Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle-Income Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Article Selection
2.2. Data Extraction
2.3. Data Analyses
3. Results
3.1. Publications
3.2. Qualitative Data
3.3. Quantitative Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 6 January 2018).
- Pagel, S.W.; Gautier, P. Use of antimicrobial agents in livestock. Rev. Sci. Tech. 2012, 31, 145–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burow, E.; Simoneit, C.; Tenhagen, B.-A.; Käsbohrer, A. Oral antimicrobials increase antimicrobial resistance in porcine E. coli–A systematic review. Prev. Vet. Med. 2014, 113, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Simoneit, C.; Burow, E.; Tenhagen, B.-A.; Käsbohrer, A. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken—A systematic review. Prev. Vet. Med. 2015, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.; Kojima, A.; Harada, K.; Ishihara, K.; Takahashi, T.; Tamura, Y. Correlation between the usage volume of veterinary therapeutic antimicrobials and resistance in Escherichia coli isolated from the feces of food-producing animals in Japan. Jpn. J. Infect. Dis. 2005, 58, 369–372. [Google Scholar] [PubMed]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.; Caffrey, N.P.; Nobrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Wall, B.A.; Mateus, A.; Marshall, L.; Pfeiffer, D.U. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production; Food and Agriculture Organization of the United Nations: Roma, Italy, 2016. [Google Scholar]
- O’Neill, J. Antimicrobials in agriculture and the environment: Reducing unnecessary use and waste. Available online: https://amr-review.org/sites/default/files/Antimicrobials%20in%20agriculture%20and%20the%20environment%20-%20Reducing%20unnecessary%20use%20and%20waste.pdf (accessed on 16 June 2017).
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. FAO Action Plan on AMR in Food and Agriculture. Available online: http://www.fao.org/3/a-i6141e.pdf (accessed on 6 March 2018).
- World Organisation for Animal Health. The OIE Strategy on Antimicrobial Resistant and the Prudent Use of Antimicrobials. Available online: http://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/PortailAMR/EN_OIE-AMRstrategy.pdf (accessed on 12 July 2017).
- Carrique-Mas, J.J.; Rushton, J. Integrated interventions to tackle antimicrobial usage in animal production systems: The viparc project in Vietnam. Front. Microbiol. 2017, 8, 1062. [Google Scholar] [CrossRef] [PubMed]
- Postma, M.; Stark, K.D.C.; Sjolund, M.; Backhans, A.; Beilage, E.G.; Losken, S.; Belloc, C.; Collineau, L.; Iten, D.; Visschers, V.; et al. Alternatives to the use of antimicrobial agents in pig production: A multi-country expert-ranking of perceived effectiveness, feasibility and return on investment. Prev. Vet. Med. 2015, 118, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Anon. RUMA sets out AMR strategy action plan. Vet. Rec. 2014, 174, 470. [Google Scholar]
- Collineau, L.; Belloc, C.; Stark, K.D.; Hemonic, A.; Postma, M.; Dewulf, J.; Chauvin, C. Guidance on the selection of appropriate indicators for quantification of antimicrobial usage in humans and animals. Zoonoses Public Health 2017, 64, 165–184. [Google Scholar] [CrossRef] [PubMed]
- EFSA. ECDC/EFSA/EMA Second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA J. 2017, 15, 4872. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Global and regional food consumption patterns and trends. Available online: http://www.fao.org/docrep/005/AC911E/ac911e05.htm (accessed on 15 May 2018).
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Nat. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centre for Science and Environment. Strategic and Operational Guidance on Animal and Environmental Aspects: National Action Plans on Antimicrobial Resistance for Developing Countries; Centre for Science and Environment: New Delhi, India, 2017. [Google Scholar]
- FAO. Antimicrobial Resistance (On-Going Projects). Available online: http://www.fao.org/antimicrobial-resistance/projects/ongoing/project-2/en/ (accessed on 29 May 2018).
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Clarivate Analytics ISI Web of Knowledge. (Search engine). Available online: www.webofknowledge.com (accessed on 24 May 2017).
- Anon. World Bank country and lending groups (current classification by income). 2018. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519 (accessed on 6 April 2018).
- OIE. OIE List of Antimicrobial Agents of Veterinary Importance. Available online: http://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/Eng_OIE_List_antimicrobials_May2015.pdf (accessed on 14 May 2017).
- Thursfield, M. Veterinary Epidemiology; Wiley-Blackwell: Hoboken, NJ, USA, 2007; 624p. [Google Scholar]
- Krishnasamy, V.; Otte, J.; Silbergeld, E. Antimicrobial use in Chinese swine and broiler poultry production. Antimicrob. Resist. Infect. Control 2015, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Van Cuong, N.; Nhung, N.T.; Nghia, N.H.; Mai Hoa, N.T.; Trung, N.V.; Thwaites, G.; Carrique-Mas, J. Antimicrobial consumption in medicated feeds in Vietnamese pig and poultry production. Ecohealth 2016, 13, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Firth, C.L.; Kasbohrer, A.; Schleicher, C.; Fuchs, K.; Egger-Danner, C.; Mayerhofer, M.; Schobesberger, H.; Kofer, J.; Obritzhauser, W. Antimicrobial consumption on Austrian dairy farms: An observational study of udder disease treatments based on veterinary medication records. PeerJ 2017, 5, e4072. [Google Scholar] [PubMed]
- Stevens, M.; Piepers, S.; Supre, K.; Dewulf, J.; De Vliegher, S. Quantification of antimicrobial consumption in adult cattle on dairy herds in Flanders, Belgium, and associations with udder health, milk quality, and production performance. J. Dairy Sci. 2016, 99, 2118–2130. [Google Scholar] [CrossRef] [PubMed]
- Schaekel, F.; May, T.; Seiler, J.; Hartmann, M.; Kreienbrock, L. Antibiotic drug usage in pigs in Germany-are the class profiles changing? PLoS ONE 2017, 12, e0182661. [Google Scholar] [CrossRef] [PubMed]
- Grave, K.; Kaldhusdal, M.; Kruse, H.; Harr, L.M.F.; Flatlandsmo, K. What has happened in Norway after the ban of avoparcin? Consumption of antimicrobials by poultry. Prev. Vet. Med. 2004, 62, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Busani, L.; Graziani, C.; Franco, A.; Di Egidio, A.; Binkin, N.; Battisti, A. Survey of the knowledge, attitudes and practice of Italian beef and dairy cattle veterinarians concerning the use of antibiotics. Vet. Rec. 2004, 155, 733–738. [Google Scholar] [PubMed]
- Scoppetta, F.; Cenci, T.; Valiani, A.; Galarini, R.; Capuccella, M. Qualitative survey on antibiotic use for mastitis and antibiotic residues in Umbrian dairy herds. Large Anim. Rev. 2016, 22, 11–18. [Google Scholar]
- Serraino, A.; Giacometti, F.; Marchetti, G.; Zambrini, A.V.; Zanirato, G.; Fustini, M.; Rosmini, R. Survey on antimicrobial residues in raw milk and antimicrobial use in dairy farms in the Emilia-Romagna region, Italy. Ital. J. Anim. Sci. 2013, 12, 4. [Google Scholar] [CrossRef]
- Casal, J.; Mateu, E.; Mejia, W.; Martin, M. Factors associated with routine mass antimicrobial usage in fattening pig units in a high pig-density area. Vet. Res. 2007, 38, 481–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, M.A. Survey of quantitative antimicrobial consumption in two different pig finishing systems. Vet. Rec. 2012, 171, 325. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.; Rantala, M.; Hautala, M.; Pyorala, S.; Kaartinen, L. Cross-sectional prospective survey to study indication-based usage of antimicrobials in animals: Results of use in cattle. BMC Vet. Res. 2008, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Jarrige, N.; Cazeau, G.; Morignat, E.; Chanteperdrix, M.; Gay, E. Quantitative and qualitative analysis of antimicrobial usage in white veal calves in France. Prev. Vet. Med. 2017, 144, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Brunton, L.A.; Duncan, D.; Coldham, N.G.; Snow, L.C.; Jones, J.R. A survey of antimicrobial usage on dairy farms and waste milk feeding practices in England and Wales. Vet. Rec. 2012, 171, 296. [Google Scholar] [CrossRef] [PubMed]
- De Briyne, N.; Atkinson, J.; Pokludova, L.; Borriello, S.P. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef] [PubMed]
- Stege, H.; Bager, F.; Jacobsen, E.; Thougaard, A. Vetstat—The Danish system for surveillance of the veterinary use of drugs for production animals. Prev. Vet. Med. 2003, 57, 105–115. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Jensen, V.F.; Emborg, H.D.; Jacobsen, E.; Wegener, H.C. Changes in the use of antimicrobials and the effects on productivity of swine farms in Denmark. Am. J. Vet. Res. 2010, 71, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R.; Pires, S.M.; Houe, H.; Emborg, H.D. Trends in slaughter pig production and antimicrobial consumption in danish slaughter pig herds, 2002–2008. Epidemiol. Infect. 2011, 139, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Jensen, V.F.; Emborg, H.D.; Aarestrup, F.M. Indications and patterns of therapeutic use of antimicrobial agents in the Danish pig production from 2002 to 2008. J. Vet. Pharmacol. Ther. 2012, 35, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Dupont, N.; Fertner, M.; Kristensen, C.S.; Toft, N.; Stege, H. Reporting the national antimicrobial consumption in Danish pigs: Influence of assigned daily dosage values and population measurement. Acta Vet. Scand. 2016, 58, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, V.F.; de Knegt, L.V.; Andersen, V.D.; Wingstrand, A. Temporal relationship between decrease in antimicrobial prescription for Danish pigs and the “yellow card” legal intervention directed at reduction of antimicrobial use. Prev. Vet. Med. 2014, 117, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Vigre, H.; Dohoo, I.R.; Stryhn, H.; Jensen, V.F. Use of register data to assess the association between use of antimicrobials and outbreak of postweaning multisystemic wasting syndrome (PMWS) in Danish pig herds. Prev. Vet. Med. 2010, 93, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Callens, B.; Persoons, D.; Maes, D.; Laanen, M.; Postma, M.; Boyen, F.; Haesebrouck, F.; Butaye, P.; Catry, B.; Dewulf, J. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Prev. Vet. Med. 2012, 106, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Filippitzi, M.E.; Callens, B.; Pardon, B.; Persoons, D.; Dewulf, J. Antimicrobial use in pigs, broilers and veal calves in Belgium. Vlaams Diergeneeskd. Tijdschr. 2014, 83, 215–224. [Google Scholar]
- Persoons, D.; Dewulf, J.; Smet, A.; Herman, L.; Heyndrickx, M.; Martel, A.; Catry, B.; Butaye, P.; Haesebrouck, F. Antimicrobial use in Belgian broiler production. Prev. Vet. Med. 2012, 105, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.; Piepers, S.; Supre, K.; De Vliegher, S. Antimicrobial consumption on dairy herds and its association with antimicrobial inhibition zone diameters of non-aureus staphylococci and Staphylococcus aureus isolated from subclinical mastitis. J. Dairy Sci. 2018, 101, 3311–3322. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, T.; Dewulf, J.; Catry, B.; Feyen, B.; Opsomer, G.; de Kruif, A.; Maes, D. Quantification and evaluation of antimicrobial drug use in group treatments for fattening pigs in Belgium. Prev. Vet. Med. 2006, 74, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Ungemach, F.R.; Mueller-Bahrdt, D.; Abraham, G. Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. Int. J. Med. Microbiol. 2006, 296, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Merle, R.; Hajek, P.; Kasbohrer, A.; Hegger-Gravenhorst, C.; Mollenhauer, Y.; Robanus, M.; Ungemach, F.R.; Kreienbrock, L. Monitoring of antibiotic consumption in livestock: A German feasibility study. Prev. Vet. Med. 2012, 104, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Van Rennings, L.; von Munchhausen, C.; Ottilie, H.; Hartmann, M.; Merle, R.; Honscha, W.; Kasbohrer, A.; Kreienbrock, L. Cross-sectional study on antibiotic usage in pigs in Germany. PLoS ONE 2015, 10, e0119114. [Google Scholar] [CrossRef] [PubMed]
- Merle, R.; Robanus, M.; Hegger-Gravenhorst, C.; Mollenhauer, Y.; Hajek, P.; Kasbohrer, A.; Honscha, W.; Kreienbrock, L. Feasibility study of veterinary antibiotic consumption in Germany—Comparison of ADDs and UDDs by animal production type, antimicrobial class and indication. BMC Vet. Res. 2014, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Ferner, C.; Obritzhauser, W.; Fuchs, K.; Schmerold, I. Development and evaluation of a system to assess antimicrobial drug use in farm animals: Results of an Austrian study. Vet. Rec. 2014, 175, 429. [Google Scholar] [CrossRef] [PubMed]
- Trauffler, M.; Griesbacher, A.; Fuchs, K.; Kofer, J. Antimicrobial drug use in Austrian pig farms: Plausibility check of electronic on-farm records and estimation of consumption. Vet. Rec. 2014, 175, 402. [Google Scholar] [CrossRef] [PubMed]
- Trauffler, M.; Obritzhauser, W.; Raith, J.; Fuchs, K.; Kofer, J. The use of the “highest priority critically important antimicrobials” in 75 Austrian pig farms—Evaluation of on-farm drug application data. Berl. Munch. Tierarztl. Wochenschr. 2014, 127, 375–383. [Google Scholar] [PubMed]
- Arnold, S.; Gassner, B.; Giger, T.; Zwahlen, R. Banning antimicrobial growth promoters in feedstuffs does not result in increased therapeutic use of antibiotics in medicated feed in pig farming. Pharmacoepidemiol. Drug Saf. 2004, 13, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.M.; Steiner, A.; Gassner, B.; Regula, G. Antimicrobial use in Swiss dairy farms: Quantification and evaluation of data quality. Prev. Vet. Med. 2010, 95, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Carmo, L.P.; Schupbach-Regula, G.; Muntener, C.; Chevance, A.; Moulin, G.; Magouras, I. Approaches for quantifying antimicrobial consumption per animal species based on national sales data: A Swiss example, 2006 to 2013. Euro Surveill. 2017, 22, 30458. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, A.; Koops, W.J.; Wemmenhove, H. Antibiotic use in dairy herds in The Netherlands from 2005 to 2012. J. Dairy Sci. 2016, 99, 1632–1648. [Google Scholar] [CrossRef] [PubMed]
- Van der Fels-Klerx, H.J.; Puister-Jansen, L.F.; van Asselt, E.D.; Burgers, S. Farm factors associated with the use of antibiotics in pig production. J. Anim. Sci. 2011, 89, 1922–1929. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.E.H.; Taverne, F.J.; van Geijlswijk, I.M.; Mouton, J.W.; Mevius, D.J.; Heederik, D.J.J.; Netherlands Veterinary Medicines Authority SDa. Consumption of antimicrobials in pigs, veal calves, and broilers in The Netherlands: Quantitative results of nationwide collection of data in 2011. PLoS ONE 2013, 8, e77525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjolund, M.; Backhans, A.; Greko, C.; Emanuelson, U.; Lindberg, A. Antimicrobial usage in 60 Swedish farrow-to-finish pig herds. Prev. Vet. Med. 2015, 121, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Ortman, K.; Svensson, C. Use of antimicrobial drugs in Swedish dairy calves and replacement heifers. Vet. Rec. 2004, 154, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Moulin, G.; Cavalie, P.; Pellanne, I.; Chevance, A.; Laval, A.; Millemann, Y.; Colin, P.; Chauvin, C.; Antimicrobial Resistance ad hoc Group of the French Food Safety Agency. A comparison of antimicrobial usage in human and veterinary medicine in France from 1999 to 2005. J. Antimicrob. Chemother. 2008, 62, 617–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- More, S.J.; Clegg, T.A.; O’Grady, L. Insights into udder health and intramammary antibiotic usage on irish dairy farms during 2003–2010. Ir. Vet. J. 2012, 65, 7. [Google Scholar] [CrossRef] [PubMed]
- More, S.J.; Clegg, T.A.; McCoy, F. The use of national-level data to describe trends in intramammary antimicrobial usage on irish dairy farms from 2003 to 2015. J. Dairy Sci. 2017, 100, 6400–6413. [Google Scholar] [CrossRef] [PubMed]
- Sjolund, M.; Postma, M.; Collineau, L.; Losken, S.; Backhans, A.; Belloc, C.; Emanuelson, U.; Beilage, E.G.; Stark, K.; Dewulf, J.; et al. Quantitative and qualitative antimicrobial usage patterns in farrow-to-finish pig herds in Belgium, France, Germany and Sweden. Prev. Vet. Med. 2016, 130, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Hyde, R.M.; Remnant, J.G.; Bradley, A.J.; Breen, J.E.; Hudson, C.D.; Davies, P.L.; Clarke, T.; Critchell, Y.; Hylands, M.; Linton, E.; et al. Quantitative analysis of antimicrobial use on British dairy farms. Vet. Rec. 2017, 181, 683. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, R.H.; McEwen, S.A.; Meek, A.H.; Friendship, R.A.; Clarke, R.C.; Black, W.D. Antimicrobial drug use and related management practices among Ontario swine producers. Can. Vet. J. Rev. Vet. Can. 1998, 39, 87–96. [Google Scholar]
- Rajic, A.; Reid-Smith, R.; Deckert, A.E.; Dewey, C.E.; McEwen, S.A. Reported antibiotic use in 90 swine farms in Alberta. Can. Vet. J. Rev. Vet. Can. 2006, 47, 446–452. [Google Scholar]
- Akwar, H.T.; Poppe, C.; Wilson, J.; Reid-Smith, R.J.; Dyck, M.; Waddington, J.; Shang, D.; McEwen, S.A. Associations of antimicrobial uses with antimicrobial resistance of fecal Escherichia coli from pigs on 47 farrow-to-finish farms in Ontario and British Columbia. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2008, 72, 202–210. [Google Scholar]
- Glass-Kaastra, S.K.; Pearl, D.L.; Reid-Smith, R.J.; McEwen, B.; McEwen, S.A.; Amezcua, R.; Friendship, R.M. Describing antimicrobial use and reported treatment efficacy in Ontario swine using the Ontario swine veterinary-based surveillance program. BMC Vet. Res. 2013, 9, 238. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, R.H.; McEwen, S.A.; Meek, A.H.; Black, W.D.; Clarke, R.C.; Friendship, R.M. Individual and group antimicrobial usage rates on 34 farrow-to-finish swine farms in Ontario, Canada. Prev. Vet. Med. 1998, 34, 247–264. [Google Scholar] [CrossRef]
- Boulianne, M.; Arsenault, J.; Daignault, D.; Archambault, M.; Letellier, A.; Dutil, L. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. Isolates from chicken and turkey flocks slaughtered in Quebec, Canada. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2016, 80, 49–59. [Google Scholar]
- Carson, C.A.; Reid-Smith, R.; Irwin, R.J.; Martin, W.S.; McEwen, S.A. Antimicrobial use on 24 beef farms in Ontario. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2008, 72, 109–118. [Google Scholar]
- Saini, V.; McClure, J.T.; Scholl, D.T.; DeVries, T.J.; Barkema, H.W. Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Saini, V.; McClure, J.T.; Scholl, D.T.; DeVries, T.J.; Barkema, H.W. Herd-level relationship between antimicrobial use and presence or absence of antimicrobial resistance in gram-negative bovine mastitis pathogens on Canadian dairy farms. J. Dairy Sci. 2013, 96, 4965–4976. [Google Scholar] [CrossRef] [PubMed]
- Agunos, A.; Leger, D.F.; Carson, C.A.; Gow, S.P.; Bosman, A.; Irwin, R.J.; Reid-Smith, R.J. Antimicrobial use surveillance in broiler chicken flocks in Canada, 2013–2015. PLoS ONE 2017, 12, e0179384. [Google Scholar] [CrossRef] [PubMed]
- Nobrega, D.B.; De Buck, J.; Naqvi, S.A.; Liu, G.; Naushad, S.; Saini, V.; Barkema, H.W. Comparison of treatment records and inventory of empty drug containers to quantify antimicrobial usage in dairy herds. J. Dairy Sci. 2017, 100, 9736–9745. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.D.; Johnson, Z.B. Use of antibiotics and roxarsone in broiler chickens in the USA: Analysis for the years 1995 to 2000. Poult. Sci. 2002, 81, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Zwald, A.G.; Ruegg, P.L.; Kaneene, J.B.; Warnick, L.D.; Wells, S.J.; Fossler, C.; Halbert, L.W. Management practices and reported antimicrobial usage on conventional and organic dairy farms. J. Dairy Sci. 2004, 87, 191–201. [Google Scholar] [CrossRef]
- Sawant, A.A.; Sordillo, L.M.; Jayarao, B.M. A survey on antibiotic usage in dairy herds in Pennsylvania. J. Dairy Sci. 2005, 88, 2991–2999. [Google Scholar] [CrossRef]
- Raymond, M.J.; Wohrle, R.D.; Call, D.R. Assessment and promotion of judicious antibiotic use on dairy farms in Washington State. J. Dairy Sci. 2006, 89, 3228–3240. [Google Scholar] [CrossRef]
- Green, A.L.; Carpenter, L.R.; Edmisson, D.E.; Lane, C.D.; Welborn, M.G.; Hopkins, F.M.; Bemis, D.A.; Dunn, J.R. Producer attitudes and practices related to antimicrobial use in beef cattle in Tennessee. J. Am. Vet. Med. Assoc. 2010, 237, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Pol, M.; Ruegg, P.L. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. J. Dairy Sci. 2007, 90, 249–261. [Google Scholar] [CrossRef]
- Redding, L.E.; Cubas-Delgado, F.; Sammel, M.D.; Smith, G.; Galligan, D.T.; Levy, M.Z.; Hennessy, S. The use of antibiotics on small dairy farms in rural Peru. Prev. Vet. Med. 2014, 113, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereyra, V.G.; Pol, M.; Pastorino, F.; Herrero, A. Quantification of antimicrobial usage in dairy cows and preweaned calves in Argentina. Prev. Vet. Med. 2015, 122, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Apley, M.D.; Bush, E.J.; Morrison, R.B.; Singer, R.S.; Snelson, H. Use estimates of in-feed antimicrobials in swine production in The United States. Foodborne Pathog. Dis. 2012, 9, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.P.; Saegerman, C.; Douny, C.; Dinh, T.V.; Xuan, B.H.; Vu, B.D.; Hong, N.P.; Scippo, M.-L. First survey on the use of antibiotics in pig and poultry production in the Red River Delta region of Vietnam. Food Public Health 2013, 3, 247–256. [Google Scholar]
- Nguyen, V.T.; Carrique-Mas, J.J.; Ngo, T.H.; Ho, H.M.; Ha, T.T.; Campbell, J.I.; Nguyen, T.N.; Hoang, N.N.; Pham, V.M.; Wagenaar, J.A.; et al. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam. J. Antimicrob. Chemother. 2015, 70, 2144–2152. [Google Scholar] [PubMed]
- Carrique-Mas, J.J.; Trung, N.V.; Hoa, N.T.; Mai, H.H.; Thanh, T.H.; Campbell, J.I.; Wagenaar, J.A.; Hardon, A.; Hieu, T.Q.; Schultsz, C. Antimicrobial usage in chicken production in the Mekong Delta of Vietnam. Zoonoses Public Health 2015, 62 (Suppl. 1), 70–78. [Google Scholar] [CrossRef] [PubMed]
- Strom, G.; Boqvist, S.; Albihn, A.; Fernstrom, L.L.; Andersson Djurfeldt, A.; Sokerya, S.; Sothyra, T.; Magnusson, U. Antimicrobials in small-scale urban pig farming in a lower middle-income country—Arbitrary use and high resistance levels. Antimicrob. Resist. Infect. Control 2018, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Strom, G.; Halje, M.; Karlsson, D.; Jiwakanon, J.; Pringle, M.; Fernstrom, L.L.; Magnusson, U. Antimicrobial use and antimicrobial susceptibility in Escherichia coli on small- and medium-scale pig farms in north-eastern Thailand. Antimicrob. Resist. Infect. Control 2017, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.; Harada, K.; Ishihara, K.; Kojima, A.; Sameshima, T.; Tamura, Y.; Takahashi, T. Association of antimicrobial resistance in Campylobacter isolated from food-producing animals with antimicrobial use on farms. Jpn. J. Infect. Dis. 2007, 60, 290–294. [Google Scholar] [PubMed]
- Aalipour, F.; Mirlohi, M.; Jalali, M. Determination of antibiotic consumption index for animal originated foods produced in animal husbandry in Iran, 2010. J. Environ. Health Sci. Eng. 2014, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Nguyen, H.M.; Nguyen, C.V.; Nguyen, T.V.; Nguyen, M.T.; Thai, H.Q.; Ho, M.H.; Thwaites, G.; Ngo, H.T.; Baker, S.; et al. Use of colistin and other critical antimicrobials on pig and chicken farms in southern Vietnam and its association with resistance in commensal Escherichia coli bacteria. Appl. Environ. Microbiol. 2016, 82, 3727–3735. [Google Scholar] [CrossRef] [PubMed]
- Wongsuvan, G.; Wuthiekanun, V.; Hinjoy, S.; Day, N.P.; Limmathurotsakul, D. Antibiotic use in poultry: A survey of eight farms in Thailand. Bull. World Health Organ. 2018, 96, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, Y.; Asai, T.; Koike, R.; Tsuyuki, M.; Sugiura, K. Sales of veterinary antimicrobial agents for therapeutic use in food-producing animal species in Japan between 2005 and 2010. Rev. Sci. Tech. 2014, 33, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Kabir, J.; Umoh, V.J.; Audu-okoh, E.; Umoh, J.U.; Kwaga, J.K.P. Veterinary drug use in poultry farms and determination of antimicrobial drug residues in commercial eggs and slaughtered chicken in Kaduna State, Nigeria. Food Control 2004, 15, 99–105. [Google Scholar] [CrossRef]
- Adesokan, H.K.; Akanbi, I.O.; Akanbi, I.M.; Obaweda, R.A. Pattern of antimicrobial usage in livestock animals in south-western Nigeria: The need for alternative plans. Onderstepoort J. Vet. Res. 2015, 82, 816. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.E.; Fabusoro, E.; Majasan, A.A.; Dipeolu, M.A. Antimicrobials in animal production: Usage and practices among livestock farmers in Oyo and Kaduna States of Nigeria. Trop. Anim. Health Prod. 2016, 48, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Geidam, Y.A.; Ibrahim, U.I.; Grema, H.A.; Sanda, K.A.; Suleiman, A.; Mohzo, D.L. Patterns of antibiotic sales by drug stores and usage in poultry farms: A questionnaire-based survey in Maiduguri, northeastern Nigeria. J. Anim. Vet. Adv. 2012, 11, 2852–2855. [Google Scholar] [CrossRef]
- Wadoum, R.E.G.; Zambou, N.F.; Anyangwe, F.F.; Njimou, J.R.; Coman, M.M.; Verdenelli, M.C.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A.; et al. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br. Poult. Sci. 2016, 57, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Nonga, H.E.; Simon, C.; Karimuribo, E.D.; Mdegela, R.H. Assessment of antimicrobial usage and residues in commercial chicken eggs from smallholder poultry keepers in Morogoro municipality, Tanzania. Zoonoses Public Health 2010, 57, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Eagar, H.; Swan, G.; van Vuuren, M. A survey of antimicrobial usage in animals in South Africa with specific reference to food animals. J. S. Afr. Vet. Assoc. 2012, 83, 16. [Google Scholar] [CrossRef] [PubMed]
- Jordan, D.; Chin, J.J.C.; Fahy, V.A.; Barton, M.D.; Smith, M.G.; Trott, D.J. Antimicrobial use in the Australian pig industry: Results of a national survey. Aust. Vet. J. 2009, 87, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Bryan, M.; Hea, S.Y. A survey of antimicrobial use in dairy cows from farms in four regions of New Zealand. N. Z. Vet. J. 2017, 65, 93. [Google Scholar] [CrossRef] [PubMed]
- Hillerton, J.E.; Irvine, C.R.; Bryan, M.A.; Scott, D.; Merchant, S.C. Use of antimicrobials for animals in New Zealand, and in comparison with other countries. N. Z. Vet. J. 2017, 65, 71–77. [Google Scholar] [CrossRef] [PubMed]
- McDougall, S.; Niethammer, J.; Graham, E.M. Antimicrobial usage and risk of retreatment for mild to moderate clinical mastitis cases on dairy farms following on-farm bacterial culture and selective therapy. N. Z. Vet. J. 2018, 66, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Scoppetta, F.; Sensi, M.; Franciosini, M.P.; Capuccella, M. Evaluation of antibiotic usage in swine reproduction farms in umbria region based on the quantitative analysis of antimicrobial consumption. Ital. J. Food Saf. 2017, 6, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Radke, B.R. Towards an improved estimate of antimicrobial use in animals: Adjusting the “population correction unit” calculation. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2017, 81, 235–240. [Google Scholar]
- Beegle, K.; Carletto, C.; Himelein, K. Reliability of recall in agricultural data. J. Dev. Econ. 2012, 98, 34–41. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Guidance on Collection and Provision of National Data on Antimicrobial Use by Animal Species/Categories; European Medicines Agency (EMA): London, UK, 2018; 39p. [Google Scholar]
- AACTING. Herd-level antimicrobial consumption in Europe: Collect-Analyse-Benchmark-Communicate. Available online: http://www.aacting.org/aacting-project (accessed on 30 July 2018).
- European Medicines Agency (EMA). Principles on Assignment of Defined Daily Dose for Animals (DDDvet) and Defined Course Dose for Animals (DCDvet); European Medicines Agency (EMA): London, UK, 2018; 68p. [Google Scholar]
- Baron, S.; Jouy, E.; Larvor, E.; Eono, F.; Bougeard, S.; Kempf, I. Impact of third-generation-cephalosporin administration in hatcheries on fecal Escherichia coli antimicrobial resistance in broilers and layers. Antimicrob. Agents Chemother. 2014, 58, 5428–5434. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.; Van, N.T.B.; Cuong, N.V.; Duong, T.T.Q.; Nhat, T.T.; Hang, T.T.T.; Nhi, N.T.H.; Kiet, B.T.; Hien, V.B.; Ngoc, P.T.; et al. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam. Int. J. Food Microbiol. 2018, 266, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fevre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Opinion paper: Antibiotic resistance: Mitigation opportunities in livestock sector development. Animal 2017, 11, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.P.; Eisenberg, J.N.S.; Trueba, G.; Zhang, L.X.; Johnson, T.J. Small-scale food animal production and antimicrobial resistance: Mountain, molehill, or somethingin-between? Environ. Health Perspect. 2017, 125, 5. [Google Scholar] [CrossRef] [PubMed]
Category | Sub-Category | Number of Studies (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
HICs | LMICs | All Studies | ||||||||
Qualitative (n = 32) | Quantitative (n = 53) | All Types (n = 72) | Qualitative (n = 14) | Quantitative (n = 7) | All Types (n = 17) | Qualitative (n = 46) | Quantitative (n = 60) | All Types (n = 89) | ||
Year of publication | 2014–2018 | 9 (28) | 26 (55) | 31 (43) | 10 (72) | 6 (86) | 12 (70) | 19 (41) | 35 (59) | 43 (48) |
2009–2013 | 8 (25) | 13 (24) | 19 (26) | 2 (14) | 1 (14) | 3 (18) | 10 (22) | 14 (23) | 22 (25) | |
2004–2008 | 12 (38) | 8 (15) | 17 (24) | 2 (14) | 0 (0) | 2 (12) | 14 (30) | 8 (13) | 19 (21) | |
1998–2003 | 3 (9) | 3 (6) | 5 (7) | 0 (0) | 0 (0) | 0 (0) | 3 (7) | 3 (5) | 5 (6) | |
Country location * | Europe | 13 (41) | 38 (73) | 47 (65) | 0 (0) | 0 (0) | 0 (0) | 13 (28) | 39 (65) | 47 (53) |
Americas | 17 (53) | 9 (17) | 18 (25) | 2 (14) | 1(14) | 2 (12) | 19 (42) | 10 (16) | 20 (23) | |
Asia | 1 (3) | 2 (4) | 3 (4) | 6 (42) | 5 (72) | 8 (47) | 7 (15) | 7 (12) | 11 (12) | |
Africa | 0 (0) | 0 (0) | 0 (0) | 6 (42) | 1(14) | 7 (41) | 6 (13) | 1 (2) | 7 (8) | |
Oceania | 1 (3) | 2 (4) | 4 (6) | 0 (0) | 0 (0) | 0 (0) | 1 (2) | 3 (5) | 4 (4) | |
Study design | Farm survey | 27 (84) | 33 (62) | 48 (67) | 11 (79) | 6 (86) | 13 (76) | 38 (83) | 38 (60) | 59 (66) |
Sales data | 1 (3) | 15 (28) | 15 (28) | 0 (0) | 1 (14) | 0 (0) | 1 (2) | 15 (24) | 15 (16) | |
Veterinarian survey | 4 (13) | 6 (11) | 10 (19) | 1 (7) | 0 (0) | 1 (6) | 5 (11) | 7 (11) | 11 (12) | |
Pharmacy survey | 0 (0) | 2 (4) | 2 (4) | 2 (14) | 0 (0) | 3 (18) | 2 (4) | 3 (5) | 5 (6) | |
Animal species | Swine | 11 (31) | 25 (47) | 36 (50) | 3 (19) | 1 (11) | 4 (23) | 14 (30) | 26 (43) | 39 (44) |
Cattle | 20 (56) | 23 (43) | 36 (50) | 3 (19) | 2 (29) | 3 (18) | 23 (50) | 27 (45) | 39 (44) | |
Poultry | 5 (14) | 11 (21) | 13 (18) | 7 (44) | 5 (71) | 9 (53) | 12 (26) | 16 (27) | 22 (25) | |
Combined data | 0 (0) | 5 (9) | 5 (7) | 3 (19) | 1 (11) | 4 (23) | 3 (7) | 6 (10) | 9 (10) |
Type of Animal Production (N) | All Studies (N) | |||||||
---|---|---|---|---|---|---|---|---|
Population at Risk | Dairy | Beef | Cattle (Unsp.) | Poultry | Swine | Total Use | ||
Weight of antimicrobial | Animal-time | [63] (1) | [81] (1) | - | [97] (1) | [94] (1) | - | (4) |
No. animals produced | [69] (1) | - | - | [80,97] (2) | [47] (1) | - | (4) | |
Weight of animal production | [104] (1) | [104] (1) | [101] (1) | [101,102,103,104] (4) | [44,102,104] (3) | - | (6) | |
Weight of animal at treatment | [74,113] (2) | - | [64] (1) | [84] (1) | [60,61,64] (3) | [5,70,114] (3) | (10) | |
Weight of animal time | [63] (1) | - | - | - | - | - | (1) | |
No population at risk | [71,115] (2) | - | [5,43] (2) | [5] (1) | [5,43] (2) | [111] (1) | (5) | |
No. animals treated | Animal-time | - | - | - | - | [75] (1) | - | (1) |
No. animals produced | - | - | - | [33] (1) | - | - | (1) | |
No. treatment courses | Animal-time | [63] (1) | - | - | - | - | - | (1) |
No. animals produced | - | [40,41] (1) | - | - | - | - | (1) | |
No. daily doses | Animal-time | [30,31,53,63,65,69,72,74,82,83,85,91,93] (13) | [51,67,81] (3) | [56] (1) | [51,52,67,84,96] (5) | [32,45,46,47,49,50,51,54,55,56,57,60,62,66,67,68,116] (17) | - | (32) |
No population at risk | [58] (1) | - | - | - | [58] (1) | [59] (1) | (2) | |
No. studies | (18) | (5) | (5) | (13) | (27) | (5) | (60) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuong, N.V.; Padungtod, P.; Thwaites, G.; Carrique-Mas, J.J. Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle-Income Countries. Antibiotics 2018, 7, 75. https://doi.org/10.3390/antibiotics7030075
Cuong NV, Padungtod P, Thwaites G, Carrique-Mas JJ. Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle-Income Countries. Antibiotics. 2018; 7(3):75. https://doi.org/10.3390/antibiotics7030075
Chicago/Turabian StyleCuong, Nguyen V., Pawin Padungtod, Guy Thwaites, and Juan J. Carrique-Mas. 2018. "Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle-Income Countries" Antibiotics 7, no. 3: 75. https://doi.org/10.3390/antibiotics7030075
APA StyleCuong, N. V., Padungtod, P., Thwaites, G., & Carrique-Mas, J. J. (2018). Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle-Income Countries. Antibiotics, 7(3), 75. https://doi.org/10.3390/antibiotics7030075