MAPLE Deposition of Binary and Ternary Organic Bulk Heterojunctions Based on Zinc Phthalocyanine
Abstract
:1. Introduction
2. Experimental
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Engmann, S.; Barito, A.J.; Bittle, E.G.; Giebink, N.C.; Richter, L.J.; Gundlach, D.J. Higher order effects in organic LEDs with sub-bandgap turn-on. Nat. Commun. 2019, 10, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jazbinsek, M.; Puc, U.; Abina, A.; Zidansek, A. Organic crystals for THz photonics. Appl. Sci. 2019, 9, 882. [Google Scholar] [CrossRef] [Green Version]
- Stanculescu, A.; Stanculescu, F.; Alexandru, H.V.; Socol, M. Doped aromatic derivatives wide-gap crystalline semiconductor structured layers for electronic applications. Thin Solid Films 2006, 495, 389–393. [Google Scholar] [CrossRef]
- Gusain, A.; Faria, R.M.; Miranda, P.B. Polymer solar cells—Interfacial processes related to performance issues. Front. Chem. 2019, 7, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Sonar, P.; Lin, Z.; Zhang, C.; Zhang, J.; Hao, Y.; Wu, J. Controlling aggregation and crystallization of solution processed diketopyrrolopyrrole based polymer for high performance thin film transistors by pre-metered slot die coating process. Org. Electron. 2016, 36, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Kearns, D.; Calvin, M. Photovoltaic effect and photoconductivity in laminated organic systems. J. Chem. Phys. 1958, 29, 950–951. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef] [Green Version]
- Islam, Z.U.; Tahir, M.; Syed, W.A.; Aziz, F.; Wahab, F.; Said, S.M.; Sarker, R.M.; Md Ali, S.H.; Sabri, M.F.M. Fabrication and photovoltaic properties of organic solar cell based on zinc phthalocyanine. Energies 2020, 13, 962. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Hu, P.; Ye, J.; Ganguly, R.; Li, Y.; Long, Y.; Fichou, D.; Hu, W.; Kloc, C. Hole mobility modulation in single–crystal metal phthalocyanines by changing the metal–π/π–π interactions. Angew. Chem. Int. Ed. 2018, 57, 10112–10117. [Google Scholar] [CrossRef] [PubMed]
- Stanculescu, F.; Rasoga, O.; Catargiu, A.M.; Vacareanu, L.; Socol, M.; Breazu, C.; Preda, N.; Socol, G.; Stanculescu, A. MAPLE prepared heterostructures with arylene based polymer active layer for photovoltaic applications. Appl. Surf. Sci. 2015, 336, 240–248. [Google Scholar] [CrossRef]
- Armin, A.; Hambsch, M.; Wolfer, P.; Jin, H.; Li, J.; Shi, Z.; Burn, P.L.; Meredith, P. Efficient, large area, and thick junction polymer solar cells with balanced mobilities and low defect densities. Adv. Energy Mater. 2014, 5, 1401221. [Google Scholar] [CrossRef]
- Armin, A.; Wolfer, P.; Shaw, P.E.; Hambsch, M.; Maasoumi, F.; Ullah, M.; Gann, E.; McNeill, C.R.; Li, J.; Shi, Z.; et al. Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. J. Mater. Chem. C 2015, 41, 10799–10812. [Google Scholar] [CrossRef]
- Zhang, F.; Zhuo, Z.; Zhang, J.; Wang, X.; Xu, X.; Wang, Z.; Xin, Y.; Wang, J.; Wang, J.; Tang, W.; et al. Influence of PC60BM or PC70BM as electron acceptor on the performance of polymer solar cells. Sol. Energy Mater. Sol. Cells. 2012, 97, 71–77. [Google Scholar] [CrossRef]
- Pandey, A. Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics. Sci. Rep. 2015, 5, 7787. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Takeya, J. Organic field-effect transistors using single crystals. Sci. Technol. Adv. Mater. 2009, 10, 024314. [Google Scholar] [CrossRef] [Green Version]
- Dayneko, S.V.; Hendsbee, A.D.; Cann, J.R.; Cabanetos, C.; Welch, G.C. Ternary organic solar cells: Using molecular donor or acceptor third components to increase open circuit voltage. New J. Chem. 2019, 43, 10442–10448. [Google Scholar] [CrossRef]
- Gasparini, N.; Salleo, A.; McCulloch, I.; Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 2019, 4, 229–242. [Google Scholar] [CrossRef]
- Caricato, A.P.; Cesaria, M.; Gigli, G.; Loiudice, A.; Luches, A.; Martino, M.; Resta, V.; Rizzo, A.; Taurino, A. Poly-(3-hexylthiophene)/[6,6]-phenyl-C61-butyric-acid-methyl-ester bilayer deposition by matrix-assisted pulsed laser evaporation for organic photovoltaic applications. Appl. Phys. Lett. 2012, 100, 073306. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Rasoga, O.; Breazu, C.; Stavarache, I.; Stanculescu, F.; Socol, G.; Gherendi, F.; Grumezescu, V.; Stefan, N.; et al. Flexible heterostructures based on metal phthalocyanines thin films obtained by MAPLE. Appl. Surf. Sci. 2016, 374, 403–410. [Google Scholar] [CrossRef]
- Ionita, I.; Bercea, A.; Brajnicov, S.; Matei, A.; Ion, V.; Marascu, V.; Mitu, B.; Constantinescu, C. Second harmonic generation (SHG) in pentacene thin films grown by matrix assisted pulsed laser evaporation (MAPLE). Appl. Surf. Sci. 2019, 480, 212–218. [Google Scholar] [CrossRef]
- Stanculescu, A.; Rasoga, O.; Mihut, L.; Socol, M.; Stanculescu, F.; Ionita, I.; Albu, A.-M.; Socol, G. Preparation and characterization of polar aniline functionalized copolymers thin films for optical non-linear applications. Ferroelectrics 2009, 389, 159–173. [Google Scholar] [CrossRef]
- Schunemann, C.; Wynands, D.; Wilde, L.; Hein, M.P.; Pfutzner, S.; Elschner, C.; Eichhorn, K.-J.; Leo, K.; Riede, M. Phase separation analysis of bulk heterojunctions in small-molecule organic solar cells using zinc-phthalocyanine and C60. Phys. Rev. B 2012, 85, 245314. [Google Scholar] [CrossRef]
- Pfuetzner, S.; Meiss, J.; Petrich, A.; Riede, M.; Leo, K. Thick C60: ZnPc bulk heterojunction solar cells with improved performance by film deposition on heated substrates. Appl. Phys. Lett. 2009, 94, 253303. [Google Scholar] [CrossRef]
- Sanculescu, F.; Stanculescu, A.; Socol, M. Effect of the metallic contact on the electrical properties of organic semiconductor film. J. Optoelectron. Adv. Mater. 2007, 9, 1352–1357. [Google Scholar]
- Gaffo, L.; Cordeiro, M.R.; Freitas, A.R.; Moreira, W.C.; Girotto, E.M.; Zucolotto, V. The effects of temperature on the molecular orientation of zinc phthalocyanine films. J. Mater. Sci. 2010, 45, 1366–1370. [Google Scholar] [CrossRef]
- Pu, J.; Mo, Y.; Wan, S.; Wang, L. Fabrication of novel graphene–fullerene hybrid lubricating films based on self-assembly for MEMS applications. Chem. Commun. 2014, 50, 469–471. [Google Scholar] [CrossRef]
- Blazinic, V.; Ericsson, L.K.; Muntean, S.A.; Moons, E. Photo-degradation in air of spin-coated PC60BM and PC70BM films. Synth. Met. 2018, 241, 26–30. [Google Scholar] [CrossRef]
- Gavrilko, T.; Nechytaylo, V.; Viduta, L.; Baran, J. Optical properties and stability of bilayer rubrene-Alq3 films fabricated by vacuum deposition. Ukr. J. Phys. 2018, 63, 362. [Google Scholar] [CrossRef] [Green Version]
- Zanfolim, A.A.; Volpati, D.; Olivati, C.A.; Job, A.E.; Constantino, C.J.L. Structural and electric-optical properties of zinc phthalocyanine evaporated thin films: Temperature and thickness effects. J. Phys. Chem. C 2010, 114, 12290–12299. [Google Scholar] [CrossRef]
- Viterisi, A.; Montcada, N.F.; Kumar, C.V.; Guirado, F.G.; Martin, E.; Escuderoa, E.; Palomares, E. Unambiguous determination of molecular packing in crystalline donor domains of small molecule solution processed solar cell devices using routine X-ray diffraction techniques. J. Mater. Chem. A 2014, 2, 3536–3542. [Google Scholar] [CrossRef]
- Ahn, H.; Chu, T.-C. Annealing-induced phase transition in zinc phthalocyanine ultrathin films. Opt. Mater. Express 2016, 6, 3587. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, L.; Chengand, N.; Andrew, T. ITO-free transparent organic solar cell with distributed bragg reflector for solar harvesting windows. Energies 2017, 10, 707. [Google Scholar] [CrossRef]
- Hou, J.; Guo, X. Active layer materials for organic solar cells. In Organic Solar Cells. Green Energy and Technology, 1st ed.; Choy, W., Ed.; Springer: London, UK, 2013; pp. 17–42. [Google Scholar]
- Zhang, X.; Wu, Z.; Jiao, B.; Wang, D.; Wang, D.; Hou, X.; Huang, W. Solution-processed white organic light-emitting diodes with mixed-host structures. J. Lumin. 2012, 132, 697–701. [Google Scholar] [CrossRef]
- Zafar, Q.; Fatima, N.; Karimov, K.S.; Ahmed, M.M.; Sulaiman, K. Realizing broad-bandwidth visible wavelength photodiode based on solution-processed ZnPc/PC71BM dyad. Opt. Mater. 2017, 64, 131–136. [Google Scholar] [CrossRef]
- Elistratova, M.A.; Zakharova, I.B.; Romanov, N.M. Obtaining and investigation of C60 <A2B6> semiconductor compounds with a view to create effective solar cells. J. Phys. Conf. Ser. 2015, 661, 012030. [Google Scholar] [CrossRef]
- Griffin, J.; Pearson, A.J.; Scarratt, N.W.; Wang, T.; Dunbar, A.D.F.; Yi, H.; Iraqi, A.; Buckley, A.R.; Lidzey, D.G. Organic photovoltaic devices with enhanced efficiency processed from non-halogenated binary solvent blends. Org. Electron. 2015, 21, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Jin-Xiang, D.; Le, K.; Min, C.; Ren-Gang, C.; Zi-Jia, Z. Optical properties of rubrene thin film prepared by thermal evaporation. Chin. Phys. B 2015, 24, 047801. [Google Scholar]
- Klyamer, D.D.; Sukhikh, A.S.; Gromilov, S.A.; Kruchinin, V.N.; Spesivtsev, E.V.; Hassan, A.K.; Basova, T.V. Influence of fluorosubstitution on the structure of zinc phthalocyanine thin films. Macroheterocycles 2018, 11, 304–311. [Google Scholar] [CrossRef]
- Lassiter, B.E.; Wei, G.; Wang, S.; Zimmerman, J.D.; Diev, V.V.; Thompson, M.E.; Forrest, S.R. Organic photovoltaics incorporating electron conducting exciton blocking layers. Appl. Phys. Lett. 2011, 98, 243307. [Google Scholar] [CrossRef]
- Singh, R.; Suranagi, S.R.; Lee, J.; Lee, H.; Kim, M.; Cho, K. Unravelling the efficiency-limiting morphological issues of the perylene diimide-based nonfullerene organic solar cells. Sci. Rep. 2018, 8, 2849. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Li, N.K.; McCormick, R.D.; Lichtenberg, E.; Yingling, Y.G.; Stiff-Robers, A.D. Emulsion-based RIR-MAPLE deposition of conjugated polymers: Primary solvent effect and its implications on organic solar cell performance. ACS Appl. Mater. Interfaces 2016, 8, 19494–19506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Composition | Ratio | Number of the Laser Pulses |
---|---|---|---|
P0 | ZnPc | 1 | 50 K |
P1 | ZnPc:C60 | 1:1 | 100 K |
P2 | ZnPc:PC70BM | 1:1 | 100 K |
P3 | ZnPc:rubrene:PC70BM | 1:1:1 | 100 K |
Sample | VOC [V] | JSC [A] | Pmax [W] |
---|---|---|---|
P1 | 0.76 | 2.4 × 10−7 | 5.6 × 10−8 |
P2 | 0.74 | 6.9 × 10−8 | 1.2 × 10−8 |
P3 | 0.88 | 6.9 × 10−8 | 3.1 × 10−8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Socol, M.; Preda, N.; Petre, G.; Costas, A.; Rasoga, O.; Popescu-Pelin, G.; Mihailescu, A.; Stanculescu, A.; Socol, G. MAPLE Deposition of Binary and Ternary Organic Bulk Heterojunctions Based on Zinc Phthalocyanine. Coatings 2020, 10, 956. https://doi.org/10.3390/coatings10100956
Socol M, Preda N, Petre G, Costas A, Rasoga O, Popescu-Pelin G, Mihailescu A, Stanculescu A, Socol G. MAPLE Deposition of Binary and Ternary Organic Bulk Heterojunctions Based on Zinc Phthalocyanine. Coatings. 2020; 10(10):956. https://doi.org/10.3390/coatings10100956
Chicago/Turabian StyleSocol, Marcela, Nicoleta Preda, Gabriela Petre, Andreea Costas, Oana Rasoga, Gianina Popescu-Pelin, Andreea Mihailescu, Anca Stanculescu, and Gabriel Socol. 2020. "MAPLE Deposition of Binary and Ternary Organic Bulk Heterojunctions Based on Zinc Phthalocyanine" Coatings 10, no. 10: 956. https://doi.org/10.3390/coatings10100956
APA StyleSocol, M., Preda, N., Petre, G., Costas, A., Rasoga, O., Popescu-Pelin, G., Mihailescu, A., Stanculescu, A., & Socol, G. (2020). MAPLE Deposition of Binary and Ternary Organic Bulk Heterojunctions Based on Zinc Phthalocyanine. Coatings, 10(10), 956. https://doi.org/10.3390/coatings10100956