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Abstract: The high temperature corrosion behavior of sputtered nanocrystalline K38 coating 

with and without yttrium addition under mixed molten salt film in air was investigated. 

Accelerated corrosion occurred on the coating without yttrium (Y) addition locally after 60 h 

exposure at 900 °C, which resulted in negative weight gain in kinetics. A uniform and 

protective alumina scale formed on surface of the coating containing yttrium in comparison. 

Y enriched particle as corrosion product was observed on the top of alumina scale. The 

results indicated the beneficial influence of Y on the chemical stability of the protective scale 

in the presence of chloride. The mechanism was discussed. 
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1. Introduction 

Hot corrosion induced by salts deposition is a common phenomenon for the blades and vanes in 

modern gas turbines, especially in seawater environment [1–3]. Molten salts deposits, such as sulfates 

(S), can remarkably accelerate the degradation rate of metallic materials. Moreover, the presence of 

chlorides in the salts can increase the corrosion rate by a factor of about 100 compared to that in sulfate 

salts. Therefore, the development of protective coatings is of importance to the usage of metallic 

materials in hot corrosion environment. 

Since 1990s, extensive works showed that nanocrystalline coating, deposited by means of sputtering, 

exhibits excellent resistance to both high temperature oxidation and hot corrosion [4–7]. It is well known 

that the active element is beneficial to the stability of protective oxide scale, especially in the S containing 

environment. Similar positive effect was observed on nanocrystalline coatings [7]. However, few works 

were carried out to investigate the synthetical effect of the active element and nanocrystallization. Our 

previous works revealed the addition of 0.5 wt.% yttrium (Y) in sputtered K38 coating was negative to 

oxidation resistance in air [8], but beneficial to corrosion resistance in molten sulfate salts [9]. The 

chemical reaction between Y and S was considered as the main reason for the beneficial effect of Y. 

However, no apparent evidence was observed on coating samples to support that speculation in the 

previous work. In order to reveal the role of Y, corrosion behavior of sputtered nanocrystalline K38 

coating containing 0.5 wt.% Y under molten salts film was investigated in this work. 

2. Results 

The corrosion kinetics of the sputtered coatings with Na2SO4-NaCl film at 900 C was shown in 

Figure 1. It can be seen that the weight of coating K38-0Y increased during the initial 20 h Extending 

corrosion time caused apparent weight loss and negative weight gain was obtained after 60 h exposure. 

As a comparison, the weight of coating K38-0.5Y gradually increased in 40 h, slight weight loss was 

observed after 60 h corrosion. Corrosion of the coatings in molten sulfate for 100 h at 900 C did not 

show any noticeable weight loss [9], which implied that chloride promoted scale spallation. 

Figure 1. Corrosion kinetics of the sputtered coatings with the deposits of salt containing 

95 wt.% Na2SO4 and 5 wt.% NaCl at 900 °C. 
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Figure 2 shows the scale morphology of K38-0Y coating after 60 h exposure with the presence of 

Na2SO4-NaCl film at 900 C in air. Local spallation of scale apparently occurred, as shown in Figure 2a. 

Combining XRD and EDS results, it can be seen that alumina scale formed on the coating surface  

with fine lathy Ti-enriched product on the top (Figure 2b,d). More and coarser Ti-enriched corrosion 

product was observed in the spallation area, and a continuous Al rich oxide layer formed at the 

scale/coating interface (Figure 2c,e). No sulfide was found in the coating beneath the Al-enriched 

oxide layer within the detection limits, which implied that the nanocrystalline coating had excellent 

self-healing ability. 

Figure 2. Scale morphology of coating K38-0Y after 60 h exposure at 900 C: (a) surface 

morphology, (b) magnified view of surface morphology of alumina scale, (c) magnified  

view of spalled area on the surface, (d,e) are the cross-sectional morphologies corresponding 

to (b,c). 
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Figure 2. Cont. 

 

The scale morphology of coating K38Y-0.5Y was comparatively uniform, as shown in Figure 3. 

XRD and EDS analysis revealed that thin protective alumina scale formed with crystal Ti-enriched 

particle scattered on the top surface. Neither sulfidation of the coating nor scale spallation was observed 

after 60 h exposure. The scale morphology was similar to that formed in deep molten sulfate [9]. 

However, particles enriched in Y on the top of alumina scale was found in this work, as shown in 

Figure 4, although there is difficulty to distinguish them from those Ti-rich particles by morphology. 

The elemental mapping analysis indicated the particles were enriched in both Y and Ti, which can be 

seen in Figure 5. 

Figure 3. Scale morphology of coating K38-0.5Y after 60 h exposure at 900 C: (a) 

surface morphology, (b) magnified view of (a), (c) the cross-sectional morphology 

corresponding to (b). 
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Figure 4. The (a) surface and (b) cross-sectional morphology of Y-enriched particle 

formed on the K38-0.5Y coating surface after 60 h at 900 C. 

 

Figure 5. XRD Elemental mapping of the Y-enriched particle formed on the K38-0.5Y 

coating surface at 900 C. 

 

2. Experimental Procedures 

The nominal chemical composition of K38 alloy is 0.1~0.2C, 15.7~16.3Cr, 8.0~9.0Co, 2.4~2.8W, 

1.5~2.0Mo, 3.2~3.7Al, 3.0~3.5Ti, 0.6~1.5Nb, 1.5~2.0Ta, 0.05~0.15Zr, Ni balance (in weight percent). 

The sputtering targets with 0 and 0.5 wt.% (nominal content) yttrium additions were melted in a 

vacuum-induction furnace and then machined into dimension of 380 mm× 126 mm× 10 mm. The 

coatings were deposited by magnetron sputtering and the detailed sputtering parameters were 

described in literature [10]. Cast K38 alloy is used as substrate in order to eliminate the influence of 

interdiffusion between coating and substrate. Coated samples are denoted as K38-0Y and K38-0.5Y 
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corresponding to the yttrium additions of 0 and 0.5 wt.% respectively. The thickness of coatings is 

around 20 µm. 

The coupons with the dimension of 25 mm × 15 mm × 3 mm were coated with salt by spaying 

aqueous solution containing Na2SO4 and NaCl with the sulfate/chloride ratio on weight basis equal to 

19:1, then evaporating the water to achieve 0.8–1 mg/cm
2
 salt film. Corrosion test was carried out at  

900 C in air, and coupons were taken out at certain intervals. After cooling to room temperature, the 

salts were removed by boiling water followed by drying and weighting. Then, the coupons were  

re-heated in furnace after re-deposition of fresh salt. 

The coupons after corrosion test were characterized using scanning electron microscopy (SEM) 

with energy-dispersive X-ray analysis (EDS) (FEI, Hillsboro, OR, USA) and X-ray diffraction analysis 

(XRD) (PANalytical, Almelo, the Netherlands). 

4. Discussion 

Our previous work [9] showed that the cast K38 alloy suffered basic fluxing in molten sulfate 

induced by sulfidation. Meanwhile, nanostructure obviously improved hot corrosion resistance by 

promoting the rapid formation of protective alumina scale. The addition of Y was considered to further 

prevent the sulfidation of nanostructured coating since Y acts as the “gettering” of S. However, no 

evident segregation of Y was observed in the scale or at the scale/coating and scale/salt interfaces in 

that work. It is well known that the presence of chloride increases the propensity of protective scale to 

crack and spall [11], although the role of chlorides in hot corrosion is not well understood. Metallic 

chlorides are supposed to form during corrosion, which have relatively high vapor pressures compared 

to metallic sulfates. The gaseous metallic chlorides move outward through the salt film and are 

converted to non-protective metallic oxides at salt/gas interface, the chlorine is thereby recycled to 

react with alloying elements in the metal. Continuation of this process results in rapid material 

degradation [12,13]. In the present work, scale spallation apparently occurred on the K38-0Y coating 

in the presence of both chloride and sulfate. Non-protective Ti enriched corrosion product formed in 

the spalled area, nevertheless the formation of protective scale at the scale/coating interface beneath 

the non-protective product prevented further sulfidation and chloridation of alloying elements of the 

coating. This result indicated the excellent self-healing ability of the sputtered nanocrystalline coating. 

Comparatively, no evident cracking/spallation of scale was observed on the K38-0.5Y coating. Thin, 

protective alumina scale formed on the coating surface, the scattered Ti-enriched particles should form 

at the initial stage of corrosion before the formation of continuous protective scale. The formation of 

Y-enriched particles on the top surface of alumina scale might evidence the participation of Y in the 

corrosion reaction. The melting and boiling points of YCl3 are relatively high among the chlorides 

listed in Table 1 [14]. Usually, high melting and boiling points predicate high bonding energy and low 

vapor pressure. Therefore, yttrium may affect the hot corrosion of the coating in two ways. The 

chloridation of Y or Y-oxide due to the chemical affinity between Y and Cl could decreased the activity of 

Cl at the scale/salt interface, thus promoted the chemical stability of protective alumina scale. Secondly, the 

higher boiling point of Y-chloride might result in relatively slow transport rate of Y-chloride from scale/salt 

interface toward salt/gas interface, which thus would retard the counter-diffusion of Cl to the scale/salt 
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interface. Both the two mechanism could improve the chemical stability of protective alumina scale on 

the coating surface. 

Table 1. The melting and boiling points of selected chlorides. 

Physical Properties  
Chlorides 

YCl3 AlCl3 CrCl2 CrCl3 TiCl3 TiCl4 

Melting point (°C) 721 192 824 1152 425 * −24 

Boiling point (°C) 1507 – 1302 1300 * 960 136 

* decomposes. 

5. Conclusions 

The hot corrosion of sputtered nanocrystalline K38 coatings with and without Y addition was 

investigated with Na2SO4 deposit containing 5 wt.% NaCl at 900 C. The nanostructured coating 

exhibited excellent self-healing ability although scale spallation occurred resulted from the presence of 

chloride. No negative effect of chloride was apparently observed on the coating coupon with Y 

addition after 60 h exposure. Y-enriched particles formed on the alumina scale, which indicated the 

beneficial effect of Y on the chemical stability of protective scale in the presence of chloride. 
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