In Vitro Activities and Inoculum Effects of Ceftazidime-Avibactam and Aztreonam-Avibactam against Carbapenem-Resistant Enterobacterales Isolates from South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Study Design
2.2. Antimicrobial Susceptibility Testing and the Inoculum Effect
2.3. Basis of Resistance and Molecular Identification of β-Lactamase Genes
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Logan, L.K.; Weinstein, R.A. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [Green Version]
- Akajagbor, D.S.; Wilson, S.L.; Shere-Wolfe, K.D.; Dakum, P.; Charurat, M.E.; Gilliam, B.L. Higher incidence of acute kidney injury with intravenous colistimethate sodium compared with polymyxin B in critically ill patients at a tertiary care medical center. Clin. Infect. Dis. 2013, 57, 1300–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehmann, D.E.; Jahic, H.; Ross, P.L.; Gu, R.F.; Hu, J.; Durand-Réville, T.F.; Lahiri, S.; Thresher, J.; Livchak, S.; Gao, N.; et al. Kinetics of avibactam inhibition against class A, C, and D β-lactamases. J. Biol. Chem. 2013, 288, 27960–27971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, H.S.; Castanheira, M.; Shortridge, D.; Mendes, R.E.; Flamm, R.K. Antimicrobial activity of ceftazidime-avibactam tested against multidrug-resistant Enterobacteriaceae and Pseudomonas aeruginosa isolates from U.S. medical centers, 2013 to 2016. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppi, M.; Di Pilato, V.; Monaco, F.; Giani, T.; Conaldi, P.G.; Rossolini, G.M. Ceftazidime-avibactam resistance associated with increased blaKPC-3 gene copy number mediated by pKpQIL plasmid derivatives in sequence Type 258 Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64, e01816-19. [Google Scholar] [CrossRef]
- Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin. Microbiol. Rev. 2019, 32, e00115-18. [Google Scholar] [CrossRef] [Green Version]
- Marshall, S.; Hujer, A.M.; Rojas, L.J.; Papp-Wallace, K.M.; Humphries, R.M.; Spellberg, B.; Hujer, K.M.; Marshall, E.K.; Rudin, S.D.; Perez, F.; et al. Can ceftazidime-avibactam and aztreonam overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae? Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Lenhard, J.R.; Bulman, Z.P. Inoculum effect of beta-lactam antibiotics. J. Antimicrob. Chemother. 2019, 74, 2825–2843. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI supplement M07; Wayne, P.A., Ed.; Clinical and Laboratory Standards Institue: Annapolis Junction, MD, USA, 2018. [Google Scholar]
- Sader, H.S.; Flamm, R.K.; Carvalhaes, C.G.; Castanheira, M. Comparison of ceftazidime-avibactam and ceftolozane-tazobactam in vitro activities when tested against gram-negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017–2018). Diagn. Microbiol. Infect. Dis. 2020, 96, 114833. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI Supplement M100; Wayne, P.A., Ed.; Clinical and Laboratory Standards Institue: Annapolis Junction, MD, USA, 2019. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 9.0.; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2019. [Google Scholar]
- Kang, C.I.; Pai, H.; Kim, S.H.; Kim, H.B.; Kim, E.C.; Oh, M.D.; Choe, K.-W. Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type beta-lactamase. J. Antimicrob. Chemother. 2004, 54, 1130–1133. [Google Scholar] [CrossRef]
- Chong, Y.P.; Park, S.J.; Kim, E.S.; Bang, K.M.; Kim, M.N.; Kim, S.H.; Lee, S.-O.; Choi, S.-H.; Jeong, J.-Y.; Woo, J.H.; et al. Prevalence of blaZ gene types and the cefazolin inoculum effect among methicillin-susceptible Staphylococcus aureus blood isolates and their association with multilocus sequence types and clinical outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.S.; Moland, E.S. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2001, 45, 3548–3554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, V.M.; Simner, P.J.; Lonsway, D.R.; Roe-Carpenter, D.E.; Johnson, J.K.; Brasso, W.B.; Bobenchik, A.M.; Lockett, Z.C.; Charnot-Katsikas, A.; Ferraro, M.J.; et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae. J. Clin. Microbiol. 2017, 55, 2321–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallenne, C.; Da Costa, A.; Decre, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Du, X.-X.; Wang, J.-F.; Fu, Y.; Zhao, F.; Chen, Y.; Wang, H.-P.; Yu, Y.-S. Genetic characteristics of blaNDM-1-positive plasmid in Citrobacter freundii isolate separated from a clinical infectious patient. J. Med. Microbiol. 2013, 62, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
- Manning, N.; Balabanian, G.; Rose, M.; Landman, D.; Quale, J. Activity of ceftazidime-avibactam against clinical isolates of Klebsiella pneumoniae, including KPC-carrying isolates, endemic to New York City. Microb. Drug Resist. 2018, 24, 35–39. [Google Scholar] [CrossRef]
- Tzelepi, E.; Giakkoupi, P.; Sofianou, D.; Loukova, V.; Kemeroglou, A.; Tsakris, A. Detection of extended-spectrum β-lactamases in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J. Clin. Microbiol. 2000, 38, 542–546. [Google Scholar] [CrossRef] [Green Version]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, G.A. AmpC β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.Y.; Ng, L.S.; He, J.; Koh, T.H.; Hsu, L.Y. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob. Agents Chemother. 2009, 53, 146–149. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, F.; Zhao, C.; Wang, Z.; Nichols, W.W.; Testa, R.; Li, H.; Chen, H.; He, W.; Wang, Q.; et al. In vitro activities of ceftazidime-avibactam and aztreonam-avibactam against 372 gram-negative bacilli collected in 2011 and 2012 from 11 teaching hospitals in China. Antimicrob. Agents Chemother. 2014, 58, 1774–1778. [Google Scholar] [CrossRef] [Green Version]
- Alm, R.A.; Johnstone, M.R.; Lahiri, S.D. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: Role of a novel insertion in PBP3. J. Antimicrob. Chemother. 2015, 70, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Estabrook, M.; Jacoby, G.A.; Nichols, W.W.; Testa, R.T.; Bush, K. In vitro susceptibility of characterized beta-lactamase-producing strains tested with avibactam combinations. Antimicrob. Agents Chemother. 2015, 59, 1789–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp-Wallace, K.M.; Bajaksouzian, S.; Abdelhamed, A.M.; Foster, A.N.; Winkler, M.L.; Gatta, J.A.; Nichols, W.W.; Testa, R.; Bonomo, R.A.; Jacobs, M.R. Activities of ceftazidime, ceftaroline, and aztreonam alone and combined with avibactam against isogenic Escherichia coli strains expressing selected single beta-lactamases. Diagn. Microbiol. Infect. Dis. 2015, 82, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Yoshizumi, A.; Ishii, Y.; Aoki, K.; Testa, R.; Nichols, W.W.; Tateda, K. In vitro susceptibility of characterized beta-lactamase-producing gram-negative bacteria isolated in Japan to ceftazidime-, ceftaroline-, and aztreonam-avibactam combinations. J. Infect. Chemother. 2015, 21, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Mushtaq, S.; Warner, M.; Zhang, J.; Maharjan, S.; Doumith, M.; Woodford, N. Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2011, 55, 390–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, H.; Gaillot, O.; Goetgheluck, A.S.; Plassart, C.; Emond, J.P.; Lecuru, M.; Gaillard, N.; Derdouri, S.; Lemaire, B.; De Courtilles, M.G.; et al. Molecular characterization of carbapenem-nonsusceptible enterobacterial isolates collected during a prospective interregional survey in France and susceptibility to the novel ceftazidime-avibactam and aztreonam-avibactam combinations. Antimicrob. Agents Chemother. 2016, 60, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Galani, I.; Karaiskos, I.; Karantani, I.; Papoutsaki, V.; Maraki, S.; Papaioannou, V.; Kazila, P.; Tsorlini, H.; Charalampaki, N.; Toutouza, M.; et al. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Eurosurveillance 2018, 23, 1700775. [Google Scholar] [CrossRef] [Green Version]
- Suay-Garcia, B.; Perez-Gracia, M.T. Present and future of carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile beta-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [Green Version]
- Jayol, A.; Nordmann, P.; Poirel, L.; Dubois, V. Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2018, 73, 542–544. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Mendes, R.E.; Pfaller, M.A.; Shortridge, D.; Flamm, R.K.; Castanheira, M. Antimicrobial activities of aztreonam-avibactam and comparator agents against contemporary (2016) Clinical Enterobacteriaceae Isolates. Antimicrob. Agents Chemother. 2018, 62, e01856-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, H.; Xiong, S.J.; Lin, Q.X.; Wu, M.L.; Niu, S.Q.; Huang, S.F. CP-CRE/non-CP-CRE stratification and CRE resistance mechanism determination help in better managing CRE bacteremia using ceftazidime-avibactam and aztreonam-avibactam. Infect. Drug Resist. 2019, 12, 3017–3027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, I. Inoculum effect. Rev. Infect. Dis. 1989, 11, 361–368. [Google Scholar] [CrossRef]
- Harada, Y.; Morinaga, Y.; Kaku, N.; Nakamura, S.; Uno, N.; Hasegawa, H.; Izumikawa, K.; Kohno, S.; Yanagihara, K. In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clin. Microbiol. Infect. 2014, 20, O831–O839. [Google Scholar] [CrossRef] [Green Version]
Species | Antimicrobial Agent | Inoculum Size | Cumulative% of Isolates with Indicated MICs (μg/mL) | MIC (μg/mL) | S a | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | ≥512 | MIC50 | MIC90 | ||||
Non-CP-E. coli (18) | CAZ | Standard | 5.6 | 11.1 | 16.7 | 38.9 | 100 | ≥512 | ≥512 | 5.6 | |||||||||
High | 5.6 | 11.1 | 100 | ≥512 | ≥512 | 0 | |||||||||||||
CAZ-AVI | Standard | 16.7 | 50.0 | 66.7 | 77.8 | 94.4 | 100 | 2 | 16 | 77.8 | |||||||||
High | 16.7 | 38.9 | 50.0 | 72.2 | 83.3 | 88.9 | 100 | 4 | ≥512 | 72.2 | |||||||||
ATM | Standard | 5.6 | 22.2 | 27.8 | 100 | ≥512 | ≥512 | 0 | |||||||||||
High | 5.6 | 11.1 | 100 | ≥512 | ≥512 | 0 | |||||||||||||
ATM-AVI | Standard | 5.6 | 33.3 | 55.6 | 61.1 | 77.8 | 88.9 | 94.4 | 100 | 0.5 | 32 | NA b | |||||||
High | 5.6 | 27.8 | 50.0 | 61.1 | 77.8 | 83.3 | 88.9 | 94.4 | 100 | 0.5 | 256 | NA | |||||||
MEM | Standard | 5.6 | 16.7 | 22.2 | 27.8 | 66.7 | 88.9 | 100 | 8 | 32 | 16.7 | ||||||||
High | 5.6 | 11.1 | 22.2 | 27.8 | 61.1 | 83.3 | 94.4 | 100 | 8 | 32 | 11.1 | ||||||||
CST | Standard | 55.6 | 94.4 | 100 | 0.25 | 0.5 | 94.4 | ||||||||||||
TGC | Standard | 11.1 | 38.9 | 66.7 | 83.3 | 88.9 | 94.4 | 100 | 0.5 | 16 | 66.7 | ||||||||
CP-E. coli (7) | CAZ | Standard | 14.3 | 28.6 | 100 | ≥512 | ≥512 | 0 | |||||||||||
High | 28.6 | 100 | ≥512 | ≥512 | 0 | ||||||||||||||
CAZ-AVI | Standard | 28.6 | 42.9 | 100 | ≥512 | ≥512 | 42.9 | ||||||||||||
High | 14.3 | 28.6 | 42.9 | 100 | ≥512 | ≥512 | 42.9 | ||||||||||||
ATM | Standard | 14.3 | 28.6 | 42.9 | 57.1 | 100 | 256 | ≥512 | 28.6 | ||||||||||
High | 14.3 | 28.6 | 42.9 | 100 | ≥512 | ≥512 | 28.6 | ||||||||||||
ATM-AVI | Standard | 28.6 | 57.1 | 71.4 | 85.7 | 100 | 0.25 | 2 | NA | ||||||||||
High | 14.3 | 28.6 | 42.9 | 57.1 | 85.7 | 100 | 1 | 32 | NA | ||||||||||
MEM | Standard | 14.3 | 28.6 | 42.9 | 71.4 | 85.7 | 100 c | 64 | 256 | 0 | |||||||||
High | 14.3 | 28.6 | 57.1 | 100 c | 32 | ≥256 | 0 | ||||||||||||
CST | Standard | 14.3 | 100 | 0.5 | 0.5 | 100 | |||||||||||||
TGC | Standard | 57.1 | 85.7 | 100 | 0.5 | 4 | 85.7 | ||||||||||||
Non-CP-K. pneumoniae | CAZ | Standard | 3.6 | 7.1 | 10.7 | 14.3 | 32.1 | 100 | ≥512 | ≥512 | 7.1 | ||||||||
High | 3.6 | 7.1 | 10.7 | 100 | ≥512 | ≥512 | 3.6 | ||||||||||||
(28) | CAZ-AVI | Standard | 7.1 | 28.6 | 60.7 | 71.4 | 82.1 | 96.4 | 100 | 2 | ≥512 | 82.1 | |||||||
High | 7.1 | 14.3 | 42.9 | 50.0 | 64.3 | 67.9 | 71.4 | 89.3 | 100 | 8 | ≥512 | 50.0 | |||||||
ATM | Standard | 10.7 | 14.3 | 17.9 | 100 | ≥512 | ≥512 | 10.7 | |||||||||||
High | 3.6 | 7.1 | 10.7 | 100 | ≥512 | ≥512 | 3.6 | ||||||||||||
ATM-AVI | Standard | 3.6 | 21.4 | 50.0 | 75.0 | 82.1 | 92.9 | 100 | 0.5 | 4 | NA | ||||||||
High | 13.6 | 7.1 | 21.4 | 28.6 | 71.4 | 75.0 | 92.9 | 100 | 32 | 256 | NA | ||||||||
MEM | Standard | 7.1 | 17.9 | 21.4 | 28.6 | 42.9 | 75.0 | 92.9 | 100 | 16 | 32 | 17.9 | |||||||
High | 3.6 | 10.7 | 14.3 | 28.6 | 53.6 | 71.4 | 78.6 | 92.9 | 100 c | 16 | 128 | 3.6 | |||||||
CST | Standard | 14.3 | 64.3 | 67.9 | 75.0 | 85.7 | 96.4 | 100 c | 0.5 | 128 | 64.3 | ||||||||
TGC | Standard | 7.1 | 42.9 | 64.3 | 89.3 | 96.4 | 100 | 1 | 8 | 7.1 | |||||||||
CP-K. pneumoniae | CAZ | Standard | 32.1 | 57.1 | 100 | ≥512 | ≥512 | 0 | |||||||||||
High | 3.6 | 100 | ≥512 | ≥512 | 0 | ||||||||||||||
(28) | CAZ-AVI | Standard | 7.1 | 42.9 | 64.3 | 67.9 | 100 | 4 | ≥512 | 67.9 | |||||||||
High | 17.9 | 39.3 | 60.7 | 64.3 | 67.9 | 100 | 8 | ≥512 | 60.7 | ||||||||||
ATM | Standard | 17.9 | 100 | ≥512 | ≥512 | 0 | |||||||||||||
High | 3.6 | 100 | ≥512 | ≥512 | 0 | ||||||||||||||
ATM-AVI | Standard | 53.6 | 78.6 | 100 | 0.25 | 1 | NA | ||||||||||||
High | 28.6 | 42.9 | 46.4 | 53.6 | 57.1 | 64.3 | 67.9 | 85.7 | 92.9 | 100 | 2 | 64 | NA | ||||||
MEM | Standard | 3.6 | 7.1 | 10.7 | 25.0 | 53.6 | 64.3 | 100 c | 64 | ≥256 | 0 | ||||||||
High | 3.6 | 7.1 | 10.7 | 25.0 | 46.4 | 100 c | ≥256 | ≥256 | 0 | ||||||||||
CST | Standard | 14.3 | 100 | 0.5 | 0.5 | 100 | |||||||||||||
TGC | Standard | 17.9 | 42.9 | 75.0 | 92.9 | 96.4 | 100 | 4 | 8 | 0 |
Antimicrobial Agent (Resistance Mechanism) | No. of Isolates (%) with Inoculum Effect a | p Value | ||
---|---|---|---|---|
Total | E. coli | K. pneumoniae | ||
Ceftazidime-avibactam b | 12/67 (17.9) | 2/20 (10) | 10/47 (21.3) | 0.27 |
in CP-CRE | 2/22 (9.1) | 1/3 (33.3) | 1/19 (5.3) | 0.26 |
in non-CP-CRE | 10/45 (22.2) | 1/17 (5.9) | 9/28 (32.1) | 0.04 |
Aztreonam-avibactam | 38/81 (46.9) | 2/25 (8.0) | 36/56 (64.3) | <0.001 |
in CP-CRE | 15/35 (42.9) | 1/7 (14.3) | 14/28 (50) | 0.10 |
in non-CP-CRE | 23/46 (50) | 1/18 (5.6) | 22/28 (78.6) | <0.001 |
Mechanism (n) | Antimicrobial Agent | Inoculum Size | Cumulative% with Indicated MICs (μg/mL) | MIC (μg/mL) | S a | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | ≥512 | MIC50 | MIC90 | ||||
Non-CP-CRE(46) b | CAZ-AVI | Standard | 4.3 | 23.9 | 56.5 | 69.6 | 80.4 | 95.7 | 97.8 | 100 | 2 | 16 | 80.4 | ||||||
High | 10.9 | 23.9 | 45.7 | 58.7 | 71.7 | 76.1 | 78.3 | 89.1 | 95.7 | 100 | 8 | 256 | 58.7 | ||||||
ATM-AVI | Standard | 2.2 | 4.3 | 26.1 | 52.2 | 69.6 | 73.9 | 87.0 | 91.3 | 95.7 | 97.8 | 100 | 0.5 | 8 | NA c | ||||
High | 2.2 | 13 | 23.9 | 37 | 43.5 | 45.7 | 50 | 78.3 | 80.4 | 93.5 | 100 | 16 | 256 | NA | |||||
ESBL (30) | CAZ-AVI | Standard | 6.7 | 16.7 | 50.0 | 63.3 | 80.0 | 93.3 | 96.7 | 100 | 2 | 16 | 80.0 | ||||||
High | 10.0 | 23.3 | 33.3 | 53.3 | 66.7 | 73.3 | 76.7 | 90.0 | 93.3 | 100 | 8 | 128 | 53.3 | ||||||
ATM-AVI | Standard | 3.3 | 6.7 | 30.0 | 60.0 | 73.3 | 86.7 | 93.3 | 100 | 0.5 | 8 | NA | |||||||
High | 3.3 | 16.7 | 30 | 33.3 | 40 | 43.3 | 50 | 73.3 | 76.7 | 93.3 | 100 | 16 | 256 | NA | |||||
AmpC (2) | CAZ-AVI | Standard | 100 | - | - | 100 | |||||||||||||
High | 50.0 | 100 | - | - | 50.0 | ||||||||||||||
ATM-AVI | Standard | 50.0 | 100 | - | - | NA | |||||||||||||
High | 50.0 | ‘ | 100 | - | - | NA | |||||||||||||
ESBL + AmpC (7) | CAZ-AVI | Standard | 28.6 | 85.7 | 100 | 2 | 4 | 100 | |||||||||||
High | 14.3 | 85.7 | 100 | 4 | 128 | ||||||||||||||
ATM-AVI | Standard | 14.3 | 42.9 | 71.4 | 100 | 1 | 2 | NA | |||||||||||
High | 42.9 | 100 | 32 | 32 | NA | ||||||||||||||
CP-CRE(35) | CAZ-AVI | Standard | 11.4 | 40.0 | 60.0 | 62.9 | 100 | 4 | ≥512 | 62.9 | |||||||||
High | 2.9 | 17.1 | 37.1 | 57.1 | 60.0 | 62.9 | 100 | 8 | ≥512 | 57.1 | |||||||||
ATM-AVI | Standard | 5.7 | 54.3 | 77.1 | 97.1 | 100 | 0.25 | 1 | NA | ||||||||||
High | 2.9 | 28.6 | 42.9 | 48.6 | 60.0 | 62.9 | 68.6 | 71.4 | 88.6 | 94.3 | 100 | 2 | 64 | NA | |||||
KPC (17) | CAZ-AVI | Standard | 11.8 | 58.8 | 82.4 | 100 | 2 | ≥512 | 82.4 | ||||||||||
High | 11.8 | 41.2 | 76.5 | 82.4 | 100 | 8 | ≥512 | 76.5 | |||||||||||
ATM-AVI | Standard | 5.9 | 58.8 | 82.4 | 100 | 0.25 | 1 | NA | |||||||||||
High | 35.3 | 47.1 | 58.8 | 64.7 | 70.6 | 94.1 | 100 | 1 | 32 | NA | |||||||||
NDM (11) | CAZ-AVI | Standard | 9.1 | 18.2 | 27.3 | 100 | ≥512 | ≥512 | 27.3 | ||||||||||
High | 9.1 | 18.2 | 27.3 | 100 | ≥512 | ≥512 | 18.2 | ||||||||||||
ATM-AVI | Standard | 9.1 | 54.5 | 63.6 | 90.9 | 100 | 0.25 | 1 | NA | ||||||||||
High | 9.1 | 36.4 | 54.5 | 81.8 | 100 | 0.5 | 64 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Lee, S.C.; Bae, M.; Sung, H.; Kim, M.-N.; Jung, J.; Kim, M.J.; Kim, S.-H.; Lee, S.-O.; Choi, S.-H.; et al. In Vitro Activities and Inoculum Effects of Ceftazidime-Avibactam and Aztreonam-Avibactam against Carbapenem-Resistant Enterobacterales Isolates from South Korea. Antibiotics 2020, 9, 912. https://doi.org/10.3390/antibiotics9120912
Kim T, Lee SC, Bae M, Sung H, Kim M-N, Jung J, Kim MJ, Kim S-H, Lee S-O, Choi S-H, et al. In Vitro Activities and Inoculum Effects of Ceftazidime-Avibactam and Aztreonam-Avibactam against Carbapenem-Resistant Enterobacterales Isolates from South Korea. Antibiotics. 2020; 9(12):912. https://doi.org/10.3390/antibiotics9120912
Chicago/Turabian StyleKim, Taeeun, Seung Cheol Lee, Moonsuk Bae, Heungsup Sung, Mi-Na Kim, Jiwon Jung, Min Jae Kim, Sung-Han Kim, Sang-Oh Lee, Sang-Ho Choi, and et al. 2020. "In Vitro Activities and Inoculum Effects of Ceftazidime-Avibactam and Aztreonam-Avibactam against Carbapenem-Resistant Enterobacterales Isolates from South Korea" Antibiotics 9, no. 12: 912. https://doi.org/10.3390/antibiotics9120912
APA StyleKim, T., Lee, S. C., Bae, M., Sung, H., Kim, M. -N., Jung, J., Kim, M. J., Kim, S. -H., Lee, S. -O., Choi, S. -H., Kim, Y. S., & Chong, Y. P. (2020). In Vitro Activities and Inoculum Effects of Ceftazidime-Avibactam and Aztreonam-Avibactam against Carbapenem-Resistant Enterobacterales Isolates from South Korea. Antibiotics, 9(12), 912. https://doi.org/10.3390/antibiotics9120912