Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Czaja, C.A.; Scholes, D.; Hooton, T.M.; Stamm, W.E. Population-based epidemiologic analysis of acute pyelonephritis. Clin. Infect. Dis. 2007, 45, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tandogdu, Z.; Wagenlehner, F.M. Global epidemiology of urinary tract infections. Curr. Opin. Infect. Dis. 2016, 29, 73–79. [Google Scholar] [CrossRef]
- Johnson, J.R.; Russo, T.A. Acute Pyelonephritis in Adults. N. Engl. J. Med. 2018, 378, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.; Lyman, A.; Gupta, K.; Mahoney, M.V.; Snyder, G.M.; Hirsch, E.B. Clinical Management of an Increasing Threat: Outpatient Urinary Tract Infections Due to Multidrug-Resistant Uropathogens. Clin. Infect. Dis. 2016, 63, 960–965. [Google Scholar] [CrossRef]
- Bader, M.S.; Loeb, M.; Brooks, A.A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad. Med. 2017, 129, 242–258. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef]
- Bush, K. Past and Present Perspectives on beta-Lactamases. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef]
- Lautenbach, E.; Strom, B.L.; Bilker, W.B.; Patel, J.B.; Edelstein, P.H.; Fishman, N.O. Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin Infect. Dis. 2001, 33, 1288–1294. [Google Scholar] [CrossRef]
- Lob, S.H.; Nicolle, L.E.; Hoban, D.J.; Kazmierczak, K.M.; Badal, R.E.; Sahm, D.F. Susceptibility patterns and ESBL rates of Escherichia coli from urinary tract infections in Canada and the United States, SMART 2010-2014. Diagn. Microbiol. Infect. Dis. 2016, 85, 459–465. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Japan Nosocomial Infections Sur- veillance (JANIS). About JANIS. Available online: https://janis.mhlw.go.jp/english/report/index.html (accessed on 7 June 2020).
- Khawcharoenporn, T.; Vasoo, S.; Singh, K. Urinary Tract Infections due to Multidrug-Resistant Enterobacteriaceae: Prevalence and Risk Factors in a Chicago Emergency Department. Emerg. Med. Int. 2013, 2013, 258517. [Google Scholar] [CrossRef] [PubMed]
- Smithson, A.; Chico, C.; Ramos, J.; Netto, C.; Sanchez, M.; Ruiz, J.; Porron, R.; Bastida, M.T. Prevalence and risk factors for quinolone resistance among Escherichia coli strains isolated from males with community febrile urinary tract infection. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Fagan, M.; Lindbaek, M.; Grude, N.; Reiso, H.; Romoren, M.; Skaare, D.; Berild, D. Antibiotic resistance patterns of bacteria causing urinary tract infections in the elderly living in nursing homes versus the elderly living at home: an observational study. BMC Geriatr. 2015, 15, 98. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.; Walter, T.; Gerigk, M.; Ebert, M.; Vogelmann, R. Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect. Dis. 2018, 18, 56. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Sixth Informational Supplement M100-S26; CLSI: Wayne, PA, USA, 2016. [Google Scholar]
- Omigie, O.; Okoror, L.; Umolu, P.; Ikuuh, G. Increasing resistance to quinolones: A four-year prospective study of urinary tract infection pathogens. Int. J. Gen. Med. 2009, 2, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Karanika, S.; Karantanos, T.; Arvanitis, M.; Grigoras, C.; Mylonakis, E. Fecal Colonization With Extended-spectrum Beta-lactamase-Producing Enterobacteriaceae and Risk Factors Among Healthy Individuals: A Systematic Review and Metaanalysis. Clin Infect. Dis. 2016, 63, 310–318. [Google Scholar] [CrossRef]
- Thaden, J.T.; Fowler, V.G.; Sexton, D.J.; Anderson, D.J. Increasing Incidence of Extended-Spectrum beta-Lactamase-Producing Escherichia coli in Community Hospitals throughout the Southeastern United States. Infect. Control. Hosp. Epidemiol. 2016, 37, 49–54. [Google Scholar] [CrossRef]
- Bratu, S.; Landman, D.; Haag, R.; Recco, R.; Eramo, A.; Alam, M.; Quale, J. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch. Intern. Med. 2005, 165, 1430–1435. [Google Scholar] [CrossRef]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef]
- Palacios-Baena, Z.R.; Oteo, J.; Conejo, C.; Larrosa, M.N.; Bou, G.; Fernandez-Martinez, M.; Gonzalez-Lopez, J.J.; Pintado, V.; Martinez-Martinez, L.; Merino, M.; et al. Comprehensive clinical and epidemiological assessment of colonisation and infection due to carbapenemase-producing Enterobacteriaceae in Spain. J. Infect. 2016, 72, 152–160. [Google Scholar] [CrossRef]
- Killgore, K.M.; March, K.L.; Guglielmo, B.J. Risk factors for community-acquired ciprofloxacin-resistant Escherichia coli urinary tract infection. Ann. Pharmacother. 2004, 38, 1148–1152. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, 103–120. [Google Scholar] [CrossRef] [PubMed]
- The Japanese Association for Infectious Disease/Japanese Society of Chemotherapy; The JAID/JSC Guide/Guidelines to Clinical Management of Infectious Disease Preparing Committee; Urinary tract infection/male genital infection working group. JAID/JSC Guidelines for Clinical Management of Infectious Disease 2015 - Urinary tract infection/male genital infection. J. Infect. Chemother. 2017, 23, 733–751. [Google Scholar] [CrossRef] [PubMed]
- European Association of Urology (EAU): Guidelines on urological infections. Available online: https://uroweb.org/guideline/urological-infections/#3 (accessed on 7 June 2020).
- National Institute for Health and Care Excellence (NICE). Pyelonephritis (acute): antimicrobial prescribing. 2018. Available online: https://www.nice.org.uk/guidance/ng111 (accessed on 18 July 2020).
- Tamma, P.D.; Han, J.H.; Rock, C.; Harris, A.D.; Lautenbach, E.; Hsu, A.J.; Avdic, E.; Cosgrove, S.E.; Antibacterial Resistance Leadership Group. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia. Clin. Infect. Dis. 2015, 60, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Doi, A.; Shimada, T.; Harada, S.; Iwata, K.; Kamiya, T. The efficacy of cefmetazole against pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Int. J. Infect. Dis. 2013, 17, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Mawatari, M.; Hayakawa, K.; Fujiya, Y.; Yamamoto, K.; Kutsuna, S.; Takeshita, N.; Ohmagari, N. Bacteraemic urinary tract infections in a tertiary hospital in Japan: the epidemiology of community-acquired infections and the role of non-carbapenem therapy. BMC Res. Notes 2017, 10, 336. [Google Scholar] [CrossRef]
Characteristics | Overall (n = 172) | Resistant GNR Group (n = 37) | Non-Resistant GNR Group (n = 135) | p-value |
---|---|---|---|---|
Age, median (IQR), years | 80 (72–85) | 80 (70–85) | 79 (73–85) | 0.906 |
Males, no. (%) | 60 (35) | 18 (49) | 42 (31) | 0.047 |
Length of ICU/HCU stay, mean (SD), days | 3.6 (2.2) | 3.8 (2.7) | 3.5 (2.1) | 0.481 |
Pyelonephritis, no. (%) | 165 (96) | 36 (97) | 129 (96) | 0.995 |
Bacteremia, no. (%) | 81 (47) | 16 (43) | 65 (48) | 0.596 |
Risk factors, no. (%) | ||||
Nursing home residence | 38 (22) | 15 (41) | 23 (17) | 0.002 |
Antibiotic use within last 3 months | 9 (5.2) | 5 (14) | 4 (3) | 0.023 |
Hospitalization within last 3 months | 10 (5.8) | 6 (16) | 4 (3) | 0.007 |
Resistant GNR colonization a | 5 (2.9) | 3 (8.1) | 2 (1.5) | 0.071 |
Bed-ridden status b | 30 (17) | 13 (35) | 17 (13) | 0.001 |
Diabetes | 47 (27) | 8 (22) | 39 (29) | 0.415 |
Long-term urinary catheter | 14 (8.1) | 7 (19) | 7 (5.2) | 0.013 |
Immunosuppression c | 42 (24) | 11 (30) | 31 (23) | 0.396 |
Factors | Total | Escherichia Coli | Klebsiella Spp. | Pseudomonas Aeruginosa | Proteus Mirabilis | Enterobacter Cloacae | Providencia Rettgeri | Seratia Marcescens | Citrobacter Spp. | Others |
---|---|---|---|---|---|---|---|---|---|---|
GNR no. (%) | 181 | 135 (75) | 22 (12) | 8 (4.4) | 4 (2.2) | 3 (1.7) | 3 (1.7) | 2 (1.1) | 2 (1.1) | 2 (1.1) |
Resistant GNR, no. (%) | 40 (22) | 29 (22) | 0 | 8 (100) | 1 (25) | 0 | 1 (33) | 1 (50) | 0 | 0 |
ESBL+, no. (%) | 26 (14) | 25 (19) | 0 | 0 | 1 (25) | 0 | 0 | 0 | 0 | 0 |
Susceptibility rate, % | ||||||||||
Ampicillin | 48 | 62 | 0 | 0 | 50 | 0 | 0 | 0 | 50 | 0 |
Ampicillin-sulbactam | 65 | 70 | 82 | 0 | 75 | 0 | 0 | 0 | 100 | 50 |
Piperacillin-tazobactam | 98 | 100 | 96 | 88 | 100 | 100 | 67 | 100 | 100 | 100 |
Cefazolin | 62 | 70 | 73 | 0 | 25 | 0 | 0 | 0 | 50 | 0 |
Cefmetazole | 87 | 96 | 86 | 0 | 100 | 0 | 67 | 0 | 100 | 50 |
Ceftriaxone | 78 | 78 | 100 | 0 | 75 | 100 | 67 | 50 | 100 | 100 |
Cefepime | 83 | 79 | 100 | 88 | 75 | 100 | 100 | 100 | 100 | 100 |
Meropenem | 98 | 100 | 100 | 63 | 100 | 100 | 100 | 100 | 100 | 100 |
Aztreonam | 79 | 79 | 96 | 63 | 75 | 100 | 33 | 50 | 100 | 0 |
Amikacin | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Levofloxacin | 76 | 68 | 100 | 88 | 100 | 100 | 100 | 100 | 100 | 100 |
TMP-SMX | 85 | 90 | 91 | 0 | 50 | 100 | 100 | 50 | 100 | 100 |
Minocycline | 83 | 91 | 86 | 0 | 0 | 100 | 33 | 50 | 100 | 100 |
Antibiotics | Overall | Patients Living in Nursing Home | Community-Dwelling Patients | |||
---|---|---|---|---|---|---|
Enterobacterales (n = 171) | Pseudomonas aeruginosa (n = 8) | Enterobacterales (n = 39) | Pseudomonas aeruginosa (n = 3) | Enterobacterales (n = 132) | Pseudomonas aeruginosa (n = 5) | |
Susceptibility rate, % | ||||||
Ampicillin | 50 | 0 | 36 | 0 | 55 | 0 |
Ampicillin-sulbactam | 68 | 0 | 59 | 0 | 71 | 0 |
Piperacillin-tazobactam | 99 | 88 | 100 | 100 | 99 | 80 |
Cefazolin | 66 | 0 | 56 | 0 | 69 | 0 |
Cefmetazole | 92 | 0 | 90 | 0 | 93 | 0 |
Ceftriaxone | 81 | 0 | 64 | 0 | 86 | 0 |
Cefepime | 83 | 88 | 69 | 100 | 87 | 80 |
Meropenem | 100 | 63 | 100 | 100 | 100 | 40 |
Aztreonam | 81 | 63 | 67 | 33 | 85 | 80 |
Amikacin | 100 | 100 | 100 | 100 | 100 | 100 |
Levofloxacin | 75 | 88 | 54 | 100 | 81 | 80 |
TMP-SMX | 89 | 0 | 79 | 0 | 92 | 0 |
Minocycline | 87 | 0 | 82 | 0 | 87 | 0 |
Risk Factors | Odds Ratio (95% CI) | p-Value |
---|---|---|
Age | 1.00 (0.96–1.03) | 0.900 |
Nursing home residence | 2.83 (1.18–6.79) | 0.020 |
Antibiotic use within 3 months | 4.52 (1.02–19.97) | 0.047 |
Long-term urinary catheter placement | 2.77 (0.81–9.45) | 0.103 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanda, N.; Hashimoto, H.; Sonoo, T.; Naraba, H.; Takahashi, Y.; Nakamura, K.; Hatakeyama, S. Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan. Antibiotics 2020, 9, 438. https://doi.org/10.3390/antibiotics9080438
Kanda N, Hashimoto H, Sonoo T, Naraba H, Takahashi Y, Nakamura K, Hatakeyama S. Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan. Antibiotics. 2020; 9(8):438. https://doi.org/10.3390/antibiotics9080438
Chicago/Turabian StyleKanda, Naoki, Hideki Hashimoto, Tomohiro Sonoo, Hiromu Naraba, Yuji Takahashi, Kensuke Nakamura, and Shuji Hatakeyama. 2020. "Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan" Antibiotics 9, no. 8: 438. https://doi.org/10.3390/antibiotics9080438
APA StyleKanda, N., Hashimoto, H., Sonoo, T., Naraba, H., Takahashi, Y., Nakamura, K., & Hatakeyama, S. (2020). Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan. Antibiotics, 9(8), 438. https://doi.org/10.3390/antibiotics9080438