The Determination of the Electronic Parameters of Thin Amorphous Organic Films by Ellipsometric and Spectrophotometric Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Modelling
2.2. Materials
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z. Intrinsically stretchable conjugated polymer semiconductors in field effekt transistors. Prog. Polym. Sci. 2020, 100, 101181. [Google Scholar] [CrossRef]
- Nikolka, M.; Nasrallah, I.; Rose, B.; Ravva, M.K.; Broch, K.; Sadhanala, A.; Harkin, D.; Charmet, J.; Hurhangee, M.; Brown, A.; et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 2017, 16, 356–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facchetti, A. Π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 2011, 23, 733–758. [Google Scholar] [CrossRef]
- Valadares, M.; Silvestre, I.; Calado, H.D.R.; Neves, B.R.A.; Guimaraes, P.S.S.; Cury, L.A. BEHP-PPV and P3HT blends for light emitting devices. Mater. Sci. Eng. C 2009, 29, 571–574. [Google Scholar] [CrossRef]
- Guo, Y.; Chao, C.; Inoue, K.; Harano, K.; Tanaka, H.; Nakamura, E. Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. J. Mater. Chem. A 2014, 34, 13827–13830. [Google Scholar] [CrossRef] [Green Version]
- Silva Sousa, D.F.; Rosso Dotto, M.E.; Eccher, J.; Bock, H.; Bechtold, I.H. Blending with a phthalocyanine leads to improved P3HT donor layers for OPVs. Synth. Met. 2020, 263, 116367. [Google Scholar] [CrossRef]
- Oliveira, V.J.R.; Citolino, L.V.L.; Camacho, S.A.; Alessio, P.; Olivati, C.A. Langmuir-Schaefer films of regioregular polythiophene derivatives as VOCs sensors. Mater. Chem. Phys. 2018, 217, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Husain, A.; Ahmad, S.; Mohammad, F. Thermally stable and highly sensitive ethene gas sensor based on polythiophene/zirconium oxide nanocomposites. Mater. Today Commun. 2019, 20, 100574. [Google Scholar] [CrossRef]
- Dadabayev, R.; Malka, D. A visible light RGB wavelength demultiplexer based on polycarbonate multicore polymer optical fiber. Opt. Laser Technol. 2019, 116, 239–245. [Google Scholar] [CrossRef]
- Geoghegan, M.; Hadziioannou, G. Polymer Electronics, 1st ed.; Oxford University Press: Oxford, UK, 2013; pp. 26–31. [Google Scholar]
- Katsouras, A.; Gasparini, N.; Koulogiannis, C.; Spanos, M.; Ameri, T.; Brabec, C.J.; Chochos, C.L.; Avgeropoulos, A. Systematic analysis of polymer molecular weight influence on the organic photovoltaic performance. Macromol. Rapid Commun. 2015, 36, 1778–1797. [Google Scholar] [CrossRef]
- Koynov, K.; Bahtiar, A.; Ahn, T.; Cordeiro, R.M.; Hörhold, H.-H.; Bubeck, C. Molecular weight dependence of chain orientation and optical constants of thin films of the conjugated polymer MEH-PPV. Macromolecules 2006, 39, 8692–8698. [Google Scholar] [CrossRef]
- Joshi, S.; Grigorian, S.; Pietsch, U.; Pingel, P.; Zen, A.; Neher, D.; Scherf, U. Thickness dependence of the crystalline structure and hole mobility in thin films of low molecular weight poly(3-hexylthiophene). Macromolecules 2008, 41, 6800–6808. [Google Scholar] [CrossRef]
- Jaglarz, J.; Wagner, T.; Cisowski, J.; Sanetra, J. Ellipsomeric studies of carbazole-containing polymer layers. Opt. Mater. 2007, 29, 908–912. [Google Scholar] [CrossRef]
- Tompkins, H.G.; McGahan, W.A. Spectroscopic Ellipsometry and Reflectometry; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Toušek, J.; Toušková, J.; Remeš, Z.; Kousal, J.; Gevorgyan, S.A.; Krebs, F.C. Exciton diffusion length in some thermocleavable polythiophenes by the surface photovoltage method. Synth. Met. 2012, 161, 2727–2731. [Google Scholar] [CrossRef]
- Buffon, E.; Huguenin, J.A.O.; da Silva, L.; Carneiro, P.A.; Stradiotto, N.R. Spectroscopic ellipsometry studies of an electrochemically synthesized molecularly imprinted polymer for the detection of an aviation biokerosene contaminant. React. Funct. Polym. 2020, 155, 104698. [Google Scholar] [CrossRef]
- Goswami, S.; Sharma, A.K. Investigation of the optical behavior of indium oxide thin films with the aid of spectroscopic ellipsometry technique. Appl. Surf. Sci. 2019, 495, 143609. [Google Scholar] [CrossRef]
- Wooton, F. Optical Properties of Solids; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Jellison Jr, G.E.; Modine, F.A. Parametrization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 1996, 69, 2137. [Google Scholar] [CrossRef]
- Ferlauto, A.S.; Ferreira, G.M.; Pearce, J.M.; Wronski, C.R.; Collins, R.W.; Deng, X.M.; Ganguly, G. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J. Appl. Phys. 2002, 92, 2424–2436. [Google Scholar] [CrossRef] [Green Version]
- Synowicki, R.A.; Tiwald, T.E. Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry. Thin Solid Films 2004, 455, 248–255. [Google Scholar] [CrossRef]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Sugimoto, R.; Takeda, S.; Gu, H.B.; Yoshino, K. Preparation of soluble polythiophene derivatives utilizing transition metal halides as catalysts and their property. Chem. Express 1986, 1, 635–638. [Google Scholar]
- Trznadel, M.; Proń, A.; Zagórska, M. Preparation and properties of fractionated regioregular poly(3-alkylthiophenes). Synth. Met. 1999, 101, 118–119. [Google Scholar] [CrossRef]
- J.A. Woolam Co. Inc. CompleteEasy Data Analysis Manual; J.A. Woolam Co. Inc.: Lincoln, NE, USA, 2009. [Google Scholar]
- Campoy-Quiles, M.; Alonso, M.I.; Bradley, D.D.C.; Ritcher, L.J. Advanced ellipsometric characterization of conjugated polymer films. Adv. Funct. Mater. 2014, 24, 2116–2134. [Google Scholar] [CrossRef]
- Tompkins, H.G.; Irene, E.A. Handbook of Ellipsometry; William Andrew: Norwich, NY, USA, 2005. [Google Scholar]
- Al-Ibrahima, M.; Rotha, H.K.; Schroednera, M.; Konkina, A.; Zhokhavetsb, U.; Gobschb, G.; Scharffb, P.; Sensfuss, S. The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells. Org. Electron. 2005, 6, 65–77. [Google Scholar] [CrossRef]
- Mahendia, P.; Chauhan, G.; Wadhwa, H.; Kandhol, G.; Mahendia, S.; Srivastava, R.; Sinha, O.P.; Clemons, T.D.; Kumar, S. Study of induced structural, optical and electrochemical properties of Poly(3-hexylotiophene) (P3HT), [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) and their blend as an effect of graphene doping. J. Phys. Chem. Solids 2020, 148, 109644. [Google Scholar] [CrossRef]
- Arenas, M.C.; Mendoza, N.; Cortina, H.; Nicho, M.E.; Hu, H. Influence of poly3-octylthiophene (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 29–33. [Google Scholar] [CrossRef]
- Johs, B.; Hale, J.S. Dielectric function representation by B-splines. Phys. Status Solidi A 2008, 205, 715–719. [Google Scholar] [CrossRef]
- Likhachev, D.V. Selecting the right number of knots for B-spline parameterization of the dielectric functions in spectroscopic ellipsometry data analysis. Thin Solid Films 2017, 636, 519–526. [Google Scholar] [CrossRef]
- Hisamuddin, S.N.; Abdullah, S.M.; Alwi, S.A.K.; Majid, S.R.; Anuar, A.; Sulaiman, K.; Tunmee, S.; Chanlek, N.; Bawazeer, T.M.; Alsoufi, M.S.; et al. Optimizing the performance of P3HT-based photodetector by tuning the composition of OXCBA. Synth. Met. 2020, 268, 116506. [Google Scholar] [CrossRef]
Sample | P3HT | P3OT | ||||||
---|---|---|---|---|---|---|---|---|
Opt. Par. | A | B | Eg | MSE | A | B | Eg | MSE |
Lorentz | 0.647(56) | 0.127(37) | - | 25.491 | 0.883(23) | 0.368(39) | - | 22.632 |
Tauc-Lorentz | 0.729(12) | 0.067(41) | 1.91(38) | 23.174 | 0.765(31) | 0.667(61) | 1.97(73) | 22.412 |
Cody-Lorentz | 0.655(39) | 0.109(82) | 1.87(51) | 22.228 | 0.881(62) | 0.775(38) | 1.92(42) | 20.382 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosidlak, N.; Dulian, P.; Mierzwiński, D.; Jaglarz, J. The Determination of the Electronic Parameters of Thin Amorphous Organic Films by Ellipsometric and Spectrophotometric Study. Coatings 2020, 10, 980. https://doi.org/10.3390/coatings10100980
Nosidlak N, Dulian P, Mierzwiński D, Jaglarz J. The Determination of the Electronic Parameters of Thin Amorphous Organic Films by Ellipsometric and Spectrophotometric Study. Coatings. 2020; 10(10):980. https://doi.org/10.3390/coatings10100980
Chicago/Turabian StyleNosidlak, Natalia, Piotr Dulian, Dariusz Mierzwiński, and Janusz Jaglarz. 2020. "The Determination of the Electronic Parameters of Thin Amorphous Organic Films by Ellipsometric and Spectrophotometric Study" Coatings 10, no. 10: 980. https://doi.org/10.3390/coatings10100980
APA StyleNosidlak, N., Dulian, P., Mierzwiński, D., & Jaglarz, J. (2020). The Determination of the Electronic Parameters of Thin Amorphous Organic Films by Ellipsometric and Spectrophotometric Study. Coatings, 10(10), 980. https://doi.org/10.3390/coatings10100980