33.02 | 22.91 | 6.75 | 32.60 | – | 4.72 |
6 | 38.44 | 10.59 | 4.18 | 39.49 | 1.1 | 6.2 |
7 | 40.65 | 5.80 | 1.54 | 47.01 | – | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Meng, B.; Sun, W.; Yang, L.; Chen, M.; Wang, F. Studies on the Oxidation Behavior of a Designed Nanocrystalline Coating on K38 Alloy at 1050 °C. Coatings 2020, 10, 1188. https://doi.org/10.3390/coatings10121188
Wang J, Meng B, Sun W, Yang L, Chen M, Wang F. Studies on the Oxidation Behavior of a Designed Nanocrystalline Coating on K38 Alloy at 1050 °C. Coatings. 2020; 10(12):1188. https://doi.org/10.3390/coatings10121188
Chicago/Turabian StyleWang, Jinlong, Bo Meng, Wenyao Sun, Lanlan Yang, Minghui Chen, and Fuhui Wang. 2020. "Studies on the Oxidation Behavior of a Designed Nanocrystalline Coating on K38 Alloy at 1050 °C" Coatings 10, no. 12: 1188. https://doi.org/10.3390/coatings10121188
APA StyleWang, J., Meng, B., Sun, W., Yang, L., Chen, M., & Wang, F. (2020). Studies on the Oxidation Behavior of a Designed Nanocrystalline Coating on K38 Alloy at 1050 °C. Coatings, 10(12), 1188. https://doi.org/10.3390/coatings10121188