Thermal Stability of MoNbTaVW High Entropy Alloy Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.; Knight, P.; Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Chen, T.K.; Wong, M.S.; Shun, T.T.; Yeh, J.W. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2005, 200, 1361–1365. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.; Ranganathan, S.; Bhattacharjee, P. High-Entropy Alloys; Butterworth-Heinemann: Oxford, UK, 2014; p. 204. [Google Scholar]
- Cantor, B. Multicomponent and High Entropy Alloys. Entropy 2014, 16, 4749–4768. [Google Scholar] [CrossRef] [Green Version]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.H.; Yeh, J.W.; Gan, J.Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films 2008, 516, 5527–5530. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Miracle, D.B. High entropy alloys as a bold step forward in alloy development. Nat. Commun. 2019, 10, 1805. [Google Scholar] [CrossRef]
- Senkov, O.; Gorsse, S.; Miracle, D. High temperature strength of refractory complex concentrated alloys. Acta Mater. 2019, 175, 394–405. [Google Scholar] [CrossRef]
- Chang, S.Y.; Li, C.E.; Huang, Y.C.; Hsu, H.F.; Yeh, J.W.; Lin, S.J. Structural and Thermodynamic Factors of Suppressed Interdiffusion Kinetics in Multi-component High-entropy Materials. Sci. Rep. 2014, 4, 4162. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, S.; Shafeie, S.; Hu, Q.; Ahlström, J.; Persson, C.; Veselý, J.; Zýka, J.; Klement, U.; Guo, S. Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 2016, 120, 164902. [Google Scholar] [CrossRef] [Green Version]
- Yeh, J.W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Matér. 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Shaigan, N.; Qu, W.; Ivey, D.G.; Chen, W. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J. Power Sources 2010, 195, 1529–1542. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Hung, S.B.; Wang, C.J.; Wei, W.C.; Lee, J.W. High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin films. Surf. Coat. Technol. 2019, 375, 854–863. [Google Scholar] [CrossRef]
- Hung, S.B.; Wang, C.J.; Chen, Y.Y.; Lee, J.W.; Li, C.L. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings. Surf. Coat. Technol. 2019, 375, 802–809. [Google Scholar] [CrossRef]
- Kim, H.; Nam, S.; Roh, A.; Son, M.; Ham, M.H.; Kim, J.H.; Choi, H. Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films. Int. J. Refract. Met. Hard Mater. 2019, 80, 286–291. [Google Scholar] [CrossRef]
- Zou, Y.; Maiti, S.; Steurer, W.; Spolenak, R. Size-dependent plasticity in an Nb25Mo25Ta 25W25 refractory high-entropy alloy. Acta Mater. 2014, 65, 85–97. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, A.; Glushko, O.; Cordill, M.J.; Franz, R. Electromechanical properties of cathodic arc deposited high entropy alloy thin films on polymer substrates. J. Vac. Sci. Technol. A 2019, 37, 010601. [Google Scholar] [CrossRef] [Green Version]
- Xia, A.; Togni, A.; Hirn, S.; Bolelli, G.; Lusvarghi, L.; Franz, R. Angular-dependent deposition of MoNbTaVW HEA thin films by three different physical vapor deposition methods. Surf. Coat. Technol. 2020, 385, 125356. [Google Scholar] [CrossRef]
- Institute für Angewandte Physik TU Wien. Vapor Pressure Calculator. Available online: https://www.iap.tuwien.ac.at/www/surface/vapo_pressure (accessed on 29 September 2020).
- Alcock, C.B.; Itkin, V.P.; Horrigan, M.K. Vapour Pressure Equations for the Metallic Elements: 298–2500K. Can. Metall. Q. 1984, 23, 309–313. [Google Scholar] [CrossRef]
- International Centre for Diffraction Data. Card 00-042-1120 for bcc Mo, Card 00-034-0370 for bcc Nb, Card 00-004-0788 for bcc Ta, Card 00-022-1058 for bcc V, Card 00-004-0806 for bcc W. 2017. [Google Scholar]
- Senkov, O.; Wilks, G.; Miracle, D.; Chuang, C.; Liaw, P. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Anders, A. Cathodic arcs: From Fractal Spots to Energetic Condensation; Springer: New York, NY, USA, 2008. [Google Scholar]
- Mayrhofer, P.; Stoiber, M. Thermal stability of superhard Ti–B–N coatings. Surf. Coat. Technol. 2007, 201, 6148–6153. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Hörling, A.; Karlsson, L.; Sjölen, J.; Larsson, T.; Mitterer, C.; Hultman, L. Self-organized nanostructures in the Ti-Al-N system. Appl. Phys. Lett. 2003, 83, 2049–2051. [Google Scholar] [CrossRef]
- Knutsson, A.; Johansson, M.P.; Karlsson, L.; Odén, M. Thermally enhanced mechanical properties of arc evaporated Ti 0.34Al0.66 N/TiN multilayer coatings. J. Appl. Phys. 2010, 108, 044312. [Google Scholar] [CrossRef]
- Sondheimer, E.H. The mean free path of electrons in metals. Adv. Phys. 1952, 1, 1–42. [Google Scholar] [CrossRef]
- Dayal, D.; Rudolf, P.; Wißmann, P. Thickness dependence of the electrical resistivity of epitaxially grown silver films. Thin Solid Films 1981, 79, 193–199. [Google Scholar] [CrossRef]
- Chan, K.Y.; Tou, T.Y.; Teo, B.S. Thickness dependence of the structural and electrical properties of copper films deposited by dc magnetron sputtering technique. Microelectron. J. 2006, 37, 608–612. [Google Scholar] [CrossRef]
- Pachlhofer, J.M.; Jachs, C.; Franz, R.; Franzke, E.; Köstenbauer, H.; Winkler, J.; Mitterer, C. Structure evolution in reactively sputtered molybdenum oxide thin films. Vacuum 2016, 131, 246–251. [Google Scholar] [CrossRef]
- Hall, E.O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. Sect. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Hultman, L. Thermal stability of nitride thin films. Vacuum 2000, 57, 1–30. [Google Scholar] [CrossRef]
- Desai, P.D.; James, H.M.; Ho, C.Y. Electrical Resistivity of Vanadium and Zirconium. J. Phys. Chem. Ref. Data 1984, 13, 1097–1130. [Google Scholar] [CrossRef]
- Desai, P.D.; Chu, T.K.; James, H.M.; Ho, C.Y. Electrical Resistivity of Selected Elements. J. Phys. Chem. Ref. Data 1984, 13, 1069–1096. [Google Scholar] [CrossRef]
- Oyama, S.T. (Ed.) The Chemistry of Transition Metal Carbides and Nitrides; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar] [CrossRef]
- Fenn, M.; Akuetey, G.; Donovan, P.E. Electrical resistivity of Cu and Nb thin films. J. Phys. Condens. Matter 1998, 10, 1707–1720. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, A.; Franz, R. Thermal Stability of MoNbTaVW High Entropy Alloy Thin Films. Coatings 2020, 10, 941. https://doi.org/10.3390/coatings10100941
Xia A, Franz R. Thermal Stability of MoNbTaVW High Entropy Alloy Thin Films. Coatings. 2020; 10(10):941. https://doi.org/10.3390/coatings10100941
Chicago/Turabian StyleXia, Ao, and Robert Franz. 2020. "Thermal Stability of MoNbTaVW High Entropy Alloy Thin Films" Coatings 10, no. 10: 941. https://doi.org/10.3390/coatings10100941
APA StyleXia, A., & Franz, R. (2020). Thermal Stability of MoNbTaVW High Entropy Alloy Thin Films. Coatings, 10(10), 941. https://doi.org/10.3390/coatings10100941