Anti-Candida Activity of Essential Oils from Lamiaceae Plants from the Mediterranean Area and the Middle East
Abstract
:1. Introduction
2. Essential Oils from the Lamiaceae Family
3. Selection of Candida Spp.
4. Anti-Candida Activity
5. Anti-Virulence Activity
6. Synergistic Interaction with Commercial Antifungal Drugs
7. Cytotoxicity
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial Bloodstream Infections in US Hospitals: Analysis of 24,179 Cases from a Prospective Nationwide Surveillance Study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacobbe, D.R.; Maraolo, A.E.; Simeon, V.; Magnè, F.; Pace, M.C.; Gentile, I.; Chiodini, P.; Viscoli, C.; Sanguinetti, M.; Mikulska, M.; et al. Changes in the relative prevalence of candidaemia due to non- albicans Candida species in adult in-patients: A systematic review, meta-analysis and meta-regression. Mycoses 2020, 63, 334–342. [Google Scholar] [CrossRef]
- Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazi, S.; Rafei, R.; Osman, M.; El Safadi, D.; Mallat, H.; Papon, N.; Dabboussi, F.; Bouchara, J.-P.; Hamze, M. The epidemiology of Candida species in the Middle East and North Africa. J. Mycol. Med. 2019, 29, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.L.; de Almeida Júnior, J.N.; Guinea, J. Emerging multidrug-resistant Candida species. Curr. Opin. Infect. Dis. 2017, 30, 528–538. [Google Scholar] [CrossRef]
- Jha, A.; Kumar, A. Anticandidal agent for multiple targets: The next paradigm in the discovery of proficient therapeutics/overcoming drug resistance. Future Med. Chem. 2019, 11, 2955–2974. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.A.; Ahmad, A. Candida auris—The growing menace to global health. Mycoses 2019, 62, 620–637. [Google Scholar] [CrossRef] [Green Version]
- Cortegiani, A.; Misseri, G.; Fasciana, T.; Giammanco, A.; Giarratano, A.; Chowdhary, A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J. Intensive Care 2018, 6, 69. [Google Scholar] [CrossRef]
- Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Mendes Giannini, M.J.S. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 2013, 62, 10–24. [Google Scholar] [CrossRef]
- Cavalheiro, M.; Teixeira, M.C. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front. Med. 2018, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galocha, M.; Pais, P.; Cavalheiro, M.; Pereira, D.; Viana, R.; Teixeira, M.C. Divergent Approaches to Virulence in C. albicans and C. glabrata: Two Sides of the Same Coin. Int. J. Mol. Sci. 2019, 20, 2345. [Google Scholar] [CrossRef] [Green Version]
- Scorzoni, L.; de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.M.A.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willis, K.J. State of the World’s Plants. Available online: https://stateoftheworldsplants.org/ (accessed on 15 May 2020).
- Barnes, J. Quality, efficacy and safety of complementary medicines: Fashions, facts and the future. Part I. Regulation and quality. Br. J. Clin. Pharmacol. 2003, 55, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Kubeczka, K.-H. History and sources of essential oil research. In Handbook of Essential Oils; CRC Press: Boca Raton, FL, USA, 2009; pp. 12–47. [Google Scholar]
- Lahlou, M. Methods to study the phytochemistry and bioactivity of essential oils. Phytother. Res. PTR 2004, 18, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Sell, C.S. The Chemistry of Fragrances: From Perfumer to Consumer; Royal Society of Chemistry: Cambridge, UK, 2006; Volume 38. [Google Scholar]
- Hüsnü, K.; Başer, C.; Demirci, F. Chemistry of Essential Oils. In Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability; Berger, R.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 43–86. ISBN 978-3-540-49339-6. [Google Scholar]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. PTR 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Sabulal, B.; Dan, M.; John J, A.; Kurup, R.; Pradeep, N.S.; Valsamma, R.K.; George, V. Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity. Phytochemistry 2006, 67, 2469–2473. [Google Scholar] [CrossRef]
- Clifford, M.N. Miscellaneous phenols in foods and beverages – nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1126–1137. [Google Scholar] [CrossRef]
- Home—The Plant List. Available online: http://www.theplantlist.org/ (accessed on 3 June 2020).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 3 June 2020).
- Abdelli, W.; Bahri, F.; Sysak, A.; Szumny, A.; Pawlak, A.; Obmińska-Mrukowicz, B. Chemical composition, antimicrobial and cytotoxic activity of essential oils of Algerian Thymus vulgaris L. Acta Pol. Pharm. Drug Res. 2019, 76, 1051–1059. [Google Scholar] [CrossRef]
- Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Paoli, M.; Tomi, F.; Efferth, T.; Salgueiro, L. Ziziphora tenuior L. essential oil from Dana Biosphere Reserve (Southern Jordan); Chemical characterization and assessment of biological activities. J. Ethnopharmacol. 2016, 194, 963–970. [Google Scholar] [CrossRef]
- Ahmadi, F.; Sadeghi, S.; Modarresi, M.; Abiri, R.; Mikaeli, A. Chemical composition, in vitro anti-microbial, antifungal and antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran. Food Chem. Toxicol. 2010, 48, 1137–1144. [Google Scholar] [CrossRef]
- Al Hafi, M.; El Beyrouthy, M.; Ouaini, N.; Stien, D.; Rutledge, D.; Chaillou, S. Chemical Composition and Antimicrobial Activity of Satureja, Thymus, and Thymbra Species Grown in Lebanon. Chem. Biodivers. 2017, 14, e1600236. [Google Scholar] [CrossRef]
- Al Hafi, M.; El Beyrouthy, M.; Ouaini, N.; Stien, D.; Rutledge, D.; Chaillou, S. Chemical Composition and Antimicrobial Activity of Origanum libanoticum, Origanum ehrenbergii, and Origanum syriacum Growing Wild in Lebanon. Chem. Biodivers. 2016, 13, 555–560. [Google Scholar] [CrossRef]
- Alves, M.; Gonçalves, M.J.; Zuzarte, M.; Alves-Silva, J.M.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. Unveiling the Antifungal Potential of Two Iberian Thyme Essential Oils: Effect on C. albicans Germ Tube and Preformed Biofilms. Front. Pharmacol. 2019, 10, 446. [Google Scholar] [CrossRef]
- Asdadi, A.; Hamdouch, A.; Oukacha, A.; Moutaj, R.; Gharby, S.; Harhar, H.; El Hadek, M.; Chebli, B.; Idrissi Hassani, L.M. Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against clinical strains of Candida responsible for nosocomial infections. J. Mycol. Médicale 2015, 25, e118–e127. [Google Scholar] [CrossRef]
- Ashraf, S.N.; Zubair, M.; Rizwan, K.; Tareen, R.B.; Rasool, N.; Zia-Ul-Haq, M.; Ercisli, S. Compositional studies and Biological activities of Perovskia abrotanoides Kar. oils. Biol. Res. 2014, 47, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, N.A.A.; Chhetri, B.K.; Dosoky, N.S.; Shari, K.; Al-Fahad, A.J.; Wessjohann, L.; Setzer, W.N. Antimicrobial, antioxidant, and cytotoxic activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils. Medicines 2017, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Bardaweel, S.K.; Bakchiche, B.; ALSalamat, H.A.; Rezzoug, M.; Gherib, A.; Flamini, G. Chemical composition, antioxidant, antimicrobial and Antiproliferative activities of essential oil of Mentha spicata L. (Lamiaceae) from Algerian Saharan atlas. BMC Complement. Altern. Med. 2018, 18, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellete, B.; Rabérin, H.; Flori, P.; Akssi, S.E.; Sung, R.T.M.; Taourirte, M.; Hafid, J. Antifungal effect of the essential oil of Thymus broussonetii Boiss endogenous species of Morocco. Nat. Prod. Res. 2012, 26, 1692–1696. [Google Scholar] [CrossRef] [PubMed]
- Benabed, K.; Gourine, N.; Ouinten, M.; Bombarda, I.; Yousfi, M. Chemical Composition, Antioxidant and Antimicrobial Activities of the Essential Oils of Three Algerian Lamiaceae Species. Curr. Nutr. Food Sci. 2017, 13, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Bendif, H.; Boudjeniba, M.; Miara, M.D.; Biqiku, L.; Bramucci, M.; Lupidi, G.; Quassinti, L.; Vitali, L.A.; Maggi, F. Essential Oil of Thymus munbyanus subsp. coloratus from Algeria: Chemotypification and in vitro Biological Activities. Chem. Biodivers. 2017, 14, e1600299. [Google Scholar] [CrossRef]
- Benabdelkader, T.; Zitouni, A.; Guitton, Y.; Jullien, F.; Maitre, D.; Casabianca, H.; Legendre, L.; Kameli, A. Essential Oils from Wild Populations of Algerian Lavandula stoechas L.: Composition, Chemical Variability, and in vitro Biological Properties. Chem. Biodivers. 2011, 8, 937–953. [Google Scholar] [CrossRef] [PubMed]
- Benomari, F.Z.; Djabou, N.; Medbouhi, A.; Khadir, A.; Bendahou, M.; Selles, C.; Desjobert, J.-M.; Costa, J.; Muselli, A. Chemical Variability and Biological Activities of Essential Oils of Micromeria inodora (Desf.) Benth. from Algeria. Chem. Biodivers. 2016, 13, 1559–1572. [Google Scholar] [CrossRef] [PubMed]
- Bogavac, M.; Karaman, M.; Janjušević, L.; Sudji, J.; Radovanović, B.; Novaković, Z.; Simeunović, J.; Božin, B. Alternative treatment of vaginal infections - in vitro antimicrobial and toxic effects of Coriandrum sativum L. and Thymus vulgaris L. essential oils. J. Appl. Microbiol. 2015, 119, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Bogavac, M.A.; Karaman, M.A.; Suđi, J.J.; Radovanović, B.B.; Janjušević, L.N.; Ćetković, N.B.; Tešanović, K.D. Antimicrobial Potential of Rosmarinus officinalis Commercial Essential Oil in the Treatment of Vaginal Infections in Pregnant Women. Nat. Prod. Commun. 2017, 12, 1934578X1701200. [Google Scholar] [CrossRef] [Green Version]
- Božović, M.; Garzoli, S.; Sabatino, M.; Pepi, F.; Baldisserotto, A.; Andreotti, E.; Romagnoli, C.; Mai, A.; Manfredini, S.; Ragno, R. Essential Oil Extraction, Chemical Analysis and Anti-Candida Activity of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball—New Approaches. Molecules 2017, 22, 203. [Google Scholar] [CrossRef] [Green Version]
- Chenni, M.; El Abed, D.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction. Molecules 2016, 21, 113. [Google Scholar] [CrossRef] [Green Version]
- Cutillas, A.-B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Composition and Antioxidant, Antienzymatic and Antimicrobial Activities of Volatile Molecules from Spanish Salvia lavandulifolia (Vahl) Essential Oils. Molecules 2017, 22, 1382. [Google Scholar] [CrossRef] [Green Version]
- Cutillas, A.-B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Salvia officinalis L. Essential Oils from Spain: Determination of Composition, Antioxidant Capacity, Antienzymatic, and Antimicrobial Bioactivities. Chem. Biodivers. 2017, 14, e1700102. [Google Scholar] [CrossRef]
- Cutillas, A.-B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thyme essential oils from Spain: Aromatic profile ascertained by GC–MS, and their antioxidant, anti-lipoxygenase and antimicrobial activities. J. Food Drug Anal. 2018, 26, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Cutillas, A.-B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS ONE 2018, 13, e0190790. [Google Scholar] [CrossRef] [Green Version]
- Delogu, G.; Juliano, C.C.A.; Usai, M. Thymus catharinae Camarda essential oil: β-cyclodextrin inclusion complexes, evaluation of antimicrobial activity. Nat. Prod. Res. 2016, 30, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Debbabi, H.; El Mokni, R.; Chaieb, I.; Nardoni, S.; Maggi, F.; Caprioli, G.; Hammami, S. Chemical Composition, Antifungal and Insecticidal Activities of the Essential Oils from Tunisian Clinopodium nepeta subsp. nepeta and Clinopodium nepeta subsp. glandulosum. Molecules 2020, 25, 2137. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.; Nardoni, S.; Bertelloni, F.; Pistelli, L.; Mancianti, F. Antimicrobial Activity of Five Essential Oils against Bacteria and Fungi Responsible for Urinary Tract Infections. Molecules 2018, 23, 1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebani, V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Ruffoni, B.; D’Ascenzi, C.; Pistelli, L.; Mancianti, F. Activity of Salvia dolomitica and Salvia somalensis Essential Oils against Bacteria, Molds and Yeasts. Molecules 2018, 23, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Kashoury, E.-S.A.; El-Askary, H.I.; Kandil, Z.A.; Salem, M.A.; Sleem, A.A. Chemical composition and biological activities of the essential oil of Mentha suaveolens Ehrh. Z. Naturforschung C J. Biosci. 2012, 67, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Fani, M.; Kohanteb, J. In Vitro Antimicrobial Activity of Thymus vulgaris Essential Oil Against Major Oral Pathogens. J. Evid. Based Complement. Altern. Med. 2017, 22, 660–666. [Google Scholar] [CrossRef] [Green Version]
- Fraternale, D.; Flamini, G.; Bisio, A.; Albertini, M.C.; Ricci, D. Chemical Composition and Antimicrobial Activity of Salvia x jamensis Essential Oil. Nat. Prod. Commun. 2012, 7, 1934578X1200700. [Google Scholar] [CrossRef] [Green Version]
- Garzoli, S.; Božović, M.; Baldisserotto, A.; Andreotti, E.; Pepi, F.; Tadić, V.; Manfredini, S.; Ragno, R. Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, a new chemotype from Montenegro. Nat. Prod. Res. 2018, 32, 1056–1061. [Google Scholar] [CrossRef]
- Gelmini, F.; Squillace, P.; Testa, C.; Sparacino, A.C.; Angioletti, S.; Beretta, G. GC–MS characterisation and biological activity of essential oils from different vegetative organs of Plectranthus barbatus and Plectranthus caninus cultivated in north Italy. Nat. Prod. Res. 2015, 29, 993–998. [Google Scholar] [CrossRef]
- Ghasemi, E.; Sharafzadeh, S.; Amiri, B.; Alizadeh, A.; Bazrafshan, F. Variation in Essential Oil Constituents and Antimicrobial Activity of the Flowering Aerial Parts of Salvia mirzayanii Rech. & Esfand. Ecotypes as a Folkloric Herbal Remedy in Southwestern Iran. J. Essent. Oil Bear. Plants 2020, 23, 51–64. [Google Scholar] [CrossRef]
- Goldansaz, S.M.; Jeloudar, Z.; Safaeian, R.; Sonboli, A. Comparison of the chemical constitutions, antibacterial, anti-Candida, and antioxidant activity of Nepeta asterotricha Rech. F. essential oil. Am. J. Essent. Oils Nat. Prod. 2019, 7, 15–22. [Google Scholar]
- Goze, I.; Alim, A.; Cetinus, S.A.; Çetin, A.; Durmus, N.; Atas, A.T.; Vural, N. In Vitro Antimicrobial, Antioxidant, and Antispasmodic Activities and the Composition of the Essential Oil of Origanum acutidens (Hand.-Mazz.) Ietswaart. J. Med. Food 2010, 13, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Helal, I.M.; El-Bessoumy, A.; Al-Bataineh, E.; Joseph, M.R.P.; Rajagopalan, P.; Chandramoorthy, H.C.; Ben Hadj Ahmed, S. Antimicrobial Efficiency of Essential Oils from Traditional Medicinal Plants of Asir Region, Saudi Arabia, over Drug Resistant Isolates. BioMed Res. Int. 2019, 2019, 8928306. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.S.; Agoumi, A.; Amghar, S.; Boukachabine, K. Anticandida Activity of the Marketed Essential Oil of Thymus Vulgaris L and its Concomitant Action with Amphotericin B. Therapies 2011, 66, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.R.M.; Abdallah, H.M.; Mohamed, G.A.; Farag, M.A.; Alshali, K.Z.; Alsherif, E.A.; Ross, S.A. Volatile oil profile of some lamiaceous plants growing in Saudi Arabia and their biological activities. Z. Für Naturforschung C 2017, 72, 35–41. [Google Scholar] [CrossRef]
- Imani, Z.; Asgarpanah, J.; Hashemi, F.; Hashemi Hezaveh, J. Composition and antifungal activity of Zhumeria majdae essential oil. Curr. Med. Mycol. 2015, 1, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- İşcan, G.; Köse, Y.B.; Demirci, B.; Can Başer, K.H. Anticandidal Activity of the Essential Oil of Nepeta transcaucasicaGrossh. Chem. Biodivers. 2011, 8, 2144–2148. [Google Scholar] [CrossRef]
- İşcan, G.; Demirci, B.; Demirci, F.; Göger, F.; Kırımer, N.; Köse, Y.B.; Başer, K.H.C. Antimicrobial and Antioxidant Activities of Stachys lavandulifolia subsp. lavandulifolia Essential Oil and its Infusion. Nat. Prod. Commun. 2012, 7, 1934578X1200700. [Google Scholar] [CrossRef] [Green Version]
- DemiRci, B.; Köse, Y.B.; İŞcan, G. Antimicrobial essential oil of Origanum boissieri Ietswaart. J. Res. Pharm. 2020, 24, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Jamali, C.A.; El Bouzidi, L.; Bekkouche, K.; Lahcen, H.; Markouk, M.; Wohlmuth, H.; Leach, D.; Abbad, A. Chemical Composition and Antioxidant and Anticandidal Activities of Essential Oils from Different Wild Moroccan Thymus Species. Chem. Biodivers. 2012, 9, 1188–1197. [Google Scholar] [CrossRef]
- Jaradat, N.; Adwan, L.; K’aibni, S.; Shraim, N.; Zaid, A.N. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complement. Altern. Med. 2016, 16, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karadağ, A.E.; Demirci, B.; Kültür, Ş.; Demirci, F.; Başer, K.H.C. Antimicrobial, anticholinesterase evaluation and chemical characterization of essential oil Phlomis kurdica Rech. fil. Growing in Turkey. J. Essent. Oil Res. 2020, 1–5. [Google Scholar] [CrossRef]
- Karaman, M.; Bogavac, M.; Radovanović, B.; Sudji, J.; Tešanović, K.; Janjušević, L. Origanum vulgare essential oil affects pathogens causing vaginal infections. J. Appl. Microbiol. 2017, 122, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Khoury, M.; Stien, D.; Eparvier, V.; Ouaini, N.; El Beyrouthy, M. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils. Evid. Based Complement. Altern. Med. 2016, 2016, 2547169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutsaviti, A.; Milenković, M.; Tzakou, O. Antimicrobial Activity of the Essential Oil of Greek Endemic Stachys spruneri and its Main Component, Isoabienol. Nat. Prod. Commun. 2011, 6, 1934578X1100600. [Google Scholar] [CrossRef] [Green Version]
- Kremer, D.; Kosir, I.; Kosalec, I.; Koncic, M.; Potocnik, T.; Cerenak, A.; Bezic, N.; Srecec, S.; Dunkic, V. Investigation of Chemical Compounds, Antioxidant and Antimicrobial Properties of Teucrium arduini L. (Lamiaceae). Curr. Drug Targets 2013, 14, 1006–1014. [Google Scholar] [CrossRef]
- Lazarević, J.S.; Ðorđević, A.S.; Kitić, D.V.; Zlatković, B.K.; Stojanović, G.S. Chemical Composition and Antimicrobial Activity of the Essential Oil of Stachys officinalis (L.) Trevis. (Lamiaceae). Chem. Biodivers. 2013, 10, 1335–1349. [Google Scholar] [CrossRef]
- Marino, A.; Nostro, A.; Mandras, N.; Roana, J.; Ginestra, G.; Miceli, N.; Taviano, M.F.; Gelmini, F.; Beretta, G.; Tullio, V. Evaluation of antimicrobial activity of the hydrolate of Coridothymus capitatus (L.) Reichenb. fil. (Lamiaceae) alone and in combination with antimicrobial agents. BMC Complement. Med. Ther. 2020, 20, 89. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical composition and biological assays of essential oils of Calamintha nepeta (L.) Savi subsp. nepeta (Lamiaceae). Nat. Prod. Res. 2010, 24, 1734–1742. [Google Scholar] [CrossRef]
- Milenković, M.; Stošović, J.; Slavkovska, V. Synergy between Essential Oils of Calamintha Species (Lamiaceae) and Antibiotics. Nat. Prod. Commun. 2018, 13, 1934578X1801300. [Google Scholar] [CrossRef] [Green Version]
- Minooeianhaghighi, M.H.; Sepehrian, L.; Shokri, H. Antifungal effects of Lavandula binaludensis and Cuminum cyminum essential oils against Candida albicans strains isolated from patients with recurrent vulvovaginal candidiasis. J. Mycol. Méd. 2017, 27, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Mkaddem, M.G.; Romdhane, M.; Ibrahim, H.; Ennajar, M.; Lebrihi, A.; Mathieu, F.; Bouajila, J. Essential Oil of Thymus capitatus Hoff. et Link. from Matmata, Tunisia: Gas Chromatography-Mass Spectrometry Analysis and Antimicrobial and Antioxidant Activities. J. Med. Food 2010, 13, 1500–1504. [Google Scholar] [CrossRef] [PubMed]
- El Mokni, R.; Majdoub, S.; Chaieb, I.; Jlassi, I.; Joshi, R.K.; Hammami, S. Chromatographic analysis, antimicrobial and insecticidal activities of the essential oil of Phlomis floccosa D. Don. Biomed. Chromatogr. 2019, 33. [Google Scholar] [CrossRef] [PubMed]
- Mothana, R.A.; Khaled, J.M.; Noman, O.M.; Kumar, A.; Alajmi, M.F.; Al-Rehaily, A.J.; Kurkcuoglu, M. Phytochemical analysis and evaluation of the cytotoxic, antimicrobial and antioxidant activities of essential oils from three Plectranthus species grown in Saudi Arabia. BMC Complement. Altern. Med. 2018, 18, 237. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, M.; Saharkhiz, M.J.; Pakshir, K.; Amini Akbarabadi, S.; Alikhani Khordshami, M.; Asadian, F.; Zareshahrabadi, Z.; Zomorodian, K. Chemical compositions and antifungal activities of Satureja macrosiphon against Candida and Aspergillus species. Curr. Med. Mycol. 2020, 5, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Niczad, A.; Sharafzadeh, S.; Alizadeh, A.; Amiri, B.; Bazrafshan, F. Variability in Essential Oil Constituent, Phenolic Content, Antioxidant and Antimicrobial Activities of Different Ecotypes of Zataria multiflora Boiss. from Iran. J. Essent. Oil Bear. Plants 2019, 22, 1435–1449. [Google Scholar] [CrossRef]
- Omayma, B.; Sabah, E.G.; Idrissi, M.E.; Bouymajane, A. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Rosmarinus Officinalis L, cultivated in Fes- Meknes region. Green Appl. Chem. 2020, 8, 1–9. [Google Scholar]
- Ouknin, M.; Romane, A.; Costa, J.; Majidi, L. Comparative study of the chemical profiling, antioxidant and antimicrobial activities of essential oils of different parts of Thymus willdenowii Boiss & Reut. Nat. Prod. Res. 2019, 33, 2398–2401. [Google Scholar] [CrossRef]
- Outaleb, T.; Yekkour, A.; Hazzit, M.; Zitouni, A.; Sabaou, N. Phytochemical profiling, antioxidant and antimicrobial effectiveness of Rosmarinus tournefortii De Noe extracts issued from different regions of Algeria. J. Essent. Oil Res. 2020, 1–13. [Google Scholar] [CrossRef]
- Özek, G.; Demirci, F.; Özek, T.; Tabanca, N.; Wedge, D.E.; Khan, S.I.; Başer, K.H.C.; Duran, A.; Hamzaoglu, E. Gas chromatographic–mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity. J. Chromatogr. A 2010, 1217, 741–748. [Google Scholar] [CrossRef]
- Palmeira-de-Oliveira, A.; Gaspar, C.; Palmeira-de-Oliveira, R.; Silva-Dias, A.; Salgueiro, L.; Cavaleiro, C.; Pina-Vaz, C.; Martinez-de-Oliveira, J.; Queiroz, J.A.; Rodrigues, A.G. The anti-Candida activity of Thymbra capitata essential oil: Effect upon pre-formed biofilm. J. Ethnopharmacol. 2012, 140, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Petretto, G.L.; Fancello, F.; Zara, S.; Foddai, M.; Mangia, N.P.; Sanna, M.L.; Omer, E.A.; Menghini, L.; Chessa, M.; Pintore, G. Antimicrobial Activity against Beneficial Microorganisms and Chemical Composition of Essential Oil of Mentha suaveolens ssp. insularis Grown in Sardinia: Mentha insularis activity against beneficial microflora…. J. Food Sci. 2014, 79, M369–M377. [Google Scholar] [CrossRef] [PubMed]
- Pietrella, D.; Angiolella, L.; Vavala, E.; Rachini, A.; Mondello, F.; Ragno, R.; Bistoni, F.; Vecchiarelli, A. Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement. Altern. Med. 2011, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Piras, A.; Cocco, V.; Falconieri, D.; Porcedda, S.; Marongiu, B.; Maxia, A.; Frau, M.A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Isolation of the Volatile Oil from Satureja thymbra by Supercritical Carbon Dioxide Extraction: Chemical Composition and Biological Activity. Nat. Prod. Commun. 2011, 6, 1934578X1100601. [Google Scholar] [CrossRef] [Green Version]
- Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of essential oil from Mentha spicata L. and Mentha pulegium L. growing wild in Sardinia island (Italy). Nat. Prod. Res. 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Franchini, C.; Corbo, F.; Carbonara, G.G.; Carrieri, A.; Fracchiolla, G. Elucidation of the synergistic action of Mentha Piperita essential oil with common antimicrobials. PLoS ONE 2018, 13, e0200902. [Google Scholar] [CrossRef]
- Saad, A.; Fadli, M.; Bouaziz, M.; Benharref, A.; Mezrioui, N.-E.; Hassani, L. Anticandidal activity of the essential oils of Thymus maroccanus and Thymus broussonetii and their synergism with amphotericin B and fluconazol. Phytomedicine 2010, 17, 1057–1060. [Google Scholar] [CrossRef]
- Saei-Dehkordi, S.S.; Tajik, H.; Moradi, M.; Khalighi-Sigaroodi, F. Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem. Toxicol. 2010, 48, 1562–1567. [Google Scholar] [CrossRef]
- Şerbetçi, T.; Demirci, B.; Güzel, Ç.B.; Kültür, Ş.; Ergüven, M.; Başer, K.H.C. Essential Oil Composition, Antimicrobial and Cytotoxic Activities of Two Endemic Stachys Cretica Subspecies (Lamiaceae) from Turkey. Nat. Prod. Commun. 2010, 5, 1934578X1000500. [Google Scholar] [CrossRef] [Green Version]
- Sevindik, E.; Aydin, S.; Kurtoglu, C.; Tin, B. Evaluation of essential oil composition of Origanum onites L.(Lamiaceae) plant and antifungal activity on some strong pathogen fungi. AFS-Adv. Food Sci. 2019, 41, 32–35. [Google Scholar]
- Sharifzadeh, A.; Khosravi, A.R.; Ahmadian, S. Chemical composition and antifungal activity of Satureja hortensis L. essentiall oil against planktonic and biofilm growth of Candida albicans isolates from buccal lesions of HIV+ individuals. Microb. Pathog. 2016, 96, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Souri, N.; Monsef-Esfehani, M.R.; Vazirian, M.; Samadi, N.; Sadati Lamardi, S.N. Analysis of Essential Oil Composition and Antimicrobial Effect of Stachys discolor subsp. mazandarana. Tradit. Integr. Med. 2020, 5, 1–6. [Google Scholar] [CrossRef]
- Spagnoletti, A.; Guerrini, A.; Tacchini, M.; Vinciguerra, V.; Leone, C.; Maresca, I.; Simonetti, G.; Sacchetti, G.; Angiolella, L. Chemical composition and bio-efficacy of essential oils from italian aromatic plants: Mentha suaveolens, Coridothymus capitatus, Origanum hirtum and Rosmarinus officinalis. Nat. Prod. Commun. 2016, 11, 1934578X1601101023. [Google Scholar] [CrossRef] [Green Version]
- Tadić, V.; Bojović, D.; Arsić, I.; Đorđević, S.; Aksentijevic, K.; Stamenić, M.; Janković, S. Chemical and Antimicrobial Evaluation of Supercritical and Conventional Sideritis scardica Griseb., Lamiaceae Extracts. Molecules 2012, 17, 2683–2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadić, V.; Oliva, A.; Božović, M.; Cipolla, A.; De Angelis, M.; Vullo, V.; Garzoli, S.; Ragno, R. Chemical and Antimicrobial Analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan. Molecules 2017, 22, 1395. [Google Scholar] [CrossRef] [Green Version]
- Teymouri, M.; Alizadeh, A. Chemical composition and antimicrobial activity of the essential oil of Mentha mozaffarianii Jamzad growing wild and cultivated in Iran. Nat. Prod. Res. 2018, 32, 1320–1323. [Google Scholar] [CrossRef]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Evaluation of the Antifungal Activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) Essential Oil and Its Synergistic Interaction with Azoles. Molecules 2019, 24, 3148. [Google Scholar] [CrossRef] [Green Version]
- Vale-Silva, L.; Gonçalves, M.; Cavaleiro, C.; Salgueiro, L.; Pinto, E. Antifungal Activity of the Essential Oil of Thymus x viciosoi against Candida, Cryptococcus, Aspergillus and Dermatophyte Species. Planta Med. 2010, 76, 882–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vale-Silva, L.; Silva, M.-J.; Oliveira, D.; Gonçalves, M.-J.; Cavaleiro, C.; Salgueiro, L.; Pinto, E. Correlation of the chemical composition of essential oils from Origanum vulgare subsp. virens with their in vitro activity against pathogenic yeasts and filamentous fungi. J. Med. Microbiol. 2012, 61, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Vitali, L.A.; Dall’Acqua, S.; Maggi, F.; Martonfi, P.; Papa, F.; Petrelli, D.; Sut, S.; Lupidi, G. Antimicrobial and antioxidant activity of the essential oil from the Carpathian Thymus alternans Klokov. Nat. Prod. Res. 2017, 31, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, G.; Demirci, B.; Aytaç, Z.; Demirci, F. Characterization of the Essential Oil and Anticandidal Evaluation of Thymus pallasicus Hayek & Velen. from Turkey. Nat. Volatiles Essent. Oils 2019, 6, 1–5. [Google Scholar]
- Zomorodian, K.; Saharkhiz, M.J.; Rahimi, M.J.; Shariatifard, S.; Pakshir, K.; Khashei, R. Chemical Composition and Antimicrobial Activities of Essential Oil of Nepeta Cataria L. Against Common Causes of Oral Infections. J. Dent. Tehran Iran 2013, 10, 329–337. [Google Scholar]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Canhoto, J.; Vale-Silva, L.; Silva, M.J.; Pinto, E.; Salgueiro, L. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Hér. J. Med. Microbiol. 2011, 60, 612–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuzarte, M.; Vale-Silva, L.; Gonçalves, M.J.; Cavaleiro, C.; Vaz, S.; Canhoto, J.; Pinto, E.; Salgueiro, L. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1359–1366. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem. 2012, 135, 1505–1510. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Benzarti, A.; Marongiu, B.; Maxia, A.; Piras, A.; Salgueiro, L. Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Ind. Crops Prod. 2013, 44, 97–103. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Arendrup, M.C.; Guinea, J.; Cuenca-Estrella, M.; Meletiadis, J.; Mouton, J.W.; Lagrou, K.; Howard, S.J. EUCAST DEFINITIVE DOCUMENT E.DEF 9.3. 2015, p. 23. Available online: https://www.aspergillus.org.uk/sites/default/files/pictures/Lab_protocols/EUCAST_E_Def_9_3_Mould_testing_definitive_0.pdf (accessed on 12 May 2020).
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef]
- Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef] [Green Version]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ahmad, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol. 2010, 161, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomed. Int. J. Phytother. Phytopharm. 2011, 18, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-C.; Lai, W.-L.; Chuang, K.-C.; Lee, M.-H.; Tsai, Y.-C. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Med. Mycol. 2013, 51, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) Oil: A Review of Antimicrobial and Other Medicinal Properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Yañez, C.R.; Terrazas, L.I.; Jimenez-Estrada, M.; Campos, J.E.; Flores-Ortiz, C.M.; Hernandez, L.B.; Cruz-Sanchez, T.; Garrido-Fariña, G.I.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Anti-Candida Activity of Bursera morelensis Ramirez Essential Oil and Two Compounds, α-Pinene and γ-Terpinene-An In Vitro Study. Molecules 2017, 22, 2095. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2011, 30, 41–50. [Google Scholar] [CrossRef]
- Marcos-Zambrano, L.J.; Escribano, P.; Bouza, E.; Guinea, J. Production of biofilm by Candida and non-Candida spp. isolates causing fungemia: Comparison of biomass production and metabolic activity and development of cut-off points. Int. J. Med. Microbiol. 2014, 304, 1192–1198. [Google Scholar] [CrossRef]
- Taff, H.T.; Mitchell, K.F.; Edward, J.A.; Andes, D.R. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013, 8, 1325–1337. [Google Scholar] [CrossRef] [Green Version]
- Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Mohan Karuppayil, S. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 2013, 29, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Giovana, C.B.; de Feiria Simone, N.B.; de Laet Santana, P.; Paula, C.A.; Marcelo, F.G.B.; Marcelle, M.B.-R.; Janaina, P.B.; de Oliveira Thais, R.; Jose, F.H. Antifungal and cytotoxic activity of purified biocomponents as carvone, menthone, menthofuran and pulegone from Mentha spp. Afr. J. Plant Sci. 2016, 10, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Ren, B.; Tong, Y.; Dai, H.; Zhang, L. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 2015, 6, 362–371. [Google Scholar] [CrossRef] [Green Version]
- De Cremer, K.; Staes, I.; Delattin, N.; Cammue, B.P.; Thevissen, K.; De Brucker, K. Combinatorial drug approaches to tackle Candida albicans biofilms. Expert Rev. Anti Infect. Ther. 2015, 13, 973–984. [Google Scholar] [CrossRef] [PubMed]
- van Vuuren, S.; Viljoen, A. Plant-Based Antimicrobial Studies—Methods and Approaches to Study the Interaction between Natural Products. Planta Med. 2011, 77, 1168–1182. [Google Scholar] [CrossRef] [Green Version]
- Konuk, H.B.; Ergüden, B. Phenolic –OH group is crucial for the antifungal activity of terpenoids via disruption of cell membrane integrity. Folia Microbiol. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual; Sittampalam, G.S., Grossman, A., Brimacombe, K., Arkin, M., Auld, D., Austin, C.P., Baell, J., Bejcek, B., Caaveiro, J.M.M., Chung, T.D.Y., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Libralato, G.; Prato, E.; Migliore, L.; Cicero, A.M.; Manfra, L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecol. Indic. 2016, 69, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.E.M.; Abdelgadir, H.; Sugimoto, Y.; Khalid, H.E.; Efferth, T. Cytotoxicity of 35 medicinal plants from Sudan towards sensitive and multidrug-resistant cancer cells. J. Ethnopharmacol. 2015, 174, 644–658. [Google Scholar] [CrossRef]
- Kuete, V.; Seo, E.-J.; Krusche, B.; Oswald, M.; Wiench, B.; Schröder, S.; Greten, H.J.; Lee, I.-S.; Efferth, T. Cytotoxicity and pharmacogenomics of medicinal plants from traditional korean medicine. Evid. Based Complement. Altern. Med. ECAM 2013, 2013, 341724. [Google Scholar] [CrossRef]
Ref. | C.a. (ref.) | C.a. (c.i.) | C.t. (ref.) | C.t. (c.i.) | C.gl. (ref.) | C.gl. (c.i.) | C.gu. (ref.) | C.gu. (c.i.) | C.k. (ref.) | C.k. (c.i.) | C.p. (ref.) | C.p. (c.i.) | C. spp. (ref.) | C. spp. (c.i.) | Anti VF | Others Path. | Cito Tox |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[24] | √ | √ | |||||||||||||||
[25] | √ | √ | √ | √ | √ | ||||||||||||
[26] | √ | ||||||||||||||||
[27] | √ | √ | |||||||||||||||
[28] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||
[29] | √ | √ | |||||||||||||||
[30] | √ | √ | √ | √ | √ | ||||||||||||
[31] | √ | √ | |||||||||||||||
[32] | √ | √ | |||||||||||||||
[33] | √ | √ | √ | ||||||||||||||
[34] | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||
[35] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||
[36] | √ | √ | |||||||||||||||
[37] | √ | √ | √ | √ | √ | √ | √ | ||||||||||
[38] | √ | √ | √ | √ | √ | √ | √ | ||||||||||
[39] | √ | √ | √ | √ | |||||||||||||
[40] | √ | √ | |||||||||||||||
[41] | √ | √ | √ | ||||||||||||||
[42] | √ | √ | |||||||||||||||
[43] | √ | √ | √ | √ | √ | √ | √ | ||||||||||
[44] | √ | √ | √ | ||||||||||||||
[45] | √ | √ | √ | ||||||||||||||
[46] | √ | √ | √ | ||||||||||||||
[47] | √ | √ | |||||||||||||||
[48] | √ | √ | √ | √ | √ | √ | √ | ||||||||||
[49] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||
[50] | √ | √ | |||||||||||||||
[51] | √ | √ | |||||||||||||||
[52] | √ | √ | √ | √ | √ | √ | |||||||||||
[53] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||
[54] | √ | √ | |||||||||||||||
[55] | √ | √ | |||||||||||||||
[56] | √ | √ | √ | ||||||||||||||
[57] | √ | √ | |||||||||||||||
[58] | √ | √ | √ | √ | √ | √ | |||||||||||
[59] | √ | √ | √ | √ | |||||||||||||
[60] | √ | √ | √ | ||||||||||||||
[61] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||
[62] | √ | √ | |||||||||||||||
[63] | √ | √ | |||||||||||||||
[64] | √ | √ | |||||||||||||||
[65] | √ | √ | √ | ||||||||||||||
[66] | √ | √ | |||||||||||||||
[67] | √ | √ | √ | ||||||||||||||
[68] | √ | √ | |||||||||||||||
[69] | √ | √ | |||||||||||||||
[70] | √ | √ | √ | ||||||||||||||
[71] | √ | √ | |||||||||||||||
[72] | √ | √ | |||||||||||||||
[73] | √ | √ | |||||||||||||||
[74] | √ | √ | √ | √ | |||||||||||||
[75] | √ | √ | √ | √ | |||||||||||||
[76] | √ | √ | √ | ||||||||||||||
[77] | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
[78] | √ | √ | √ | √ | √ | √ | |||||||||||
[79] | √ | √ | |||||||||||||||
[80] | √ | √ | √ | √ | |||||||||||||
[81] | √ | √ | √ | √ | |||||||||||||
[82] | √ | √ | |||||||||||||||
[83] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||
[84] | √ | √ | √ | ||||||||||||||
[85] | √ | √ | |||||||||||||||
[86] | √ | √ | |||||||||||||||
[87] | √ | √ | √ | ||||||||||||||
[88] | √ | √ | √ | √ | √ | √ | |||||||||||
[89] | √ | √ | |||||||||||||||
[90] | √ | √ | |||||||||||||||
[91] | √ | ||||||||||||||||
[92] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||
[93] | √ | √ | |||||||||||||||
[94] | √ | √ | |||||||||||||||
[95] | √ | √ | |||||||||||||||
[96] | √ | √ | |||||||||||||||
[97] | √ | √ | √ | ||||||||||||||
[98] | √ | √ | √ | √ | √ | ||||||||||||
[99] | √ | √ | √ | √ | √ | ||||||||||||
[100] | √ | √ | √ | ||||||||||||||
[101] | √ | √ | |||||||||||||||
[102] | √ | √ | √ | √ | √ | √ | |||||||||||
[103] | √ | √ | |||||||||||||||
[104] | √ | √ | √ | ||||||||||||||
[105] | √ | √ | |||||||||||||||
[106] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||
[107] | √ | √ | |||||||||||||||
[108] | √ | √ | |||||||||||||||
[109] | √ | √ | |||||||||||||||
[110] | √ | √ | |||||||||||||||
[111] | √ | √ | |||||||||||||||
[112] | √ | √ | √ | √ | √ | √ | √ | √ | √ |
Species | Plant part | Method | Candida spp. | MIC µg/mL | MIC µL/mL | Ref. |
---|---|---|---|---|---|---|
Calamintha nepeta (L.) Savi subsp. nepeta (Italy) | AP | HD | C. parapsilosis | 1.25 | ||
C. tropicalis | 1.25 | [75] | ||||
C. albicans | 1.25 | |||||
Calamintha nepeta subsp. glandulosa (Req.) P.W.Ball= Calamintha glandulosa (Req) Benth. | AP | SD | C. albicans | 780–12,480 | [41] | |
Coridothymus capitatus (L.) Rchb. F. | I | HD | C. albicans | 128 | [70] | |
F | HD | C. glabrata | 1.25 | [74] | ||
AP | HD | C. albicans | 800 | [27] | ||
F | HD | C. albicans | 1.25 | [74] | ||
Hymenocrater longiflorus Benth. | AP | HD | C. albicans | 240 | [26] | |
Lavandula angustifolia Mill. | I | HD | C. albicans | 512 | [70] | |
Lavandula luisieri (Rozeira) Rivas Mart. | AP | HD | C. albicans | 1.25–2.5 | [111] | |
Lavandula multifida L. | AP | HD | C. tropicalis | 0.32 | [110] | |
C. parapsilosis | 0.32 | |||||
C. albicans | 0.32 | |||||
Lavandula viridis L’Hér. | AP | HD | C. parapsilosis | 1.25 | ||
C. tropicalis | 1.25–2.5 | [109] | ||||
Mentha australis R.Br. | AP | HD | C. glabrata | 1.23 * | [61] | |
C. krusei | 1.02 * | |||||
Mentha mozaffarianii Jamzad | AP (cultivated) | HD | C. albicans | 0.39 | [102] | |
AP (wild) | HD | C. albicans | 0.78 | |||
Mentha pulegium L. | AP | HD | C. tropicalis | 1.25 | [91] | |
C. parapsilosis | 1.25 | |||||
C. albicans | 1.25 | |||||
Mentha spicata L. | AP | HD | C. glabrata | 256 | [33] | |
C. tropicalis | 1.25 | [91] | ||||
C. parapsilosis | 1.25 | |||||
C. albicans | 1.25 | |||||
Mentha suaveolens Ehrh. | L | HD | C. albicans | 390 | [89] | |
com. | HD | C. albicans | 760 | [99] | ||
AP | HD | C. albicans | 4 | [51] | ||
Micromeria inodora (Desf.) Benth. | AP | HD | C. albicans | 1000 | [38] | |
Nepeta asterotricha Rech. F. | PM | HD | C. albicans | 500–2000 | [57] | |
Nepeta cataria L. | AP | HD | C. tropicalis | 0.125 | [108] | |
C. glabrata | 0.25 | |||||
C. krusei | 0.5 | |||||
C. albicans | 0.125 | |||||
Nepeta transcaucasica Grossh. | AP | HD | C. parapsilosis | 750 | [63] | |
C. tropicalis | 375 | |||||
Origanum boissieri Ietsw. | AP | HD | C. parapsilosis | 125 | [65] | |
C. tropicalis | 250 | |||||
C. utilis | 125 | |||||
C. albicans | 125–250 | |||||
Origanum ehrenbergii Boiss. | AP | HD | C. albicans | 800 | [28] | |
Origanum syriacum L. | I | HD | C. albicans | 128 | [70] | |
AP | HD | C. albicans | 800 | [28] | ||
Origanum vulgare subsp. virens (Hoffmanns. & Link) Ietsw. | AP | HD | C. tropicalis | 0.32–1.25 | [105] | |
C. parapsilosis | 0.64–1.25 | |||||
C. albicans | 0.32–1.25 | |||||
Phlomis floccosa D. Don. | AP | HD | C. albicans | 625 | [79] | |
Plectranthus barbatus Andrews | AP | HD | C. albicans | 550 | [80] | |
R | SD | C. albicans | 32–64 | [55] | ||
St | SD | C. albicans | 32–64 | |||
L | SD | C. albicans | 32–64 | |||
Plectranthus caninus Roth | R | SD | C. albicans | 32–64 | [55] | |
St | SD | C. albicans | 32–64 | |||
L | SD | C. albicans | 32–64 | |||
Plectranthus cylindraceus Hochst. ex Benth | AP | HD | C. albicans | 550 | [80] | |
Rosmarinus officinalis L. | L | HD | C. albicans | 512 | [70] | |
L | HD | C. albicans | 0.29 | [83] | ||
Salvia fruticosa Mill. | L | HD | C. albicans | 512 | [70] | |
Salvia mirzayanii Rech.f. & Esfand. | AP | HD | C. albicans | 0.32–0.63 | [56] | |
Salvia x jamensis J. Compton | AP | HD | C. albicans | 156 | [53] | |
C. glabrata | 156 | |||||
C. tropicalis | 156 | |||||
Satureja cuneifolia Ten. | L | HD | C. albicans | 128 | [70] | |
AP | HD | C. albicans | 400 | [27] | ||
Satureja macrosiphon (Coss.) Maire | F | HD | C. krusei | 0.25 | [81] | |
C. tropicalis | 0.5 | |||||
C. glabrata | 0.7 | |||||
C. albicans | 1.5 | |||||
Satureja thymbra L. | I | HD | C. albicans | 128 | [70] | |
AP | SFE | C. tropicalis | 0.32 | [90] | ||
C. parapsilosis | 0.32 | |||||
AP | HD | C. tropicalis | 0.32 | |||
C. parapsilosis | 0.32 | |||||
AP | SFE | C. albicans | 0.32 | |||
AP | HD | C. albicans | 0.32 | |||
AP | HD | C. albicans | 400 | [27] | ||
Stachys cretica ssp. lesbiaca Rech. Fil. | AP | HD | C. albicans | 625 | [95] | |
Stachys cretica ssp. trapezuntica Rech. Fil. | AP | HD | C. albicans | 625 | [95] | |
Stachys lavandulifolia subsp. lavandulifolia | AP | HD | C. albicans | 187.5 | [64] | |
C. albicans | 750 | |||||
C. parapsilosis | 375 | |||||
C. tropicalis | 93.7 | |||||
C. krusei | 750 | |||||
Stachys spruneri Boiss. | AP | HD | C. albicans | 12.5 | [71] | |
Thymbra capitata (L.) Cav. | AP | HD | C. albicans | 0.32 | [87] | |
Thymbra spicata L. | L | HD | C. albicans | 128 | [70] | |
AP | HD | C. albicans | 600 | [27] | ||
Thymus broussonetii Boiss. | AP | HD | C. albicans | 250 | [93] | |
C. albicans | 450 | [66] | ||||
C. glabrata | 450 | |||||
C. parapsilosis | 450 | |||||
C. krusei | 450 | |||||
Thymus catharinae Camarda | PM | HD | C. albicans | 250 | [47] | |
Thymus ciliatus (Desf.) Benth. | AP | HD | C. albicans | 430 | [66] | |
C. glabrata | 860 | |||||
C. parapsilosis | 860 | |||||
C. krusei | 430 | |||||
Thymus herba-barona Loisel. | AP | HD | C. tropicalis | 0.32 | [112] | |
C. parapsilosis | 0.32 | |||||
C. albicans | 0.32 | |||||
Thymus hyemalis Lange | n.a. | HD | C. albicans | 1.3–2.5 | [45] | |
Thymus leptobotrys Murb. | AP | HD | C. albicans | 230 | [66] | |
C. glabrata | 230 | |||||
C. parapsilosis | 230 | |||||
C. krusei | 230 | |||||
Thymus maroccanus Ball | AP | HD | C. albicans | 250 | [93] | |
C. albicans | 460 | [66] | ||||
C. glabrata | 460 | |||||
C. parapsilosis | 460 | |||||
C. krusei | 460 | |||||
Thymus pallasicus Hayek & Velen. | AP | HD | C. albicans | 500 | [107] | |
C. glabrata | 250 | |||||
C. tropicalis | 500 | |||||
C. krusei | 250 | |||||
C. utilis | 250 | |||||
Thymus pallidus Coss. ex Batt. | AP | HD | C. albicans | 900 | [66] | |
C. glabrata | 900 | |||||
C. parapsilosis | 900 | |||||
C. krusei | 900 | |||||
Thymus saturejoides Coss. | AP | HD | C. albicans | 890 | [66] | |
C. glabrata | 890 | |||||
C. krusei | 890 | |||||
Thymus syriacus Boiss. | AP | HD | C. albicans | 800 | [27] | |
Thymus vulgaris L. | L | HD | C. albicans | 0.312 | [24] | |
com. | com. | C. albicans | [39] | |||
Thymus willdenowii Boiss | WP | HD | C. albicans | 6.9 | [84] | |
St | HD | C. albicans | 6.9 | |||
L | HD | C. albicans | 13.8 | |||
I | HD | C. albicans | 13.8 | |||
Thymus x viciosoi (Pau ex R. Morales) | AP | HD | C. albicans | 0.32 | [104] | |
C. tropicalis | 0.32 | |||||
C. parapsilosis | 0.32 | |||||
Thymus zygis L. chemotype thymol | n.a. | HD | C. albicans | 1.3 | [45] | |
Vitex agnus-castus L. | I | HD | C. albicans | 512 | [70] | |
Zataria multiflora Boiss | AP | HD | C. albicans | 250–2000 | [94] | |
C. albicans | 0.16 | [82] | ||||
C. tropicalis | 62–500 | [94] | ||||
Ziziphora tenuior L. | AP | HD | C. albicans | 1.25 | [25] | |
C. parapsilosis | 1.25 | |||||
C. tropicalis | 1.25 |
Species | Inhibitory Concentration | Germ Tube Inhibition | Biofilm Inhibition (I) or Disruption (D) | Ref. |
---|---|---|---|---|
Lavandula luisieri (Rozeira) Rivas Mart. | at 1/16 MIC | 96% | n.d. | [111] |
Lavandula multifida L. | at 1/8 MIC | 66.3% | n.d. | [110] |
Mentha pulegium L. | at 1/8 MIC | 42.3% | n.d. | [91] |
Mentha spicata L. | at 1/8 MIC | 81.8% | n.d. | [91] |
Origanum vulgare subsp. virens (Hoffmanns. & Link) Ietsw. | at 1/8 MIC | 88.6% | n.d. | [105] |
Satureja hortensis L. | at 3 × MIC | n.d. | 50% (I) | [97] |
Satureja macrosiphon (Coss.) Maire | at MIC | n.d. | 100% (I) | [81] |
Thymbra capitata (L.) Cav. | at MIC | n.d. | 28.4% (D) | [87] |
Thymus camphoratus Hoffmanns. & Link | at 1/16 MIC * and MIC § | 40% | not specified (I) | [29] |
Thymus carnosus Boiss | at 1/16 MIC * and MIC § | 20% | not specified (I) | [29] |
Thymus vulgaris L. | at 0.5% (v/v) | 100% | n.d. | [39] |
Thymus x viciosoi (Pau ex R. Morales) | at 1/8 MIC | 20% | n.d. | [104] |
Ziziphora tenuior L. | at 1/16 MIC * and MIC § | 80% | not specified (I) | [25] |
Species | MIC * | Cell viability § | Ref. |
---|---|---|---|
Coridothymus capitatus (L.) Rchb. F. | 625 µg/mL | IC50 127.2 μg/mL #, 138.9 μg/mL | [28] |
Lavandula luisieri (Rozeira) Rivas Mart. | 1.25–2.5 µL/mL | at 0.32 µL/mL: >75% | [111] |
Lavandula stoechas L. | 2.5 µL/mL | at 1.25 µL/mL: <25% | [112] |
Mentha spicata L. | 256 µg/mL (C. glabrata) | LD50 279 to 975 µg/mL | [33] |
Mentha suaveolens Ehrh. | 4 µg/mL | IC50 9.15 to 18.20 μg/mL | [51] |
390 µg/mL | IC50 >500–1000 μg/mL | [89] | |
760 µg/mL | IC50 35.7 μg/mL #, 75.6 μg/mL | [99] | |
Ocimum forskolei Benth. | 8600 µg/mL | at 100 µg/mL: 100% | [32] |
Origanum hirtum Link | 1080 µg/mL | IC50 148.5 μg/mL #, 177.1 μg/mL | [99] |
Plectranthus asirensis J.R.I. Wood | 2200 µg/mL | IC50 6.82 to 7.51 μg/mL | [80] |
Plectranthus barbatus Andrews | 550 µg/mL | IC50 4.93 to 4.99 μg/mL | [80] |
Plectranthus cylindraceus Hochst. ex Benth | 550 µg/mL | IC50 3.88 to 3.97 μg/mL | [80] |
Rosmarinus officinalis L. | 1440 µg/mL | IC50 >200 μg/mL # | [99] |
Satureja macrosiphon (Coss.) Maire | 1.25 µL/mL | IC50 6.49 μL/mL | [81] |
Stachys cretica ssp. lesbiaca Rech. Fil. | 625 µg/mL | at 200 µg/mL: 54%, 77% | [95] |
Stachys cretica ssp. trapezuntica Rech. Fil. | 625 µg/mL | at 200 µg/mL: 59%, 67% | [95] |
Teucrium yemense Deflers | 1250 µg/mL | IC50 24.4 µg/mL, 59.9 µg/mL | [32] |
Thymus camphoratus Hoffmanns. & Link | 1110–2230 µg/mL | at 1110 µg/mL: 54% # | [29] |
Thymus carnosus Boiss | 1110 µg/mL | at 1110 µg/mL: 44% #; | [29] |
Thymus herba-barona Loisel. | 0.32 µL/mL | at 0.32 µL/mL: <10% | [112] |
Thymus vulgaris L. | 0.312 µL/mL | IC50 35.4 to >150 µg/mL # | [24] |
Ziziphora tenuior L. | 1.25 µL/mL | at 1.25 µL/mL: <25% #, <50% | [25] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potente, G.; Bonvicini, F.; Gentilomi, G.A.; Antognoni, F. Anti-Candida Activity of Essential Oils from Lamiaceae Plants from the Mediterranean Area and the Middle East. Antibiotics 2020, 9, 395. https://doi.org/10.3390/antibiotics9070395
Potente G, Bonvicini F, Gentilomi GA, Antognoni F. Anti-Candida Activity of Essential Oils from Lamiaceae Plants from the Mediterranean Area and the Middle East. Antibiotics. 2020; 9(7):395. https://doi.org/10.3390/antibiotics9070395
Chicago/Turabian StylePotente, Giulia, Francesca Bonvicini, Giovanna Angela Gentilomi, and Fabiana Antognoni. 2020. "Anti-Candida Activity of Essential Oils from Lamiaceae Plants from the Mediterranean Area and the Middle East" Antibiotics 9, no. 7: 395. https://doi.org/10.3390/antibiotics9070395
APA StylePotente, G., Bonvicini, F., Gentilomi, G. A., & Antognoni, F. (2020). Anti-Candida Activity of Essential Oils from Lamiaceae Plants from the Mediterranean Area and the Middle East. Antibiotics, 9(7), 395. https://doi.org/10.3390/antibiotics9070395