Bibliometric Analysis of Global Research on Clavulanic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quantification of Clavulanic Acid Studies
- Medicine.
- Pharmacology, Toxicology, and Pharmaceutics.
- Immunology and Microbiology.
- Biochemistry, Genetics, Molecular Biology.
- Veterinary.
2.1.1. Sigmoidal Profile of CA Academic Studies
2.1.2. Genomic-Based Methods and Genome Sequencing
2.1.3. How to Increase the CA Academic Studies?
2.1.4. Side Effects of CA
2.2. Clavulanate Studies
2.3. Antibiotic and Multidrug Resistance Studies
2.3.1. Antibiotic Resistance
2.3.2. Multidrug Resistance
2.4. Quantification of Studies on Clavulanic Acid Production by Streptomyces clavuligerus
- Biochemistry, Genetics, Molecular Biology.
- Immunology and Microbiology.
- Chemical Engineering.
- Pharmacology, Toxicology, and Pharmaceutics.
- Medicine.
2.4.1. Studies on Chemical Engineering in CA by S. clavuligerus
- Design, control and operation of bioprocess (red, 13 items).
- Molecular biology (green, 12 items).
- Metabolism (blue, 8 items).
- Downstream processing (yellow, 4 items).
2.4.2. Leading Authors, Institutions and Countries
3. Methods
3.1. Database Search and Study Selection
- “Clavulanic acid”. The search was done on 25 April 2018.
- “Clavulanic acid” and “clavulanate”. The search was done on 4 September 2018.
- “Clavulanic acid” and “Antibiotic resistance”. The search was done on 4 September 2018.
- “Clavulanic acid” and “Multidrug resistance”. The search was done on 4 September 2018.
- “Clavulanic acid” and “Streptomyces clavuligerus”. The search was done on 25 April 2018.
3.2. Data Extraction
- The terms were searched in the article title, abstract and keywords.
- Refined by: document types: Article, review, letter, or conference paper.
- Timespan: 1975–2017.
- The related records for each field were recovered and integrated in data files. The information exported from the Scopus database was: (i) citation information, (ii) bibliographical information and (iii) abstract and keywords. The software VOS viewer 1.6.7 was used for data analysis and visualization [36].
4. Future Perspectives
5. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Banin, E.; Hughes, D.; Kuipers, O.P. Editorial: Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 1999, 52, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Van der Meij, A.; Worsley, S.F.; Hutchings, M.I.; van Wezel, G.P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 2017, 41, 392–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viana Marques, D.; Machado, S.; Ebinuma, V.; Duarte, C.; Converti, A.; Porto, A. Production of β-lactamase inhibitors by Streptomyces species. Antibiotics 2018, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- De Lima Procópio, R.E.; da Silva, I.R.; Martins, M.K.; de Azevedo, J.L.; de Araújo, J.M. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 2012, 16, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.T.-H.; Ser, H.-L.; Yin, W.-F.; Chan, K.-G.; Lee, L.-H.; Goh, B.-H. Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from malaysia mangrove soil. Front. Microbiol. 2015, 6, 1316. [Google Scholar] [CrossRef] [PubMed]
- Ara, I.; Bukhari, N.A.; Aref, N.M.; Shinwari, M.M.A.; Bakir, M.A. Antiviral activities of streptomycetes against tobacco mosaic virus (TMV) in Datura plant: Evaluation of different organic compounds in their metabolites. African J. Biotechnol. 2012, 11, 2130–2138. [Google Scholar]
- Ramirez-Malule, H.; Restrepo, A.; Cardona, W.; Junne, S.; Neubauer, P.; Rios-Estepa, R. Inversion of the stereochemical configuration (3S,5S)-clavaminic acid into (3R,5R)-clavulanic acid: A computationally-assisted approach based on experimental evidence. J. Theor. Biol. 2016, 395, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.G.; Butterworth, D.; Cole, M.; Hanscomb, G.; Hood, J.D.; Reading, C.; Rolinson, G.N. Naturally occurring β-lactamase inhibitors with actibacterial activity. J. Antibiot. 1976, 29, 668–669. [Google Scholar] [CrossRef] [PubMed]
- Llarrull, L.I.; Testero, S.A.; Fisher, J.F.; Mobashery, S. The future of the β-lactams. Curr. Opin. Microbiol. 2010, 13, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Elander, R.P. Industrial production of β-lactam antibiotics. Appl. Microbiol. Biotechnol. 2003, 61, 385–392. [Google Scholar] [CrossRef] [PubMed]
- GlaxoSmithKline. GSK delivers another quarter of continued progress. Press Release GSK, 2017; 1–43. [Google Scholar]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A Bibliometric analysis and visualization of medical big data research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef]
- Soosaraei, M.; Khasseh, A.A.; Fakhar, M.; Hezarjaribi, H.Z. A decade bibliometric analysis of global research on leishmaniasis in Web of Science database. Ann. Med. Surg. 2018, 26, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.-L.; Cotner, J.B.; Sato, C.; Li, G.; Xu, Y.-Y. Global development of the studies focused on antibiotics in aquatic systems from 1945 to 2017. Environ. Sci. Pollut. Res. 2018, 25, 22023–22034. [Google Scholar] [CrossRef] [PubMed]
- Sweileh, W.M.; Al-Jabi, S.W.; Zyoud, S.H.; Sawalha, A.F.; Abu-Taha, A.S. Global research output in antimicrobial resistance among uropathogens: A bibliometric analysis (2002–2016). J. Glob. Antimicrob. Resist. 2018, 13, 104–114. [Google Scholar] [CrossRef] [PubMed]
- GlaxoSmithKline. Press release First quarter 2018. Press Release GSK, 2018; 1–41. [Google Scholar]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Hesse, L.; O’Neill, A. Discovery and development of new anti-bacterial drugs. In Trends in Drug Research III; van der Goot, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 32, pp. 213–225. [Google Scholar]
- Geddes, A.M.; Klugman, K.P.; Rolinson, G.N. Introduction: historical perspective and development of amoxicillin/clavulanate. Int. J. Antimicrob. Agents 2007, 30, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef]
- World Health Organization WHO. Antimicrobial Resistance Factsheet. Available online: http://www.who.int/mediacentre/factsheets/fs194/en/ (accessed on 14 November 2015).
- Bjornsson, E.S.; Jonasson, J.G. Drug-induced cholestasis. Clin. Liver Dis. 2013, 17, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Saide, K.; Farrell, J.; Faulkner, L.; Tailor, A.; Ogese, M.; Daly, A.K.; Pirmohamed, M.; Park, B.K.; Naisbitt, D.J. Characterization of amoxicillin- and clavulanic acid-specific T cells in patients with amoxicillin-clavulanate–induced liver injury. Hepatology 2015, 63, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Yazici, C.; Mutlu, E.; Bonkovsky, H.L.; Russo, M.W. Risk factors for severe or fatal drug-induced liver injury from amoxicillin-clavulanic acid. Hepatol. Res. 2015, 45, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Kamiya, E.; Kamiya, Y.; Niwa, M.; Saito, A.; Natsume, T.; Niwa, H.; Tokura, Y. Drug eruption to clavulanic acid with sparing of cellulitis-affecting site. Allergol. Int. 2015, 64, 280–281. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 11 May 2018).
- Global Tuberculosis Report 2017. Available online: http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf (accessed on 8 August 2018).
- Zhang, D.; Wang, Y.; Lu, J.; Pang, Y. In vitro activity of β-lactams in combination with β-lactamase inhibitors against multidrug-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 2016, 60, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Zhong, C.; Zong, G.; Fu, J.; Pang, X.; Cao, G. Improvement of clavulanic acid production in Streptomyces clavuligerus F613-1 by using a claR - neo reporter strategy. Electron. J. Biotechnol. 2017, 28, 41–46. [Google Scholar] [CrossRef]
- Kizildoğan, A.K.; Jaccard, G.V.; Mutlu, A.; Sertdemir, I.; Özcengiz, G. Genetic engineering of an industrial strain of Streptomyces clavuligerus for further enhancement of clavulanic acid production. Turkish J. Biol. 2017, 41, 342–353. [Google Scholar] [CrossRef]
- Ramirez-Malule, H.; Junne, S.; Nicolás Cruz-Bournazou, M.; Neubauer, P.; Ríos-Estepa, R. Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis. Appl. Microbiol. Biotechnol. 2018, 102, 4009–4023. [Google Scholar] [CrossRef] [PubMed]
- Zelyas, N.J.; Cai, H.; Kwong, T.; Jensen, S.E. Alanylclavam biosynthetic genes are clustered together with one group of clavulanic acid biosynthetic genes in Streptomyces clavuligerus. J. Bacteriol. 2008, 190, 7957–7965. [Google Scholar] [CrossRef] [PubMed]
- Medema, M.H.; Trefzer, A.; Kovalchuk, A.; van den Berg, M.; Müller, U.; Heijne, W.; Wu, L.; Alam, M.T.; Ronning, C.M.; Nierman, W.C.; et al. The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol. Evol. 2010, 2, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Medema, M.H.; Alam, M.T.; Heijne, W.H.M.; Van Den Berg, M.A.; Müller, U.; Trefzer, A.; Bovenberg, R.A.L.; Breitling, R.; Takano, E. Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus. Microb. Biotechnol. 2011, 4, 300–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance: Tackling a Crisis for The Health and Wealth of Nations. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 7 August 2018).
- Oteo, J.; Campos, J.; Lázaro, E.; Cuevas, Ó.; García-Cobos, S.; Pérez-Vázquez, M.; De Abajo, F.J.; Loza, E.; Baquero, F.; Fontanals, D.; et al. Increased amoxicillin-clavulanic acid resistance in Escherichia coli blood isolates, Spain. Emerg. Infect. Dis. 2008, 14, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Duytschaever, G.; Huys, G.; Boulanger, L.; De Boeck, K.; Vandamme, P. Amoxicillin–clavulanic acid resistance in fecal Enterobacteriaceae from patients with cystic fibrosis and healthy siblings. J. Cyst. Fibros. 2013, 12, 780–783. [Google Scholar] [CrossRef] [PubMed]
Rank | Keywords | Occurrences |
---|---|---|
1 | Antibiotics | 101 |
2 | Antibiotic resistance | 56 |
3 | Children | 54 |
4 | Amoxicillin | 41 |
5 | Antimicrobial resistance | 38 |
6 | Clavulanic acid | 32 |
7 | Escherichia coli | 31 |
8 | Urinary tract infection | 29 |
9 | Antibiotic | 29 |
10 | Amoxicillin/clavulanate | 27 |
Rank | Keywords | Occurrences |
---|---|---|
1 | Antibiotic resistance | 217 |
2 | Antimicrobial resistance | 164 |
3 | Escherichia coli | 134 |
4 | esbl | 91 |
5 | Antibiotics | 76 |
6 | Resistance | 62 |
7 | Urinary tract infection | 61 |
8 | Klebsiella pneumoniae | 60 |
9 | Drug resistance | 48 |
10 | Multidrug resistance | 46 |
Subject Area | 1976–1988 | 1999–2002 | 2003–2017 | Percentage of Variation |
---|---|---|---|---|
Biochemistry, Genetics and Molecular Biology. | 43% | 70% | 64% | 49% (↑) |
Pharmacology, Toxicology and Pharmaceutics. | 40% | 10% | 14% | −65% (↓) |
Medicine. | 23% | 7% | 12% | −48% (↓) |
Immunology and Microbiology. | 20% | 52% | 51% | 155% (↑) |
Chemical Engineering. | 6% | 10% | 27% | 350% (↑) |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Malule, H. Bibliometric Analysis of Global Research on Clavulanic Acid. Antibiotics 2018, 7, 102. https://doi.org/10.3390/antibiotics7040102
Ramirez-Malule H. Bibliometric Analysis of Global Research on Clavulanic Acid. Antibiotics. 2018; 7(4):102. https://doi.org/10.3390/antibiotics7040102
Chicago/Turabian StyleRamirez-Malule, Howard. 2018. "Bibliometric Analysis of Global Research on Clavulanic Acid" Antibiotics 7, no. 4: 102. https://doi.org/10.3390/antibiotics7040102
APA StyleRamirez-Malule, H. (2018). Bibliometric Analysis of Global Research on Clavulanic Acid. Antibiotics, 7(4), 102. https://doi.org/10.3390/antibiotics7040102