Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection
Abstract
:1. Introduction
2. Benzalkonium Chloride
2.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure
2.2. Induction of Common Efflux Pumps
2.3. Additional Findings
3. Chlorhexidine Digluconate
3.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure
3.2. Effect on Antibiotic Resistance Genes
3.3. Increase of Horizontal Gene Transfer
3.4. Additional Findings
4. Triclosan
4.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure
4.2. Increase of Horizontal Gene Transfer
4.3. Additional Findings
5. Didecyldimethylammonium Chloride
6. Hydrogen Peroxide
7. Polyhexanide
8. Sodium Hypochlorite
9. Other Biocidal Agents
10. Discussion
11. Conclusions
Funding
Conflicts of Interest
Appendix A
References
- Remschmidt, C.; Schroder, C.; Behnke, M.; Gastmeier, P.; Geffers, C.; Kramer, T.S. Continuous increase of vancomycin resistance in enterococci causing nosocomial infections in germany-10 years of surveillance. Antimicrob. Resist. Infect. Control 2018, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.J.; Eberly, M.D.; Goudie, A.; Nylund, C.M. Rising vancomycin-resistant enterococcus infections in hospitalized children in the united states. Hosp. Pediatri. 2016, 6, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Gastmeier, P.; Schroder, C.; Behnke, M.; Meyer, E.; Geffers, C. Dramatic increase in vancomycin-resistant enterococci in Germany. J. Antimicrob. Chemother. 2014, 69, 1660–1664. [Google Scholar] [CrossRef] [PubMed]
- Puchter, L.; Chaberny, I.F.; Schwab, F.; Vonberg, R.P.; Bange, F.C.; Ebadi, E. Economic burden of nosocomial infections caused by vancomycin-resistant enterococci. Antimicrob. Resist. Infect. Control 2018, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, N.; Vonberg, R.P.; Gastmeier, P. Outbreaks caused by vancomycin-resistant Enterococcus faecium in hematology and oncology departments: A systematic review. Heliyon 2017, 3, e00473. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Biocidal agents used for disinfection can enhance antibiotic resistance in gram-negative species. Antibiotics 2018, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Antiseptic Stewardship: Biocide Resistance and Clinical Implications; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Casado Munoz Mdel, C.; Benomar, N.; Lavilla Lerma, L.; Knapp, C.W.; Galvez, A.; Abriouel, H. Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented alorena table to different physico-chemical stresses. Food Microbiol. 2016, 60, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gadea, R.; Fernandez Fuentes, M.A.; Perez Pulido, R.; Galvez, A.; Ortega, E. Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods. Food Microbiol. 2017, 63, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Jiang, X.; Zhang, Y.; Ji, S.; Gao, W.; Shi, L. Effect of benzalkonium chloride adaptation on sensitivity to antimicrobial agents and tolerance to environmental stresses in Listeria monocytogenes. Front. Microbiol. 2018, 9, 2906. [Google Scholar] [CrossRef] [PubMed]
- Romanova, N.A.; Wolffs, P.F.; Brovko, L.Y.; Griffiths, M.W. Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl. Environ. Microbiol. 2006, 72, 3498–3503. [Google Scholar] [CrossRef] [PubMed]
- To, M.S.; Favrin, S.; Romanova, N.; Griffiths, M.W. Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes. Appl. Environ. Microbiol. 2002, 68, 5258–5264. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, J.; Ziegler, J.; Walecka-Zacharska, E.; Reimer, A.; Kitts, D.D.; Gilmour, M.W. Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emre. Appl. Environ. Microbiol. 2015, 82, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, M.M.; Bijlsma, M.W.; Brouwer, M.C.; van de Beek, D.; van der Ende, A. Listeria monocytogenes meningitis in the netherlands, 1985–2014: A nationwide surveillance study. J.Infect. 2017, 75, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.; Knight, C.G.; Cowley, N.L.; Amezquita, A.; McClure, P.; Humphreys, G.; McBain, A.J. Variable effects of exposure to formulated microbicides on antibiotic susceptibility in firmicutes and proteobacteria. Appl. Environ. Microbiol. 2016, 82, 3591–3598. [Google Scholar] [CrossRef] [PubMed]
- Oggioni, M.R.; Coelho, J.R.; Furi, L.; Knight, D.R.; Viti, C.; Orefici, G.; Martinez, J.L.; Freitas, A.T.; Coque, T.M.; Morrissey, I. Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr. Pharm. Des. 2015, 21, 2054–2057. [Google Scholar] [CrossRef] [PubMed]
- Coelho, J.R.; Carrico, J.A.; Knight, D.; Martinez, J.L.; Morrissey, I.; Oggioni, M.R.; Freitas, A.T. The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus. PLoS ONE 2013, 8, e55582. [Google Scholar] [CrossRef] [PubMed]
- Aase, B.; Sundheim, G.; Langsrud, S.; Rorvik, L.M. Occurrence of and a possible mechanism for resistance to a quaternary ammonium compound in Listeria monocytogenes. Int. J. Food Microbiol. 2000, 62, 57–63. [Google Scholar] [CrossRef]
- Sidhu, M.S.; Langsrud, S.; Holck, A. Disinfectant and antibiotic resistance of lactic acid bacteria isolated from the food industry. Microb. Drug Resist. (Larchmt. N.Y.) 2001, 7, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lu, R.; Chen, Y.; Qiu, J.; Deng, C.; Tan, Q. Study of cross-resistance mediated by antibiotics, chlorhexidine and rhizoma coptidis in Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2016, 7, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Gadea, R.; Glibota, N.; Perez Pulido, R.; Galvez, A.; Ortega, E. Adaptation to biocides cetrimide and chlorhexidine in bacteria from organic foods: Association with tolerance to other antimicrobials and physical stresses. J. Agric. Food Chem. 2017, 65, 1758–1770. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Hans, A.; Ruikar, K.; Guan, Z.; Palmer, K.L. Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure. Antimicrob. Agent. Chemother. 2018, 62, e01235-17. [Google Scholar] [CrossRef] [PubMed]
- Gadea, R.; Glibota, N.; Pérez Pulido, R.; Gálvez, A.; Ortega, E. Effects of exposure to biocides on susceptibility to essential oils and chemical preservatives in bacteria from organic foods. Food Control 2017, 80, 176–182. [Google Scholar] [CrossRef]
- Seier-Petersen, M.A.; Jasni, A.; Aarestrup, F.M.; Vigre, H.; Mullany, P.; Roberts, A.P.; Agerso, Y. Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of tn916 in Bacillus subtilis. J Antimicrob. Chemother. 2014, 69, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Pearce, H.; Messager, S.; Maillard, J.Y. Effect of biocides commonly used in the hospital environment on the transfer of antibiotic-resistance genes in Staphylococcus aureus. J. Hosp. Infect. 1999, 43, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Cook, H.A.; Cimiotti, J.P.; Della-Latta, P.; Saiman, L.; Larson, E.L. Antimicrobial resistance patterns of colonizing flora on nurses’ hands in the neonatal intensive care unit. Am. J. Infect Control 2007, 35, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Conceicao, T.; Coelho, C.; de Lencastre, H.; Aires-de-Sousa, M. High prevalence of biocide resistance determinants in Staphylococcus aureus isolates from three african countries. Antimicrob. Agent. Chemother. 2016. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Ziegler, E.; Palmer, K.L. Chlorhexidine induces vana-type vancomycin resistance genes in enterococci. Antimicrob. Agent. Chemother. 2016, 60, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Vali, L.; Davies, S.E.; Lai, L.L.; Dave, J.; Amyes, S.G. Frequency of biocide resistance genes, antibiotic resistance and the effect of chlorhexidine exposure on clinical methicillin-resistant Staphylococcus aureus isolates. J. Antimicrob. Chemother. 2008, 61, 524–532. [Google Scholar] [CrossRef] [PubMed]
- McNeil, J.C.; Kok, E.Y.; Vallejo, J.G.; Campbell, J.R.; Hulten, K.G.; Mason, E.O.; Kaplan, S.L. Clinical and molecular features of decreased chlorhexidine susceptibility among nosocomial Staphylococcus aureus isolates at texas children’s hospital. Antimicrob. Agent. Chemother. 2016, 60, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Wand, M.E.; Baker, K.S.; Benthall, G.; McGregor, H.; McCowen, J.W.; Deheer-Graham, A.; Sutton, J.M. Characterization of pre-antibiotic era Klebsiella pneumoniae isolates with respect to antibiotic/disinfectant susceptibility and virulence in Galleria mellonella. Antimicrob. Agent. Chemother. 2015, 59, 3966–3972. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Tamura, Y.; Yokota, T. Antiseptic and antibiotic resistance plasmid in Staphylococcus aureus that possesses ability to confer chlorhexidine and acrinol resistance. Antimicrob. Agent. Chemother. 1988, 32, 932–935. [Google Scholar] [CrossRef]
- Gadea, R.; Fernández Fuentes, M.A.; Pérez Pulido, R.; Gálvez, A.; Ortega, E. Adaptive tolerance to phenolic biocides in bacteria from organic foods: Effects on antimicrobial susceptibility and tolerance to physical stresses. Food Res. Int. 2016, 85, 131–143. [Google Scholar] [CrossRef] [PubMed]
- McBain, A.J.; Ledder, R.G.; Sreenivasan, P.; Gilbert, P. Selection for high-level resistance by chronic triclosan exposure is not universal. J. Antimicrob. Chemother. 2004, 53, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.G.; Gram, L.; Kastbjerg, V.G. Sublethal triclosan exposure decreases susceptibility to gentamicin and other aminoglycosides in Listeria monocytogenes. Antimicrob. Agent. Chemother. 2011, 55, 4064–4071. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, E.M.; Hickey, R.; Hsu, T.; Betancourt Roman, C.M.; Chen, J.; Schwager, R.; Kline, J.; Brown, G.Z.; Halden, R.U.; Huttenhower, C.; et al. Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome. Environ. Sci. Technol. 2016, 50, 9807–9815. [Google Scholar] [CrossRef] [PubMed]
- Ciusa, M.L.; Furi, L.; Knight, D.; Decorosi, F.; Fondi, M.; Raggi, C.; Coelho, J.R.; Aragones, L.; Moce, L.; Visa, P.; et al. A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int. J. Antimicrob. Agent. 2012, 40, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.J.; Li, J.; Roland, G.E.; Rock, C.O. Inhibition of the Staphylococcus aureus nadph-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J. Biol. Chem. 2000, 275, 4654–4659. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, H.P. Triclosan: A widely used biocide and its links to antibiotics. Fed. Eur. Microbiol. Soc. Microbiol. Lett. 2001, 202, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cottell, A.; Denyer, S.P.; Hanlon, G.W.; Ochs, D.; Maillard, J.Y. Triclosan-tolerant bacteria: Changes in susceptibility to antibiotics. J. Hosp. Infect. 2009, 72, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Fahimipour, A.K.; Ben Mamaar, S.; McFarland, A.G.; Blaustein, R.A.; Chen, J.; Glawe, A.J.; Kline, J.; Green, J.L.; Halden, R.U.; Van Den Wymelenberg, K.; et al. Antimicrobial chemicals associate with microbial function and antibiotic resistance indoors. mSystems 2018, 3. [Google Scholar] [CrossRef] [PubMed]
- Wieland, N.; Boss, J.; Lettmann, S.; Fritz, B.; Schwaiger, K.; Bauer, J.; Holzel, C.S. Susceptibility to disinfectants in antimicrobial-resistant and -susceptible isolates of Escherichia coli, Enterococcus faecalis and Enterococcus faecium from poultry-esbl/ampc-phenotype of E. coli is not associated with resistance to a quaternary ammonium compound, ddac. J. Appl. Microbiol. 2017, 122, 1508–1517. [Google Scholar] [PubMed]
- Soumet, C.; Meheust, D.; Pissavin, C.; Le Grandois, P.; Fremaux, B.; Feurer, C.; Le Roux, A.; Denis, M.; Maris, P. Reduced susceptibilities to biocides and resistance to antibiotics in food-associated bacteria following exposure to quaternary ammonium compounds. J. Appl. Microbiol. 2016, 121, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Wesgate, R.; Grasha, P.; Maillard, J.Y. Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. Am. J. Infect. Control 2016, 44, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Jones, R. Bacterial resistance and topical antimicrobial wash products. Am. J. Infect. Control. 1999, 27, 351–363. [Google Scholar] [CrossRef]
- Department of Health and Human Services; Food and Drug Administration. Safety and effectiveness of consumer antiseptics; topical antimicrobial drug products for over-the-counter human use. Fed. Reg. 2016, 81, 61106–61130. [Google Scholar]
- Kampf, G.; Löffler, H.; Gastmeier, P. Hand hygiene for prevention of nosocomial infections. Dtsch. Ärztebl. Int. 2009, 106, 649–655. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Guidelines for the Prevention of Surgical Site Infections; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Kampf, G. Antiseptic stewardship for alcohol-based hand rubs. In Antiseptic Stewardship: Biocide Resistance and Clinical Implications; Kampf, G., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 643–650. [Google Scholar]
- KRINKO am Robert Koch Institut. Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsbl 2016, 59, 1189–1220. [Google Scholar] [CrossRef] [PubMed]
- Cassini, A.; Hogberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
Species | Strain(s) | Type of Exposure | MIC Increase (BAC) | Antibiotic(s) | MIC Increase (Antibiotic) | Reference |
---|---|---|---|---|---|---|
Lactobacillus pentosus | Seven strains from naturally fermented Aloreña green table olives | 48 h at 1 mg/L | - | Ampicillin Chloramphenicol Ciprofloxacin Teicoplanin Tetracycline Trimethoprim Clindamycin Erythromycin Streptomycin | 1-fold–100-fold 1 2-fold–500-fold 1 2-fold–14-fold 1 1-fold–340-fold 1 2-fold–80-fold 1 1-fold–15-fold 1 None 1 None 1 None 1 | [8] |
Leuconostoc pseudomesenteroides | Strain from naturally fermented Aloreña green table olives | 48 h at 1 mg/L | - | Ciprofloxacin Chloramphenicol Tetracycline Ampicillin Clindamycin Erythromycin Streptomycin Teicoplanin Trimethoprim | 3-fold 1 2-fold 1 2-fold 1 None 1 None 1 None 1 None 1 None 1 None 1 | [8] |
Species | Strain(s) | Type of Exposure | MIC Increase (BAC) | Antibiotic(s) | Pre-Value | Post-Value | Category | Reference |
---|---|---|---|---|---|---|---|---|
Bacillus cereus | Five biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 10-fold– 200-fold | Ampicillin Sulfamethoxazole Cefotaxime | - - - | 64 (2) 1 1024 (2) 1 128 (1) 1 | R R R | [9] |
Bacillus licheniformis | Two biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 25-fold– 50-fold | Ceftazidime Cefotaxime | - - | 64 (1) 1 128 (1) 1 | R R | [9] |
Bacillus spp. | Four biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 4-fold– 25-fold | Sulfamethoxazole Ampicillin Cefotaxime | - - - | 1024 (2) 1 64 (1) 1 128 (1) 1 | R R R | [9] |
Enterococcus casseliflavus | Two biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 10-fold– 20-fold | Ampicillin | - | 32 (1) 1 | R | [9] |
Enterococcus durans | Biocide-sensitive strain from organic foods | Several passages with gradually higher concentrations | 4-fold | Ampicillin | - | 32 1 | R | [9] |
Enterococcus faecalis | Two biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 5-fold– 50-fold | Ceftazidime Cefotaxime Sulfamethoxazole | - - - | 64 (2) 1 128 (1) 1 1024 (1) 1 | R R R | [9] |
Enterococcus faecium | Thirteen biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 4-fold– 50-fold | Ampicillin, Cefotaxime Ciprofloxacin Tetracycline | - - - - | 16 or 32 (7) 1 64 (3) 1 8 (2) 1 32 (1) 1 | R R R R | [9] |
Enterococcus spp. | Six biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 4-fold– 35-fold | Ampicillin Cefotaxime Ceftazidime Sulfamethoxazole | - - - - | 16 or 32 (3) 1 64 or 128 (2) 1 64 (2) 1 1024 (1) 1 | R R R R | [9] |
Listeria monocytogenes | 25 strains from food or food production | Several passages with gradually higher concentrations | 2-fold– 5-fold | Ampicillin Cefotaxime Cephalotin Chloramphenicol Ciprofloxacin Erythromycin Kanamycin Tetracycline | 0.25–2 1 2–16 1 2–32 1 1–8 1 0.5–4 1 0.125–0.5 1 1–4 1 0.5–1 1 | 0.25–2 1 8–64 1 * 16–64 1 * 1–8 1 1–8 1 0.125–0.5 1 1–4 1 0.5–1 1 | - - - - - - - - | [10] |
Listeria monocytogenes | Four isolates sensitive to BAC | 2–3 w at variable concentrations | 4-fold– 6-fold | Gentamicin Kanamycin | 2.25–4.5 1 6.25–12.5 1 | 1.4–5.5 1 6.25–25 1 | - - | [11] |
Staphylococcus saprophyticus | Five biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 10-fold– 200-fold | Sulfamethoxazole Ceftazidime Ampicillin Tetracycline | - - - - | 1024 (3) 1 64 (3) 1 64 (2) 1 16 (1) 1 | R R R R | [9] |
Staphylococcus spp. | Four biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 2-fold– 150-fold | Sulfamethoxazole Ampicillin Ceftazidime Tetracycline | - - - - | 1024 (3) 1 32 or 64 (3) 1 64 (1) 1 32 (1) 1 | R R R R | [9] |
Species | Strain(s) | Type of Exposure | MIC Increase (CHG) | Antibiotic(s) | MIC Increase (Antibiotic) | Reference |
---|---|---|---|---|---|---|
Staphylococcus aureus | ATCC 25923 and 14 clinical isolates | 14 d at various sublethal concentrations | 4-fold–6-fold (6 isolates) | Ciprofloxacin Tetracycline Gentamicin Amikacin Cefepime Meropenem | 4-fold–64-fold (6) 1 4-fold–512-fold (15) 1 4-fold–512-fold (8) 1 16-fold–512-fold (11) 1 8-fold–64-fold (11) 1 8-fold–64-fold (9) 1 | [20] |
Species | Strain(s) | Type of Exposure | MIC Increase (CHG) | Antibiotic(s) | Pre-Value | Post-Value | Category | Reference |
---|---|---|---|---|---|---|---|---|
Bacillus cereus | Four biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 6-fold– 16-fold | Imipenem Sulfamethoxazole Ampicillin Tetracycline | - - - - | 16 (4) 1 1024 (2) 1 64 (1) 1 32 (1) 1 | R R R R | [21] |
Bacillus licheniformis | Two biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 4-fold– 10-fold | Imipenem Cefotaxime Tetracycline | - - - | 16 (2) 1 64 (1) 1 32 (1) 1 | R R R | [21] |
Bacillus spp. | Four biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 4-fold– 8-fold | Imipenem Sulfamethoxazole Cefotaxime Ceftazidime | - - - - | 16 (4) 1 1024 (4) 1 64 (1) 1 64 (1) 1 | R R R R | [21] |
Enterococcus casseliflavus | Three biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 8-fold– 20-fold | Imipenem Cefotaxime Tetracycline | - - - | 16 (3) 1 64 (1) 1 32 (1) 1 | R R R | [21] |
Enterococcus durans | Biocide-sensitive strain from organic foods | Several passages with gradually higher concentrations | 10-fold | Imipenem Ampicillin | - - | 16 1 64 1 | R R | [21] |
Enterococcus faecalis | Biocide-sensitive strain from organic foods | Several passages with gradually higher concentrations | 10-fold | Imipenem Ceftazidime | - - | 16 1 64 1 | R R | [21] |
Enterococcus faecium | Nine biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 2-fold– 16-fold | Imipenem Tetracycline Ampicillin Cefotaxime Ceftazidime | - - - - - | 16 (9) 1 16 or 32 (4) 1 32 or 64 (2) 1 128 (1) 1 64 (1) 1 | R R R R R | [21] |
Enterococcus faecium | Clinical VRE strain | 21 d at various concentrations | 4-fold | Daptomycin | 2 | 3–6 1, 2 | - | [22] |
Enterococcus spp. | Six biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 2-fold– 10-fold | Imipenem Ceftazidime Sulfamethoxazole Cefotaxime Tetracycline | - - - - - - | 16 (6) 1 64 (5) 1 1024 (5) 1 64–128 (4) 1 16 (3) 1 | R R R R R | [21] |
Staphylococcus saprophyticus | Four biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 2-fold– 10-fold | Ceftazidime Imipenem Sulfamethoxazole Cefotaxime Tetracycline | - - - - - | 64 (4) 1 16 (2) 1 1024 (2) 1 128 (2) 1 16 (1) 1 | R R R R R | [21] |
Staphylococcus xylosus | Biocide-sensitive strain from organic foods | Several passages with gradually higher concentrations | 4-fold | Ceftazidime Imipenem Sulfamethoxazole Cefotaxime Tetracycline | - - - - - | 64 1 16 1 1024 1 128 1 16 1 | R R R R R | [21] |
Staphylococcus spp. | Three biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 4-fold– 10-fold | Ceftazidime | - | 64 (1) 1 | R | [21] |
Species | Strain(s) | Type of Exposure | MIC Increase(TRI) | Antibiotic(s) | MIC Increase (Antibiotic) | Reference |
---|---|---|---|---|---|---|
Lactobacillus pentosus | Seven strains from naturally fermented Aloreña green table olives | 48 h at 1 mg/L | - | Ampicillin Chloramphenicol Ciprofloxacin Teicoplanin Tetracycline Trimethoprim Clindamycin Erythromycin Streptomycin | 5-fold–100-fold 1 Up to 200-fold (6) 1 Up to 7-fold (6) 1 Up to 340-fold (5) 1 2-fold–80-fold (6) 1 15-fold (1) 1 None None None | [8] |
Leuconostoc pseudomesenteroides | Strain from naturally fermented Aloreña green table olives | 48 h at 1 mg/L | - | Ciprofloxacin Chloramphenicol Tetracycline Ampicillin Clindamycin Erythromycin Streptomycin Teicoplanin Trimethoprim | 7-fold 1 2-fold 1 None 1 None 1 None 1 None 1 None 1 None 1 None 1 | [8] |
Species | Strain(s) | Type of Exposure | MIC Increase (TRI) | Antibiotic(s) | Pre-Value | Post-Value | Category | Reference |
---|---|---|---|---|---|---|---|---|
Bacillus cereus | Five biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 3-fold– 4-fold | Sulfamethoxazole Ampicillin Cefotaxime Ceftazidime | - - - - | 1024 (3) 1 64 (1) 1 128 (1) 1 64 (1) 1 | R R R R | [33] |
Bacillus licheniformis | Biocide-sensitive strain from organic foods | Several passages with gradually higher concentrations | 3-fold | Sulfamethoxazole Ceftazidime | - - | 1024 1 64 1 | R R | [33] |
Bacillus spp. | Four biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 2-fold | Sulfamethoxazole Cefotaxime Ceftazidime | - - - | 1024 (2) 1 128 (1) 1 64 (1) 1 | R R R | [33] |
Enterococcus casseliflavus | Biocide-sensitive strain from organic foods | Several passages with gradually higher concentrations | 2-fold | Cefotaxime | - | 128 1 | R | [33] |
Enterococcus faecium | Five biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 2-fold– 4-fold | Cefotaxime Ceftazidime | - - | 64 (1) 1 64 (1) 1 | R R | [33] |
Enterococcus spp. | Two biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 2-fold | Ceftazidime | - | 64 (1) 1 | R | [33] |
Lactobacillus rhamnosus | Strain AC413 | 10 passages of 4 h at various concentrations | None | Metronidazole Tetracycline | 500 1 5.2 1 | 500 1 3.9 1 | - - | [34] |
Listeria monocytogenes | Eight strains from different sources | 4 × 24 h (1 and 4 mg/L) | - | Gentamicin | 5–20 1 | 40–160 1 | - | [35] |
Staphylococcus saprophyticus | Three biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 3-fold– 5-fold | Sulfamethoxazole Cefotaxime Ceftazidime | - - - | 1024 (2) 1 128 (1) 1 64 (1) 1 | R R R | [33] |
Staphylococcus xylosus | Biocide-sensitive strain from organic foods | Several passages with gradually higher concentrations | 5-fold | Sulfamethoxazole Ceftazidime | - - | 1024 1 64 1 | R R | [33] |
Staphylococcus spp. | Two biocide-sensitive strains from organic foods | Several passages with gradually higher concentrations | 2-fold– 150-fold | Sulfamethoxazole Ceftazidime Cefotaxime Ampicillin | - - - - | 1024 (2) 1 32 or 64 (2) 1 128 (1) 1 64 (1) 1 | R R R R | [33] |
Streptococcus mutans | NCTC 10832 | 10 passages of 4 h at various concentrations | None | Metronidazole Tetracycline | 62.5 1 1.0 1 | 62.5 1 2.0 1 | - - | [35] |
Streptococcus oralis | NCTC 11427 | 10 passages of 4 h at various concentrations | 1.7-fold | Metronidazole Tetracycline | 62.5 1 7.8 1 | 125 1 3.9 1 | - - | [35] |
Streptococcus sanguis | NCTC 7863 | 10 passages of 4 h at various concentrations | None | Metronidazole Tetracycline | 62.5 1 7.8 1 | 125 1 7.8 1 | - - | [35] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampf, G. Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection. Antibiotics 2019, 8, 13. https://doi.org/10.3390/antibiotics8010013
Kampf G. Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection. Antibiotics. 2019; 8(1):13. https://doi.org/10.3390/antibiotics8010013
Chicago/Turabian StyleKampf, Günter. 2019. "Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection" Antibiotics 8, no. 1: 13. https://doi.org/10.3390/antibiotics8010013
APA StyleKampf, G. (2019). Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection. Antibiotics, 8(1), 13. https://doi.org/10.3390/antibiotics8010013