Thermophile Lytic Enzyme Fusion Proteins that Target Clostridium perfringens
Abstract
:1. Introduction
2. Results
2.1. Peptidoglycan Structure and Endolysin Cleavage Sites
2.2. Discovery and Bioinformatic Analysis of Thermophile Endolysins
2.3. Chimeric Lysins Description, Expression, and Purification
2.4. Lysis of C. perfringens by the Chimeric Lysins
2.5. Thermostability of the Chimeric Lysins
2.6. Activity of the Chimeric Lysins against Pathogenic C. perfringens
3. Discussion
4. Materials and Methods
4.1. Endolysin Synthetic Genes, Chimeric Lysins, and Cloning Vector
4.2. Bacteria Strains, Growth, and Protein Expression
4.3. Determination of Lytic Activity of the Recombinant Proteins
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, L.D.; Gardner, M.V. The occurrence of vegetative cells of Clostridium perfringens in soil. J. Bacteriol. 1949, 58, 407. [Google Scholar] [PubMed]
- Matches, J.R.; Liston, J.; Curran, D. Clostridium perfringens in the environment. Appl. Microbiol. 1974, 28, 655–660. [Google Scholar] [PubMed]
- Tschirdewahn, B.; Notermans, S.; Wernars, K.; Untermann, F. The presence of enterotoxigenic Clostridium perfringens strains in faeces of various animals. Int. J. Food Microbiol. 1991, 14, 175–178. [Google Scholar] [CrossRef]
- Songer, J.G. Clostridial enteric diseases of domestic animals. Clin. Microbiol. Rev. 1996, 9, 216–234. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Griffin, P.M.; Angulo, F.J.; Tauxe, R.V.; Hoekstra, R.M. Foodborne illness acquired in the United States-unspecified agents. Emerg. Infect. Dis. 2011, 17, 16–22. [Google Scholar] [CrossRef]
- Songer, J.G.; Uzal, F.A. Clostridial enteric infections in pigs. J. Vet. Diagn. Investig. 2005, 17, 528–536. [Google Scholar] [CrossRef]
- Jaggi, M.; Wollschlager, N.; Abril, C.; Albini, S.; Brachelente, C.; Wyder, M.; Posthaus, H. Retrospective study on necrotizing enteritis in piglets in Switzerland. Schweiz. Arch. Tierheilkd. 2009, 151, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.W.; Bergeland, M.E. Clostridium perfringens type C enterotoxemia of the newborn pig. Can. Vet. J. 1965, 6, 159–161. [Google Scholar]
- Collins, J.E.; Bergeland, M.E.; Bouley, D.; Ducommun, A.L.; Francis, D.H.; Yeske, P. Diarrhea associated with Clostridium perfringens type A enterotoxin in neonatal pigs. J. Vet. Diagn. Investig. 1989, 1, 351–353. [Google Scholar] [CrossRef]
- Cooper, K.K.; Songer, J.G.; Uzal, F.A. Diagnosing clostridial enteric disease in poultry. J. Vet. Diagn. Investig. 2013, 25, 314–327. [Google Scholar] [CrossRef] [Green Version]
- Kaldhusdal, M.; Løvland, A. The economical impact of Clostridium perfringens is greater than anticipated. World Poult. 2000, 16, 50–51. [Google Scholar]
- FDA. Guidance for Industry #213, New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food-Producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI #209; U.S. Food & Drug Administration: Rockville, MD, USA, 2013.
- FDA. FDA Announces Implementation of GFI #213, Outlines Continuing Efforts to Address Antimicrobial Resistance. Available online: https://www.fda.gov/AnimalVeterinary/NewsEvents/CVMUpdates/ucm535154.htm (accessed on 29 October 2018).
- Schmelcher, M.; Donovan, D.M.; Loessner, M.J. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012, 7, 1147–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischetti, V.A. Bacteriophage endolysins: A novel anti-infective to control gram-positive pathogens. Int. J. Med. Microbiol. 2010, 300, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Totte, J.; de Wit, J.; Pardo, L.; Schuren, F.; van Doorn, M.; Pasmans, S. Targeted anti-staphylococcal therapy with endolysins in atopic dermatitis and the effect on steroid use, disease severity and the microbiome: study protocol for a randomized controlled trial (MAAS trial). Trials 2017, 18, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, K.D.; Wells, J.E.; Maxwell, C.V.; Oliver, W.T. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs. J. Anim. Sci. 2012, 90, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Oliver, W.T.; Wells, J.E. Lysozyme as an alternative to growth promoting antibiotics in swine production. J. Anim. Sci. Biotechnol. 2015, 6, 35. [Google Scholar] [CrossRef]
- Cutlip, S.E.; Hott, J.M.; Buchanan, N.P.; Rack, A.L.; Latshaw, J.D.; Moritz, J.S. The Effect of steam-conditioning practices on pellet quality and growing broiler nutritional value. J. Appl. Poult. Res. 2008, 17, 249–261. [Google Scholar] [CrossRef]
- Buhler-AG. Pelleting. Available online: https://www.buhlergroup.com/content/buhlergroup/global/en/products/pellet_mill.html (accessed on 7 November 2019).
- Mao, J.; Schmelcher, M.; Harty, W.J.; Foster-Frey, J.; Donovan, D.M. Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme. FEMS Microbiol. Lett. 2013, 342, 30–36. [Google Scholar] [CrossRef]
- Swift, S.M.; Seal, B.S.; Garrish, J.K.; Oakley, B.B.; Hiett, K.; Yeh, H.Y.; Woolsey, R.; Schegg, K.M.; Line, J.E.; Donovan, D.M. A thermophilic phage endolysin fusion to a Clostridium perfringens-specific cell wall binding domain creates an anti-clostridium antimicrobial with improved thermostability. Viruses 2015, 7, 3019–3034. [Google Scholar] [CrossRef]
- Leyh-Bouille, M.; Bonaly, R.; Ghuysen, J.M.; Tinelli, R.; Tipper, D. LL-diaminopimelic acid containing peptidoglycans in walls of Streptomyces sp. and of Clostridium perfringens (type A). Biochemistry 1970, 9, 2944–2952. [Google Scholar] [CrossRef]
- Oliveira, H.; Melo, L.D.; Santos, S.B.; Nobrega, F.L.; Ferreira, E.C.; Cerca, N.; Azeredo, J.; Kluskens, L.D. Molecular aspects and comparative genomics of bacteriophage endolysins. J. Virol. 2013, 87, 4558–4570. [Google Scholar] [CrossRef] [PubMed]
- Scheffers, D.J.; Pinho, M.G. Bacterial cell wall synthesis: new insights from localization studies. Microbiol. Mol. Biol. Rev. 2005, 69, 585–607. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Bryant, S.H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004, 32, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Brumm, P.; Land, M.L.; Hauser, L.J.; Jeffries, C.D.; Chang, Y.-J.; Mead, D.A. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park. Stand Genom. Sci. 2015, 10, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Wu, S.; Song, Q.; Zhang, X.; Xie, L. Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. Curr. Microbiol. 2006, 53, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Zhang, X. Characterization of a lysin from deep-sea thermophilic bacteriophage GVE2. Appl. Microbiol. Biotechnol. 2008, 78, 635–641. [Google Scholar] [CrossRef]
- Simmons, M.; Donovan, D.M.; Siragusa, G.R.; Seal, B.S. Recombinant expression of two bacteriophage proteins that lyse Clostridium perfringens and share identical sequences in the C-terminal cell wall binding domain of the molecules but are dissimilar in their N-terminal active domains. J. Agric. Food Chem. 2010, 58, 10330–10337. [Google Scholar] [CrossRef]
- Swift, S.M.; Waters, J.J.; Rowley, D.T.; Oakley, B.B.; Donovan, D.M. Characterization of two glycosyl hydrolases, putative prophage endolysins, that target Clostridium perfringens. FEMS Microbiol. Lett. 2018, 365. [Google Scholar] [CrossRef]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, 200–204. [Google Scholar] [CrossRef]
- Kusuma, C.; Kokai-Kun, J. Comparison of four methods for determining lysostaphin susceptibility of various strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 2005, 49, 3256–3263. [Google Scholar] [CrossRef]
- Jin, M.; Ye, T.; Zhang, X. Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures. Microbiology 2013, 159, 1597–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertshaw, D. Temperature regulation and thermal environment. In Dukes’ Physiology of Domestic Animals; Reece, W.O., Ed.; Cornell University Press: Ithaca, NY, USA, 2004. [Google Scholar]
- Schmitz, J.E.; Ossiprandi, M.C.; Rumah, K.R.; Fischetti, V.A. Lytic enzyme discovery through multigenomic sequence analysis in Clostridium perfringens. Appl. Microbiol. Biotechnol. 2011, 89, 1783–1795. [Google Scholar] [CrossRef] [PubMed]
- Plotka, M.; Kaczorowska, A.K.; Morzywolek, A.; Makowska, J.; Kozlowski, L.P.; Thorisdottir, A.; Skirnisdottir, S.; Hjorleifsdottir, S.; Fridjonsson, O.H.; Hreggvidsson, G.O.; et al. Biochemical characterization and validation of a catalytic site of a highly thermostable Ts2631 endolysin from the thermus scotoductus phage vB_Tsc2631. PLoS ONE 2015, 10, e0137374. [Google Scholar] [CrossRef] [PubMed]
- Shavrina, M.S.; Zimin, A.A.; Molochkov, N.V.; Chernyshov, S.V.; Machulin, A.V.; Mikoulinskaia, G.V. In vitro study of the antibacterial effect of the bacteriophage T5 thermostable endolysin on Escherichia coli cells. J. Appl. Microbiol. 2016, 121, 1282–1290. [Google Scholar] [CrossRef]
- Ha, E.; Son, B.; Ryu, S. Clostridium perfringens virulent bacteriophage CPS2 and its thermostable endolysin LysCPS2. Viruses 2018, 10, 251. [Google Scholar] [CrossRef]
- Schmelcher, M.; Powell, A.M.; Becker, S.C.; Camp, M.J.; Donovan, D.M. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl. Environ. Microbiol. 2012, 78, 2297–2305. [Google Scholar] [CrossRef]
- Becker, S.C.; Dong, S.; Baker, J.R.; Foster-Frey, J.; Pritchard, D.G.; Donovan, D.M. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol. Lett. 2009, 294, 52–60. [Google Scholar] [CrossRef] [Green Version]
Lysin | Clostridium perfringens | Other Bacteria | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cp39 | Cp509 | Cp734 | Cp JGS1504 | Cp JGS1659 | Bacillus cereus Bc17 | Entero- coccus faecalis EF-17 | Clostridium difficile ATCC 700057 | Strepto- coccus agalactiae | Staphylo- coccus aureus 305 | |
GVE2CAT-CP10CWB | +/− | + | ++ | ++ | ++ | − | − | − | − | − |
GVE2CAT-CP18CWB | ++ | ++ | ++ | ++ | ++ | − | − | − | − | − |
GVE2CAT-CP33CWB | ++ | ++ | ++ | +++ | ++ | − | − | − | − | − |
GVE2CAT-CP41CWB | ++ | ++ | ++ | +++ | ++ | − | − | − | − | − |
GVE2CAT-CP26FCWB (PlyGVE2CpCWB) | +/− | + | + | + | + | − | − | − | − | − |
GVE2CAT | +/− | +/− | +/− | +/− | +/− | +/− | − | +/− | − | − |
PlyGVE2 | +/− | − | − | +/− | +/− | + | − | − | − | +/− |
Y4CAT-CP10CWB | +/− | + | + | + | + | − | − | − | − | − |
Y4CAT-CP18CWB | + | + | +/− | + | + | − | − | − | − | − |
Y4CAT-CP33CWB | + | + | +/− | + | + | − | − | − | − | − |
Y4CAT-CP41CWB | ++ | + | +/− | ++ | ++ | − | − | +/− | − | − |
Y4CAT-CP26FCWB | − | +/− | − | − | − | − | − | − | − | − |
Y4CAT | − | − | − | − | − | +/− | − | − | − | − |
PlyGspY4 | − | − | − | − | − | + | − | − | − | − |
Y412CAT-CP10CWB | + | + | ++ | + | + | − | − | − | − | − |
Y412CAT-CP18CWB | ++ | + | ++ | ++ | ++ | − | − | − | − | − |
Y412CAT-CP33CWB | ++ | + | ++ | ++ | ++ | − | − | − | − | − |
Y412CAT-CP41CWB | + | + | +/− | ++ | + | − | − | − | − | − |
Y412CAT-CP26FCWB | + | + | + | + | + | − | − | − | − | − |
Y412CAT | - | − | − | − | − | +/− | − | − | − | − |
PlyGspY412 | − | − | +/− | − | +/− | ++ | − | − | − | +/− |
Chimeric Lysin | GVE2CAT-CP33CWB | GVE2CAT-CP41CWB | Y412CAT-CP33CWB | Y412CAT-CP41CWB | Y4CAT-CP33CWB | Y4CAT-CP41CWB |
---|---|---|---|---|---|---|
MIC range 1 (µg/mL) | >100 | >100 | ≥100 | ≥100 | 25–100 | 1.6–6.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swift, S.M.; Reid, K.P.; Donovan, D.M.; Ramsay, T.G. Thermophile Lytic Enzyme Fusion Proteins that Target Clostridium perfringens. Antibiotics 2019, 8, 214. https://doi.org/10.3390/antibiotics8040214
Swift SM, Reid KP, Donovan DM, Ramsay TG. Thermophile Lytic Enzyme Fusion Proteins that Target Clostridium perfringens. Antibiotics. 2019; 8(4):214. https://doi.org/10.3390/antibiotics8040214
Chicago/Turabian StyleSwift, Steven M., Kevin P. Reid, David M. Donovan, and Timothy G. Ramsay. 2019. "Thermophile Lytic Enzyme Fusion Proteins that Target Clostridium perfringens" Antibiotics 8, no. 4: 214. https://doi.org/10.3390/antibiotics8040214
APA StyleSwift, S. M., Reid, K. P., Donovan, D. M., & Ramsay, T. G. (2019). Thermophile Lytic Enzyme Fusion Proteins that Target Clostridium perfringens. Antibiotics, 8(4), 214. https://doi.org/10.3390/antibiotics8040214