Plasticity of Coagulase-Negative Staphylococcal Membrane Fatty Acid Composition and Implications for Responses to Antimicrobial Agents
Abstract
:1. Introduction
2. Results and Discussions
2.1. Different Proportions of Branched-Chain Fatty Acids and Straight-Chain Fatty Acids in Different CONS and Increase in Branched-Chain Fatty Acids when Grown in Mueller-Hinton Broth
2.2. Growth in Serum Leads to Significant Amounts of Straight-Chain Unsaturated Fatty Acids in the Fatty Acid Profile
2.3. Increased Membrane Fluidity in Mueller Hinton Broth- and Serum-Grown Coagulase-Negative Staphylococcal Species
2.4. Susceptibility of the Coagulase-Negative Staphylococcal Species Towards Host-Derived Antibacterial Fatty Acids Does Not Correlate with Their Fatty Acid Compositions
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Becker, K.; Both, A.; Weißelberg, S.; Heilmann, C.; Rohde, H. Emergence of coagulase-negative staphylococci. Expert Rev. Anti. Infect. Ther. 2020, 18, 349–366. [Google Scholar] [CrossRef] [PubMed]
- May, L.; Klein, E.Y.; Rothman, R.E.; Laxminarayan, R. Trends in antibiotic resistance in coagulase-negative Staphylococci in the United States, 1999 to 2012. Antimicrob. Agents Chemother. 2014, 58, 1404–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, H.F.; DeLeo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, S.; Slavetinsky, C.J.; Peschel, A. Synthesis and function of phospholipids in Staphylococcus aureus. Int. J. Med. Microbiol. 2015, 305, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.U.; Haas, R.; Fischer, W. The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur. J. Biochem. 1984, 138, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.A.; Wenzel, M. More than a pore: A current perspective on the in vivo mode of action of the lipopeptide antibiotic daptomycin. Antibiotics 2020, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Sirobhushanam, S.; Johnson, S.R.; Song, Y.; Tefft, R.; Gatto, C.; Wilkinson, B.J. Growth-environment dependent modulation of Staphylococcus aureus branched-chain to straight-chain fatty acid ratio and incorporation of unsaturated fatty acids. PLoS ONE 2016, 11, e0165300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, W.; Wilkinson, S. Gram-positive bacteria. In Microbial Lipids; Ratledge, C., Wilkinson, S.G., Eds.; Academic Press: London, UK, 1988; pp. 117–202. [Google Scholar]
- Kaneda, T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991, 55, 288–302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.M.; Rock, C.O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 2008, 6, 222–233. [Google Scholar] [CrossRef]
- Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014.
- Pelz, A.; Wieland, K.P.; Putzbach, K.; Hentschel, P.; Albert, K.; Götz, F. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J. Biol. Chem. 2005, 280, 32493–32498. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.N.; Liu, G.Y.; Yeaman, M.R.; Nast, C.C.; Proctor, R.A.; McKinnell, J.; Bayer, A.S. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob. Agents Chemother. 2011, 55, 526–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamberlain, N.R.; Mehrtens, B.G.; Xiong, Z.; Kapral, F.A.; Boardman, J.L.; Rearick, J.I. Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z. Infect. Immun. 1991, 59, 4332–4337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, K.B.; Gatto, C.; Wilkinson, B.J. Interrelationships between fatty acid composition, staphyloxanthin content, fluidity, and carbon flow in the Staphylococcus aureus membrane. Molecules 2018, 23, 1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, J.B.; Frank, M.W.; Subramanian, C.; Saenkham, P.; Rock, C.O. Metabolic basis for the differential susceptibility of gram-positive pathogens to fatty acid synthesis inhibitors. Proc. Natl. Acad. Sci. USA 2011, 108, 15378–15383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Rock, C.O. Exogenous fatty acid metabolism in bacteria. Biochimie 2017, 141, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Fozo, E.M.; Rucks, E.A. The making and taking of lipids: The role of bacterial lipid synthesis and the harnessing of host lipids in bacterial pathogenesis. Adv. Microb. Physiol. 2016, 69, 51–155. [Google Scholar]
- Delekta, P.C.; Shook, J.C.; Lydic, T.A.; Mulks, M.H.; Hammer, N.D. Staphylococcus aureus utilizes host-derived lipoprotein particles as sources of fatty acids. J. Bacteriol. 2018, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, J.B.; Frank, M.W.; Jackson, P.; Subramanian, C.; Rock, C.O. Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus. Mol. Microbiol. 2014, 92, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Kénanian, G.; Morvan, C.; Weckel, A.; Pathania, A.; Anba-Mondoloni, J.; Halpern, D.; Gaillard, M.; Solgadi, A.; Dupont, L.; Henry, C.; et al. Permissive fatty acid incorporation promotes Staphylococcal adaptation to FASII antibiotics in host environments. Cell Rep. 2019, 29, 3974–3982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hines, K.M.; Alvarado, G.; Chen, X.; Gatto, C.; Pokorny, A.; Alonzo III, F.; Wilkinson, B.J.; Xu, L. Lipidomic and ultrastructural charaterization of cell envelope of Staphylococcus aureus grown in the presence of human serum. BioRxIV 2020. [Google Scholar] [CrossRef] [Green Version]
- Altenbern, R.A. Cerulenin inhibited cells of Staphylococcus aureus resume growth when supplemented with either a saturated or an unsaturated fatty acid. Antimicrob. Agents Chemother. 1977, 11, 574–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartron, M.L.; England, S.R.; Chiriac, A.I.; Josten, M.; Turner, R.; Rauter, Y.; Hurd, A.; Sahl, H.G.; Jones, S.; Foster, S.J. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus. Antimicrob. Agents Chemother. 2014, 58, 3599–3609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, J.G.; Ward, D.; Josefsson, E.; Jonsson, I.M.; Hinds, J.; Rees, H.H.; Lindsay, J.A.; Tarkowski, A.; Horsburgh, M.J. The Staphylococcus aureus response to unsaturated long chain free fatty acids: Survival mechanisms and virulence implications. PLoS ONE 2009, 4, e4344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, J.B.; Yao, J.; Frank, M.W.; Jackson, P.; Rock, C.O. Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus. J. Bacteriol. 2012, 194, 5294–5304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wille, J.J.; Kydonieus, A. Palmitoleic acid isomer (C16:1Δ6) in human skin sebum is effective against gram-positive bacteria. Skin Pharmacol. Appl. Skin Physiol. 2003, 16, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Drake, D.R.; Brogden, K.A.; Dawson, D.V.; Wertz, P.W. Thematic review series: Skin lipids - antimicrobial lipids at the skin surface. J. Lipid Res. 2008, 49, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Lamers, R.P.; Muthukrishnan, G.; Castoe, T.A.; Tafur, S.; Cole, A.M.; Parkinson, C.L. Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data. BMC Evol. Biol. 2012, 12, 171. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative Staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, U.; Kriegeskorte, A.; Schubert, T.; Peters, G.; Rudack, C.; Pieper, D.H.; Wos-Oxley, M.; Becker, K. The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ. Microbiol. 2016, 18, 2130–2142. [Google Scholar] [CrossRef]
- Nys, S.; van Merode, T.; Bartelds, A.I.M.; Stobberingh, E.E. Urinary tract infections in general practice patients: Diagnostic tests versus bacteriological culture. J. Antimicrob. Chemother. 2006, 57, 955–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durham, D.R.; Kloos, W.E. Comparative study of the total cellular fatty acids of Staphylococcus species of human origin. Int. J. Syst. Bateriol. 1978, 28, 223–228. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, A.G.; Nahaie, M.R.; Goodfellow, M.; Minnikin, D.E.; Hájek, V. Numerical analysis of fatty acid profiles in the identification of staphylococci. J. Gen. Microbiol. 1985, 131, 2023–2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloos, W.E.; Schleifer, K.H. Isolation and characterization of Staphylococci from human skin. II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int. J. Syst. Bacteriol. 1975, 25, 62–79. [Google Scholar] [CrossRef] [Green Version]
- Alnaseri, H.; Arsic, B.; Schneider, J.E.T.; Kaiser, J.C.; Scinocca, Z.C.; Heinrichs, D.E.; Mcgavin, M.J. Inducible expression of a resistance-nodulation-division-type efflux pump in Staphylococcus aureus provides resistance to linoleic and arachidonic acids. J. Bacteriol. 2015, 197, 1893–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.K.; Hattangady, D.S.; Giotis, E.S.; Singh, A.K.; Chamberlain, N.R.; Stuart, M.K.; Wilkinson, B.J. Insertional inactivation of branched-chain α-keto acid dehydrogenase in Staphylococcus aureus leads to decreased branched-chain membrane fatty acid content and increased susceptibility to certain stresses. Appl. Environ. Microbiol. 2008, 74, 5882–5890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fatty Acids | Cluster Groups | ||||||
---|---|---|---|---|---|---|---|
Auricularis | Epidermidis | Haemolyticus | Saprophyticus | ||||
S. aureus | S. auricularis | S. capitis | S. epidermidis | S. haemolyticus | S. hominis | S. saprophyticus | |
SCFA 1 | 50.7 | 47.1 | 50.0 | 34.1 | 30.6 | 32.2 | 23.4 |
IFAodd 2 | 17.0 | 20.2 | 19.3 | 25.6 | 26.8 | 27.9 | 38.4 |
IFAeven 3 | 4.1 | 6.6 | 4.4 | 3.1 | 5.1 | 3.9 | 2.7 |
AFA 4 | 28.2 | 25.9 | 25.6 | 36.9 | 37.0 | 35.5 | 35.2 |
SCUFA 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total BCFAs | 49.3 | 52.7 | 49.3 | 65.6 | 68.9 | 67.3 | 76.3 |
BCFA:SCFA | 0.97 | 1.12 | 0.99 | 1.93 | 2.25 | 2.09 | 3.25 |
AFA:IFA | 1.34 | 0.97 | 1.08 | 1.29 | 1.16 | 1.12 | 0.86 |
Fatty Acids | Cluster Groups | ||||||
---|---|---|---|---|---|---|---|
Auricularis | Epidermidis | Haemolyticus | Saprophyticus | ||||
S. aureus | S. auricularis | S. capitis | S. epidermidis | S. haemolyticus | S. hominis | S. saprophyticus | |
SCFA 1 | 19.0 | 37.2 | 16.5 | 22.0 | 20.6 | 18.0 | 17.9 |
IFAodd 2 | 15.3 | 14.7 | 21.6 | 16.7 | 21.1 | 19.5 | 24.5 |
IFAeven 3 | 4.0 | 10.5 | 2.2 | 2.3 | 2.3 | 2.9 | 2.5 |
AFA 4 | 61.7 | 37.6 | 59.3 | 59.0 | 56.0 | 59.4 | 55.2 |
SCUFA 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total BCFAs | 81.0 | 62.8 | 83.1 | 78.0 | 79.4 | 81.8 | 82.2 |
BCFA:SCFA | 4.26 | 1.69 | 5.05 | 3.54 | 3.86 | 4.56 | 4.59 |
AFA:IFA | 3.12 | 1.49 | 2.49 | 3.10 | 2.39 | 2.65 | 2.05 |
Fatty Acids | Cluster Groups | ||||||
---|---|---|---|---|---|---|---|
Auricularis | Epidermidis | Haemolyticus | Saprophyticus | ||||
S. aureus | S. auricularis | S. capitis | S. epidermidis | S. haemolyticus | S. hominis | S. saprophyticus | |
SCFA 1 | 43.9 | 44.4 | 39.9 | 28.1 | 39.1 | 32.0 | 30.7 |
IFAodd 2 | 3.2 | 4.7 | 9.3 | 2.4 | 6.5 | 3.9 | 4.0 |
IFAeven 3 | 1.0 | 3.9 | 0.5 | 1.5 | 1.1 | 1.3 | 0.8 |
AFA 4 | 11.1 | 22.4 | 24.7 | 4.0 | 18.4 | 8.0 | 9.6 |
SCUFA 5 | 40.9 | 24.6 | 25.6 | 63.9 | 34.9 | 54.8 | 55.0 |
Total BCFAs | 15.3 | 31.0 | 34.5 | 7.9 | 26.0 | 13.2 | 14.4 |
BCFA:SCFA | 0.35 | 0.70 | 0.86 | 0.28 | 0.66 | 0.41 | 0.47 |
AFA:IFA | 2.64 | 2.59 | 2.52 | 1.02 | 2.44 | 1.55 | 1.99 |
SCUFA:SCFA | 0.93 | 0.55 | 0.64 | 2.27 | 0.89 | 1.71 | 1.79 |
SCUFA 1 | Cluster Groups | ||||||
---|---|---|---|---|---|---|---|
Auricularis | Epidermidis | Haemolyticus | Saprophyticus | ||||
S. aureus | S. auricularis | S. capitis | S. epidermidis | S. haemolyticus | S. hominis | S. saprophyticus | |
C16:1Δ9 | 0.5 | 1.3 | 1.0 | 2.7 | 1.1 | 2.2 | 2.3 |
C18:1Δ11 | 2.9 | 0.9 | 1.6 | 2.2 | 1.7 | 2.0 | 1.9 |
C18:1Δ9 | 29.0 | 8.3 | 11.1 | 18.7 | 11.8 | 16.6 | 16.9 |
C20:1Δ11 | 8.2 | 0 | 2.3 | 1.5 | 4.7 | 2.7 | 1.0 |
C18:2Δ9,12 | 0 | 12.6 | 8.6 | 35.2 | 14.0 | 28.2 | 29.4 |
C20:4Δ5,8,11,14 | 0.4 | 1.5 | 1.0 | 3.3 | 1.4 | 2.8 | 3 |
Total SCUFA | 41.0 | 24.6 | 26.6 | 63.6 | 34.7 | 54.5 | 54.5 |
Di:Mono ratio | 0 | 1.20 | 0.54 | 1.40 | 0.72 | 1.20 | 1.33 |
Cluster Group | Staphylococci | TSB | MHB | Serum |
---|---|---|---|---|
S. aureus | 0.315 ± 0.025 | 0.318 ± 0.035 | 0.212 ± 0.017 *** | |
Auricularis | S. auricularis | 0.196 ± 0.008 | 0.166 ± 0.018 ** | 0.114 ± 0.003 *** |
Epidermidis | S. capitis | 0.186 ± 0.015 | 0.152 ± 0.015 ** | 0.110 ± 0.002 *** |
S. epidermidis | 0.180 ± 0.008 | 0.145 ± 0.013 ** | 0.096 ± 0.033 *** | |
Haemolyticus | S. haemolyticus | 0.228 ± 0.019 | 0.188 ± 0.029 ** | 0.169 ± 0.038 *** |
S. hominis | 0.245 ± 0.029 | 0.183 ± 0.028 ** | 0.146 ± 0.027 *** | |
Saprophyticus | S. saprophyticus | 0.156 ± 0.013 | 0.134 ± 0.006 * | 0.118 ± 0.008 *** |
Cluster Group | Staphylococci | Sapienic Acid (C16:1Δ6) | Palmitoleic Acid (C16:1Δ9) | Linoleic Acid (C18:2Δ9,12) |
---|---|---|---|---|
S. aureus | 32 | 256 | 64 | |
Auricularis | S. auricularis | 64 | 256 | 32 |
Epidermidis | S. capitis | 32 | 256 | 32 |
S. epidermidis | 64 | 512 | 2048 | |
Haemolyticus | S. haemolyticus | 64 | 512 | 2048 |
S. hominis | 64 | 256 | 1024 | |
Saprophyticus | S. saprophyticus | 32 | 256 | 32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, K.B.; Gatto, C.; Wilkinson, B.J. Plasticity of Coagulase-Negative Staphylococcal Membrane Fatty Acid Composition and Implications for Responses to Antimicrobial Agents. Antibiotics 2020, 9, 214. https://doi.org/10.3390/antibiotics9050214
Tiwari KB, Gatto C, Wilkinson BJ. Plasticity of Coagulase-Negative Staphylococcal Membrane Fatty Acid Composition and Implications for Responses to Antimicrobial Agents. Antibiotics. 2020; 9(5):214. https://doi.org/10.3390/antibiotics9050214
Chicago/Turabian StyleTiwari, Kiran B., Craig Gatto, and Brian J. Wilkinson. 2020. "Plasticity of Coagulase-Negative Staphylococcal Membrane Fatty Acid Composition and Implications for Responses to Antimicrobial Agents" Antibiotics 9, no. 5: 214. https://doi.org/10.3390/antibiotics9050214
APA StyleTiwari, K. B., Gatto, C., & Wilkinson, B. J. (2020). Plasticity of Coagulase-Negative Staphylococcal Membrane Fatty Acid Composition and Implications for Responses to Antimicrobial Agents. Antibiotics, 9(5), 214. https://doi.org/10.3390/antibiotics9050214