Impact of Tigecycline’s MIC in the Outcome of Critically Ill Patients with Carbapenemase-Producing Klebsiella pneumoniae Bacteraemia Treated with Tigecycline Monotherapy—Validation of 2019′s EUCAST Proposed Breakpoint Changes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Albiger, B.; Glasner, C.; Struelens, M.J.; Grundmann, H.; Monnet, D.L. European survey of carbapenemase-Producing enterobacteriaceae working, g. carbapenemase-producing enterobacteriaceae in Europe: Assessment by national experts from 38 countries, May 2015. Eurosurveillance 2015, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetti, M.; Vena, A.; Sepulcri, C.; Giacobbe, D.R.; Peghin, M. Treatment of bloodstream infections due to gram-negative bacteria with difficult-to-treat resistance. Antibiotics 2020, 9, 632. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou-Olivgeris, M.; Fligou, F.; Bartzavali, C.; Zotou, A.; Spyropoulou, A.; Koutsileou, K.; Vamvakopoulou, S.; Sioulas, N.; Karamouzos, V.; Anastassiou, E.D.; et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infection in critically ill patients: Risk factors and predictors of mortality. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez-Gutierrez, B.; Salamanca, E.; de Cueto, M.; Hsueh, P.R.; Viale, P.; Pano-Pardo, J.R.; Venditti, M.; Tumbarello, M.; Daikos, G.; Canton, R.; et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): A retrospective cohort study. Lancet Infect. Dis. 2017, 17, 726–734. [Google Scholar] [CrossRef]
- Stein, G.E.; Babinchak, T. Tigecycline: An update. Diagn. Microbiol. Infect. Dis. 2013, 75, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Vardakas, K.Z.; Tsiveriotis, K.P.; Triarides, N.A.; Tansarli, G.S. Effectiveness and safety of high-dose tigecycline-containing regimens for the treatment of severe bacterial infections. Int. J. Antimicrob. Agents 2014, 44, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Han, Y.; Liu, J.; Wei, C.; Zhao, J.; Cui, J.; Wang, R.; Liu, Y. Tigecycline treatment for carbapenem-resistant enterobacteriaceae infections: A systematic review and meta-analysis. Medicine 2016, 95, e3126. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, Y.; Shen, J.; Xu, Y. The efficacy and safety of tigecycline for the treatment of bloodstream infections: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 9.0. 2019. Available online: http://www.eucast.org (accessed on 19 November 2020).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 8.1. 2018. Available online: http://www.eucast.org (accessed on 19 November 2020).
- Papadimitriou-Olivgeris, M.; Bartzavali, C.; Spyropoulou, A.; Lambropoulou, A.; Sioulas, N.; Vamvakopoulou, S.; Karpetas, G.; Spiliopoulou, I.; Vrettos, T.; Anastassiou, E.D.; et al. Molecular epidemiology and risk factors for colistin- or tigecycline-resistant carbapenemase-producing Klebsiella pneumoniae bloodstream infection in critically ill patients during a 7-year period. Diagn. Microbiol. Infect. Dis. 2018, 92, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Kontopidou, F.; Giamarellou, H.; Katerelos, P.; Maragos, A.; Kioumis, I.; Trikka-Graphakos, E.; Valakis, C.; Maltezou, H.C.; on behalf of the Group for the Study of KPC-producing Klebsiella pneumoniae infections in intensive care units. Infections caused by carbapenem-resistant Klebsiella pneumoniae among patients in intensive care units in Greece: A multi-centre study on clinical outcome and therapeutic options. Clin. Microbiol. Infect. 2014, 20, O117–O123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumbarello, M.; Trecarichi, E.M.; De Rosa, F.G.; Giannella, M.; Giacobbe, D.R.; Bassetti, M.; Losito, A.R.; Bartoletti, M.; Del Bono, V.; Corcione, S.; et al. Infections caused by KPC-producing Klebsiella pneumoniae: Differences in therapy and mortality in a multicentre study. J. Antimicrob. Chemother. 2015, 70, 2133–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satlin, M.J.; Kubin, C.J.; Blumenthal, J.S.; Cohen, A.B.; Furuya, E.Y.; Wilson, S.J.; Jenkins, S.G.; Calfee, D.P. Comparative effectiveness of aminoglycosides, polymyxin B, and tigecycline for clearance of carbapenem-resistant Klebsiella pneumoniae from urine. Antimicrob. Agents Chemother. 2011, 55, 5893–5899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsala, M.; Vourli, S.; Daikos, G.L.; Tsakris, A.; Zerva, L.; Mouton, J.W.; Meletiadis, J. Impact of bacterial load on pharmacodynamics and susceptibility breakpoints for tigecycline and Klebsiella pneumoniae. J. Antimicrob. Chemother. 2017, 72, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile beta-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Poirel, L.; Carrer, A.; Toleman, M.A.; Walsh, T.R. How to detect NDM-1 producers. J. Clin. Microbiol. 2011, 49, 718–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MIC (mg/L) | EUCAST | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.125 | 0.25 | 0.38 | 0.5 | 0.75 | 1 | 1.5 | 2 | 3 | 4 | 6 | 8 | 12 | 32 | S (%) | R (%) | |
Tigecycline | 1 | 3 | 6 | 22 | 20 | 52 | 52 | 53 | 18 | 47 | 6 | 12 | 3 | 7 | 32 (10.6) | 270 (89.4) |
Characteristics | Group A (N = 15) Tigecycline Monotherapy (MIC ≤ 0.5 Mg/L) | Group B (N = 55) Tigecycline Monotherapy (MIC 0.75–2 Mg/L) | pa | Group C (N = 150) b Monotherapy Other Than Tigecycline | pc | Group D (N = 82) No Appropriate Treatment | pd |
---|---|---|---|---|---|---|---|
Age (years) | 47.3 ± 18.2 | 58.4 ± 17.9 | 0.063 | 55.1 ± 17.5 | 0.110 | 55.7 ± 17.1 | 0.310 |
Male gender | 10 (66.7%) | 38 (69.1%) | 1.000 | 110 (73.3%) | 0.556 | 57 (69.5%) | 0.526 |
Charlson Comorbidity Index | 2.3 ± 3.1 | 3.6 ± 3.7 | 0.095 | 3.5 ± 3.5 | 0.132 | 2.9 ± 3.2 | 0.734 |
Obesity | 3 (20.0%) | 18 (32.7%) | 0.527 | 40 (26.7%) | 0.716 | 25 (30.5%) | 0.370 |
Infection data | |||||||
Days at risk | 39.0 ± 69.1 | 26.5 ± 25.9 | 0.726 | 19.6 ± 27.0 | 0.134 | 28.5 ± 36.9 | 0.027 |
Type of bacteraemia | |||||||
Primary | 6 (40.0%) | 28 (50.9%) | 0.564 e | 60 (40.0%) | 1.000 e | 37 (45.1%) | 0.202 e |
Catheter-related | 4 (26.7%) | 15 (27.3%) | 65 (43.3%) | 27 (32.9%) | |||
Other f | 5 (33.3%) | 12 (21.8%) | 25 (16.7%) | 18 (22.0%) | |||
Septic shock | 7 (46.7%) | 34 (61.8%) | 0.378 | 62 (41.3%) | 0.786 | 32 (39.0%) | 0.296 |
SAPS II upon onset of infection | 39.5 ± 11.3 | 41.4 ± 13.1 | 0.784 | 39.9 ± 11.4 | 0.849 | 41.3 ± 13.2 | 0.626 |
SOFA score upon onset of infection | 7.3 ± 4.0 | 8.4 ± 3.6 | 0.192 | 7.2 ± 3.3 | 0.823 | 7.4 ± 3.5 | 0.149 |
Hemofiltration | 1 (6.7%) | 4 (7.3%) | 1.000 | 11 (7.3%) | 1.000 | 8 (9.8%) | 0.673 |
Outcome | |||||||
30-day mortality | 3 (20.0%) | 28 (50.9%) | 0.042 | 37 (24.7%) | 0.767 | 32 (39.0%) | <0.001 |
Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|
Characteristics | Survivors (N = 39) | Non-Survivors (N = 31) | p | p | OR (95% CI) |
Age (years) | 53.4 ± 17.5 | 61.6 ± 16.3 | 0.001 | ||
Male gender | 27 (69.2%) | 21 (67.7%) | 1.000 | ||
Charlson Comorbidity Index | 2.9 ± 3.4 | 4.5 ± 3.4 | 0.016 | 0.227 | 1.100 (0.942–1.283) |
Obesity | 10 (25.6%) | 11 (35.5%) | 0.436 | ||
Infection data | |||||
Days at risk | 25.0 ± 35.4 | 22.1 ± 25.5 | 0.636 | ||
Type of bacteraemia | |||||
Primary | 20 (51.3%) | 14 (45.2%) | |||
Catheter-related | 14 (35.9%) | 5 (16.1%) | 0.104 a | ||
Other b | 5 (13.7%) | 12 (38.2%) | |||
Septic shock | 15 (38.5%) | 26 (83.9%) | <0.001 | 0.001 | 7.834 (2.343–26.198) |
SAPS II upon onset of infection | 37.4 ± 9.9 | 51.4 ± 13.0 | 0.001 | ||
SOFA score upon onset of infection | 6.4 ± 2.8 | 10.7 ± 3.4 | <0.001 | ||
Hemofiltration | 2 (5.1%) | 3 (9.7%) | 1.000 | ||
Tigecycline MIC ≤ 0.5 mg/L | 12 (30.8%) | 3 (9.7%) | 0.042 | 0.069 | 0.242 (0.052–1.118) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadimitriou-Olivgeris, M.; Bartzavali, C.; Nikolopoulou, A.; Kolonitsiou, F.; Mplani, V.; Spiliopoulou, I.; Christofidou, M.; Fligou, F.; Marangos, M. Impact of Tigecycline’s MIC in the Outcome of Critically Ill Patients with Carbapenemase-Producing Klebsiella pneumoniae Bacteraemia Treated with Tigecycline Monotherapy—Validation of 2019′s EUCAST Proposed Breakpoint Changes. Antibiotics 2020, 9, 828. https://doi.org/10.3390/antibiotics9110828
Papadimitriou-Olivgeris M, Bartzavali C, Nikolopoulou A, Kolonitsiou F, Mplani V, Spiliopoulou I, Christofidou M, Fligou F, Marangos M. Impact of Tigecycline’s MIC in the Outcome of Critically Ill Patients with Carbapenemase-Producing Klebsiella pneumoniae Bacteraemia Treated with Tigecycline Monotherapy—Validation of 2019′s EUCAST Proposed Breakpoint Changes. Antibiotics. 2020; 9(11):828. https://doi.org/10.3390/antibiotics9110828
Chicago/Turabian StylePapadimitriou-Olivgeris, Matthaios, Christina Bartzavali, Alexandra Nikolopoulou, Fevronia Kolonitsiou, Virginia Mplani, Iris Spiliopoulou, Myrto Christofidou, Fotini Fligou, and Markos Marangos. 2020. "Impact of Tigecycline’s MIC in the Outcome of Critically Ill Patients with Carbapenemase-Producing Klebsiella pneumoniae Bacteraemia Treated with Tigecycline Monotherapy—Validation of 2019′s EUCAST Proposed Breakpoint Changes" Antibiotics 9, no. 11: 828. https://doi.org/10.3390/antibiotics9110828
APA StylePapadimitriou-Olivgeris, M., Bartzavali, C., Nikolopoulou, A., Kolonitsiou, F., Mplani, V., Spiliopoulou, I., Christofidou, M., Fligou, F., & Marangos, M. (2020). Impact of Tigecycline’s MIC in the Outcome of Critically Ill Patients with Carbapenemase-Producing Klebsiella pneumoniae Bacteraemia Treated with Tigecycline Monotherapy—Validation of 2019′s EUCAST Proposed Breakpoint Changes. Antibiotics, 9(11), 828. https://doi.org/10.3390/antibiotics9110828