Appraisal of Multidrug-Resistant Listeria monocytogenes and Salmonella spp. Recovered from Commercial Meat Samples in the Eastern Cape, South Africa: Implications for Public Health Safety
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Clearance
2.2. Description of the Study Area
2.3. Specimen Collection and Processing
2.4. Bacterial Isolation
2.4.1. Isolation of Salmonella Species from Meat Specimens
2.4.2. Isolation of LMO from Meat Specimens
2.5. Genomic DNA Extraction
2.6. Molecular Confirmation of Suspected Salmonella and Listeria Isolates
2.7. Antibiotics Susceptibility Profiling
2.8. Antibiotic Resistance Gene Profiling
3. Results
3.1. Molecular Confirmation
3.1.1. Molecular Confirmation of Salmonella spp. Using PCR Technique
3.1.2. Molecular Confirmation of Listeria spp. Using PCR Technique
3.2. Antibiotics Susceptibility Profiling
3.2.1. Antibiotic Susceptibility Profiling of the Confirmed Salmonella Isolates
3.2.2. Antibiotic Susceptibility Profiling of the Confirmed LMO
3.2.3. Multiple Antibiotics Resistance Phenotypes and Multiple Antibiotic Resistance Index
3.3. Antimicrobial Resistance Determinants Among Listeria and Salmonella Isolates
3.4. Colistin Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aslam, B.; Asghar, R.; Muzammil, S.; Shafique, M.; Siddique, A.B.; Khurshid, M.; Ijaz, M.; Rasool, M.H.; Chaudhry, T.H.; Aamir, A.; et al. AMR and Sustainable Development Goals: At a crossroads. Glob. Health 2024, 20, 73. [Google Scholar] [CrossRef]
- Rafailidis, P.I.; Kofteridis, D. Proposed amendments regarding the definitions of multidrug-resistant and extensively drug-resistant bacteria. Expert Rev. Anti-Infect. Ther. 2022, 20, 139–146. [Google Scholar] [CrossRef]
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef]
- Habib, I.; Mohamed, M.-Y.I.; Khan, M. Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2021, 10, 2369. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Ferreira, J.P.; LeJeune, J.T. Antimicrobial Use and Resistance in Plant Agriculture: A One Health Perspective. Agriculture 2022, 12, 289. [Google Scholar] [CrossRef]
- Rana, S.; Maurya, S.; Chadrasekhar, H.; Srikanth, C.V. Molecular determinants of peaceful coexistence versus invasiveness of non-Typhoidal Salmonella: Implications in long-term side-effects. Mol. Asp. Med. 2021, 81, 100997. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.; Wilson, P.J.K. Gastroenteritis due to Salmonella. In Close Encounters of the Microbial Kind: Everything You Need to Know About Common Infections; Springer: Berlin/Heidelberg, Germany, 2021; pp. 451–461. [Google Scholar]
- Jain, P.; Chowdhury, G.; Samajpati, S.; Basak, S.; Ganai, A.; Samanta, S.; Okamoto, K.; Mukhopadhyay, A.K.; Dutta, S. Characterization of non-typhoidal Salmonella isolates from children with acute gastroenteritis, Kolkata, India, during 2000–2016. Braz. J. Microbiol. 2020, 51, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Ragasa, T.; Rebuma, T.; Zende, R. Salmonellosis Remains the Hidden Menace in Our Global Food Supply: A Comprehensive Review. Am. J. Med. Biol. Res. 2024, 12, 1–12. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Cresence, V.M.; Rejitha, J.S.; Lekshmi, M.U.; Dharsana, K.S.; Prasad, S.P.; Vijila, H.M. Listeria—Review of epidemiology and pathogenesis. J. Microbiol. Immunol. Infect. 2007, 40, 4. [Google Scholar]
- Koopmans, M.M.; Brouwer, M.C.; Vázquez-Boland, J.A.; van de Beek, D. Human Listeriosis. Clin. Microbiol. Rev. 2023, 36, e0006019. [Google Scholar] [CrossRef]
- Zahid, R.; Arbab, Z.; Tahir, Z.; Tehseen, U.; Ali, S.; Bukhsh, S.K.; Javaid, A.; Rehman, A.; Khan, A. Global Prevalence of Listeriosis. In Zoonosis; Unique Scientific Publishers: Faisalabad, Pakistan, 2023; Volume 4, pp. 319–328. [Google Scholar] [CrossRef]
- Smith, A.M.; Tau, N.P.; Smouse, S.L.; Allam, M.; Ismail, A.; Ramalwa, N.R.; Disenyeng, B.; Ngomane, M.; Thomas, J. Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory Activities and Experiences Associated with Whole-Genome Sequencing Analysis of Isolates. Foodborne Pathog. Dis. 2019, 16, 524–530. [Google Scholar] [CrossRef]
- Upmanyu, N.; Malviya, V.N. Antibiotics: Mechanisms of action and modern challenges. In Microorganisms for Sustainable Environment and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 367–382. [Google Scholar]
- Baquero, F.; Levin, B.R. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat. Rev. Microbiol. 2021, 19, 123–132. [Google Scholar] [CrossRef]
- Belay, W.Y.; Getachew, M.; Tegegne, B.A.; Teffera, Z.H.; Dagne, A.; Zeleke, T.K.; Abebe, R.B.; Gedif, A.A.; Fenta, A.; Yirdaw, G.; et al. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: A review. Front. Pharmacol. 2024, 15, 1444781. [Google Scholar] [CrossRef]
- Turner, J.; Muraoka, A.; Bedenbaugh, M.; Childress, B.; Pernot, L.; Wiencek, M.; Peterson, Y.K. The Chemical Relationship Among Beta-Lactam Antibiotics and Potential Impacts on Reactivity and Decomposition. Front. Microbiol. 2022, 13, 807955. [Google Scholar] [CrossRef]
- Mucsi, Z.; Chass, G.A.; Ábrányi-Balogh, P.; Jójárt, B.; Fang, D.-C.; Ramirez-Cuesta, A.J.; Viskolcz, B.; Csizmadia, I.G. Penicillin’s catalytic mechanism revealed by inelastic neutrons and quantum chemical theory. Phys. Chem. Chem. Phys. 2013, 15, 20447–20455. [Google Scholar] [CrossRef] [PubMed]
- Elshobary, M.E.; Badawy, N.K.; Ashraf, Y.; Zatioun, A.A.; Masriya, H.H.; Ammar, M.M.; Mohamed, N.A.; Mourad, S.; Assy, A.M. Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review. Pharmaceuticals 2025, 18, 402. [Google Scholar] [CrossRef] [PubMed]
- Fahim, N.A.I.; Masud, R.I.; Salam, S.; Hasan, M.A.E.; Rahman, A.M.T.; Punom, S.A.; Rahman, M.T. Role of Enterococcus in spreading antimicrobial resistance genes and its public health significance. Ger. J. Vet. Res. 2025, 5, 95–112. [Google Scholar] [CrossRef]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, E.M. Molecular Detection of Multidrug-Resistant Salmonella Isolated from Livestock Production Systems in South Africa. Infect. Drug Resist. 2019, 12, 3537–3548. [Google Scholar] [CrossRef]
- Keet, R.; Rip, D. Listeria monocytogenes isolates from Western Cape, South Africa exhibit resistance to multiple antibiotics and contradicts certain global resistance patterns. AIMS Microbiol. 2021, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Rosario, S.S.-D.; Rivera, W. Incidence and molecular detection of Salmonella enterica serogroups and spvC virulence gene in raw and processed meats from selected wet markets in Metro Manila, Philippines. Int. J. Philipp. Sci. Technol. 2015, 8, 52–55. [Google Scholar] [CrossRef]
- ElMalek, A.; Ali, S.F.H.; Hassanein, R.; Moemen, M.; Abdelazeem, A.; Elsayh, M.; AbdEl-Malek, A.M.; Elsayh, K.I. Occurrence of Listeria species in meat, chicken products and human stools in Assiut city, Egypt with PCR use for rapid identification of Listeria monocytogenes. Vet. World 2010, 3, 353–359. [Google Scholar] [CrossRef]
- Angelidis, A.S.; Kalamaki, M.S.; Georgiadou, S.S. Identification of non-Listeria spp. bacterial isolates yielding a β-d-glucosidase-positive phenotype on Agar Listeria according to Ottaviani and Agosti (ALOA). Int. J. Food Microbiol. 2015, 193, 114–129. [Google Scholar] [CrossRef]
- Gugliandolo, C.; Lentini, V.; Spanò, A.; Maugeri, T. Conventional and molecular methods to detect bacterial pathogens in mussels. Lett. Appl. Microbiol. 2011, 52, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Malik, S.; Bhilegaonkar, K.N.; Vaidya, V.M.; Barbuddhe, S.B. Use of a phospholipase-C assay, in vivo pathogenicity assays and PCR in assessing the virulence of Listeria spp. Vet. J. 2010, 184, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Jawad, A.A.K.; Al-Charrakh, A.H. Outer membrane protein C (ompC) gene as the target for diagnosis of Salmonella species isolated from human and animal sources. Avicenna J. Med. Biotechnol. 2016, 8, 42. [Google Scholar]
- Oueslati, W.; Rjeibi, M.R.; Mhadhbi, M.; Jbeli, M.; Zrelli, S.; Ettriqui, A. Prevalence, virulence and antibiotic susceptibility of Salmonella spp. strains, isolated from beef in Greater Tunis (Tunisia). Meat Sci. 2016, 119, 154–159. [Google Scholar] [CrossRef]
- Jami, S.; Jamshidi, A.; Khanzadi, S. The presence of Listeria monocytogenes in raw milk samples in Mashhad, Iran. Iran. J. Vet. Res. 2010, 11, 363–367. [Google Scholar]
- Iwu, C.D.; Okoh, A.I. Characterization of antibiogram fingerprints in Listeria monocytogenes recovered from irrigation water and agricultural soil samples. PLoS ONE 2020, 15, e0228956. [Google Scholar] [CrossRef]
- Clinical Laboratory Standard Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Xavier, B.B.; Lammens, C.; Ruhal, R.; Kumar-Singh, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016, 21, 30280. [Google Scholar] [CrossRef]
- Yin, W.; Li, H.; Shen, Y.; Liu, Z.; Wang, S.; Shen, Z.; Zhang, R.; Walsh, T.R.; Shen, J.; Wang, Y. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. mBio 2017, 8, e00543-17, Erratum in mBio 2017, 8, e01166-17. [Google Scholar] [CrossRef]
- Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzotti, G.; Magistrali, C.F. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017, 22, 30589. [Google Scholar] [CrossRef]
- Borowiak, M.; Fischer, J.; Hammerl, A.J.; Hendriksen, R.S.; Szabo, I.; Malorny, B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar. Paratyphi B. J. Antimicrob. Chemother. 2017, 72, 3317–3324. [Google Scholar] [CrossRef]
- Yang, F.; Shen, C.; Zheng, X.; Liu, Y.; Ahmed, M.A.E.-G.E.-S.; Zhao, Z.; Liao, K.; Shi, Y.; Guo, X.; Zhong, R.; et al. Plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli and Klebsiella pneumoniae isolated from market retail fruits in Guangzhou, China. Infect. Drug Resist. 2019, 12, 385–389. [Google Scholar] [CrossRef]
- Msolo, L.; Iweriebor, B.C.; Okoh, A.I. Antimicrobial Resistance Profiles of Diarrheagenic E. coli (DEC) and Salmonella Species Recovered from Diarrheal Patients in Selected Rural Communities of the Amathole District Municipality, Eastern Cape Province, South Africa. Infect. Drug Resist. 2020, 13, 4615–4626. [Google Scholar] [CrossRef]
- Yu, Z.; Qin, W.; Lin, J.; Fang, S.; Qiu, J. Antibacterial Mechanisms of Polymyxin and Bacterial Resistance. BioMed Res. Int. 2015, 2015, 679109. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Letellier, A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef]
- Yu, Z.; Zhu, Y.; Fu, J.; Qiu, J.; Yin, J. Enhanced NADH Metabolism Involves Colistin-Induced Killing of Bacillus subtilis and Paenibacillus polymyxa. Molecules 2019, 24, 387. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.A.E.G.; Zhong, L.-L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.-B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed]
- Matle, I.; Mbatha, K.R.; Lentsoane, O.; Magwedere, K.; Morey, L.; Madoroba, E. Occurrence, serotypes, and characteristics of Listeria monocytogenes in meat and meat products in South Africa between 2014 and 2016. J. Food Saf. 2019, 39, e12629. [Google Scholar] [CrossRef]
- Amer, M.M.; Amer, A.M.; Hassan, E.R.; Ghetas, A.M. Salmonella enteritidis in broiler chickens: Isolation, anti-biotic resistance phenotyping and efficacy of colistin on control of experimental infection. Int. J. Vet. Sci. 2020, 9, 267–272. [Google Scholar]
- Prasertsee, T.; Prachantasena, S.; Tantitaveewattana, P.; Chuaythammakit, P.; Pascoe, B.; Patchanee, P. Assessing antimicrobial resistance profiles of Salmonella enterica in the pork production system. J. Med. Microbiol. 2024, 73, 001894. [Google Scholar] [CrossRef]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: A narrative review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef] [PubMed]
- Vinayamohan, P.G.; Pellissery, A.J.; Venkitanarayanan, K. Role of horizontal gene transfer in the dissemination of antimicrobial resistance in food animal production. Curr. Opin. Food Sci. 2022, 47, 100882. [Google Scholar] [CrossRef]
- Peng, M.; Salaheen, S.; Buchanan, R.L.; Biswas, D. Alterations of Salmonella enterica Serovar Typhimurium Antibiotic Resistance under Environmental Pressure. Appl. Environ. Microbiol. 2018, 84, e01173-18. [Google Scholar] [CrossRef]
- Du, X.-J.; Zhang, X.; Wang, X.-Y.; Su, Y.-L.; Li, P.; Wang, S. Isolation and characterization of Listeria monocytogenes in Chinese food obtained from the central area of China. Food Control. 2017, 74, 9–16. [Google Scholar] [CrossRef]
- Shourav, A.H.; Hasan, M.; Ahmed, S. Antibiotic susceptibility pattern of Listeria spp. isolated from cattle farm environment in Bangladesh. J. Agric. Food Res. 2020, 2, 100082. [Google Scholar] [CrossRef]
- Kayode, A.J.; Okoh, A.I. Incidence and genetic diversity of multi-drug resistant Listeria monocytogenes isolates recovered from fruits and vegetables in the Eastern Cape Province, South Africa. Int. J. Food Microbiol. 2022, 363, 109513. [Google Scholar] [CrossRef]
- Jelić, D.; Antolović, R. From Erythromycin to Azithromycin and New Potential Ribosome-Binding Antimicrobials. Antibiotics 2016, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Luque-Sastre, L.; Arroyo, C.; Fox, E.M.; McMahon, B.J.; Bai, L.; Li, F.; Fanning, S. Antimicrobial Resistance in Listeria Species. Microbiol. Spectr. 2018, 6, 1110–1128. [Google Scholar] [CrossRef]
- Nadar, S.; Khan, T.; Patching, S.G.; Omri, A. Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms 2022, 10, 303. [Google Scholar] [CrossRef]
- Myintzaw, P.; Pennone, V.; McAuliffe, O.; Begley, M.; Callanan, M. Association of Virulence, Biofilm, and Antimicrobial Resistance Genes with Specific Clonal Complex Types of Listeria monocytogenes. Microorganisms 2023, 11, 1603. [Google Scholar] [CrossRef]
- Godreuil, S.; Galimand, M.; Gerbaud, G.; Jacquet, C.; Courvalin, P. Efflux Pump Lde Is Associated with Fluoroquinolone Resistance in Listeria monocytogenes. Antimicrob. Agents Chemother. 2003, 47, 704–708. [Google Scholar] [CrossRef]
- Mata, M.; Baquero, F.; Perez-Diaz, J. A multidrug efflux transporter in Listeria monocytogenes. FEMS Microbiol. Lett. 2000, 187, 185–188. [Google Scholar] [CrossRef]
- Guérin, F.; Galimand, M.; Tuambilangana, F.; Courvalin, P.; Cattoir, V. Overexpression of the Novel MATE Fluoroquinolone Efflux Pump FepA in Listeria monocytogenes Is Driven by Inactivation of Its Local Repressor FepR. PLoS ONE 2014, 9, e106340. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, E.; Courvalin, P. Antibiotic Resistance in Listeria spp. Antimicrob. Agents Chemother. 1999, 43, 2103–2108. [Google Scholar] [CrossRef]
- Endale, H.; Mathewos, M.; Abdeta, D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infect. Drug Resist. 2023, 16, 7515–7545. [Google Scholar] [CrossRef]
- Shang, K.; Wei, B.; Jang, H.-K.; Kang, M. Phenotypic characteristics and genotypic correlation of antimicrobial resistant (AMR) Salmonella isolates from a poultry slaughterhouse and its downstream retail markets. Food Control. 2019, 100, 35–45. [Google Scholar] [CrossRef]
- Wu, S.; Wu, Q.; Zhang, J.; Chen, M.; Yan, Z.; Hu, H. Listeria monocytogenes Prevalence and Characteristics in Retail Raw Foods in China. PLoS ONE 2015, 10, e0136682. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean Water 2020, 3, 4. [Google Scholar] [CrossRef]
- McMillan, E.A.; Jackson, C.R.; Frye, J.G. Transferable Plasmids of Salmonella enterica Associated with Antibiotic Resistance Genes. Front. Microbiol. 2020, 11, 562181. [Google Scholar] [CrossRef]
- Nazari Moghadam, M.; Rahimi, E.; Shakerian, A.; Momtaz, H. Prevalence of Salmonella Typhimurium and Salmonella Enteritidis isolated from poultry meat: Virulence and antimicrobial-resistant genes. BMC Microbiol. 2023, 23, 168. [Google Scholar] [CrossRef]
- Naderi Mezajin, M.; Fatemizadeh, M.; Rostami, Z.; Khaki, P.; Shirzad, M.; Noorbakhsh, F. Antibiotic resistance pattern and frequency of SHV, CTX, TEM, and OXA resistance gene among Salmonella serotypes. Health Biotechnol. Biopharma 2022, 6, 64–77. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, Y.; Xiao, Y. Prevalence and transmission of mobilized colistin resistance (mcr) gene in bacteria common to animals and humans. Biosaf. Health 2020, 2, 71–78. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Jaja, I.F.; Nwobi, O.C. Occurrence and Characteristics of Mobile Colistin Resistance (mcr) Gene-Containing Isolates from the Environment: A Review. Int. J. Environ. Res. Public Health 2020, 17, 1028. [Google Scholar] [CrossRef] [PubMed]
- Zeb, S.; Nazir, A.; Hameed, M.F.; Ikram, S.; Naqvi, S.Z.H.; Shoaib, M.; Butaye, P.; Wang, Z.; Li, R.; Lu, X. Colistin Resistance in Gram-Negative Bacteria: Mechanisms, Transmission, and Novel Intervention Strategies. Microorganisms 2026, 14, 173. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, M.U.; Jaja, I.F.; Okpala, C.O.R.; Njoga, E.O.; Okafor, N.A.; Oguttu, J.W. Mobile Colistin Resistance (mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics 2023, 12, 1117. [Google Scholar] [CrossRef]
- Gogry, F.A.; Siddiqui, M.T.; Sultan, I.; Haq, Q.M.R. Current update on intrinsic and acquired colistin resistance mechanisms in bacteria. Front. Med. 2021, 8, 677720. [Google Scholar] [CrossRef]












| Sites (Retailers/Supermarkets) | Classification of Retailers/Supermarkets | Maximum Number of Raw Meat Samples Collected (n = 65) | |||
|---|---|---|---|---|---|
| Beef | Mutton | Pork | Sausages | ||
| Site A | Large | 5 | 4 | 4 | 3 |
| Site B | Medium | 2 | 3 | 4 | 3 |
| Site C | Medium | 4 | 2 | 3 | 0 |
| Site D | Medium | 2 | 2 | 2 | 2 |
| Site E | Medium | 3 | 3 | 3 | 0 |
| Site F | Medium | 2 | 3 | 3 | 3 |
| Total number of raw meat samples collected across the six retail sites | 18 | 17 | 19 | 11 | |
| Grand Total | 65 meat samples | ||||
| Primers | Primer Sequences (5′–3′) | Amplicon Size (bp) | Annealing Temperature (°C) | Reference (s) |
|---|---|---|---|---|
| prsF | GCTGAAGAGATTGCGAAAGAAG | 370 | 52 | [30] |
| prsR | CAAAGAAACCTTGGATTTGCGG | |||
| iapF | ACAAGCTGCACCTGTTGCAG | 131 | 56 | [27] |
| iapR | TGACAGCGTGTGTAGTAGCA |
| Primer(s) | Primer Sequence(s) | Amplicon Size (bp) | PCR Thermal Cycling Parameters | Cycles |
|---|---|---|---|---|
| ompC | F-ATCGCTGACTTATGCAAT R-CGG GTTGCGTTATAGGTC | 204 | 95 °C, 95 °C, 57 °C, 72 °C, 72 °C 1′, 20″, 15″, 2′, 7′ | 35 |
| invaA | F-TATCGCCACGTTCGGGCAA R-TCGCACCGTCAAAGGAACC | 275 |
| Antimicrobial Class | Antimicrobial Agent | Potency |
|---|---|---|
| Macrolides | Azithromycin | 15 µg |
| Erythromycin | 15 µg | |
| β-lactams | Penicillin G | 10 µg |
| Ampicillin | 10 µg | |
| Polymyxins | Colistin | 25 µg |
| Aminoglycosides | Streptomycin | 10 µg |
| Amikacin | 30 µg | |
| Gentamycin | 10 µg | |
| Tetracyclines | Tetracycline | 30 µg |
| Nitrofurans | Nitrofurantoin | 200 µg |
| Cephalosporin antibiotics (3rd generation) | Cefotaxime | 30 µg |
| Antimetabolites | Trimethoprim | 25 µg |
| Fluoroquinolones | Ciprofloxacin | 5 µg |
| 3rd Generation Cephalosporins | Ceftazidime | 30 µg |
| Carbapenems | Meropenem | 10 µg |
| Imipenem | 10 µg |
| Resistance Genes | Nucleotide Sequence (5′→3′) | Amplicon Size (bp) | Annealing Temperature (°C) | Reference(s) |
|---|---|---|---|---|
| mcr-1 | F: CGGTCAGTCCGTTTGTTC R: CTTGGTCGGTCTGTAGGG | 309 | 55 | [33] |
| mcr-2 | F: TGTTGCTTGTGCCGATTGGA R: AGATGGTATTGTTGGTTGCTG | 567 | 65 | [34] |
| mcr-3 | F: TTGGCACTGTATTTTGCATTT R: TTAACGAAATTGGCTGGAACA | 542 | 50 | [35] |
| mcr-4 | F: ATTGGGATAGTCGCCTTTTT R: TTACAGCCAGAATCATTATCA | 488 | 58 | [36] |
| mcr-5 | F: TATCTCGACAAGGCCATGCTG R: GAATCTGGCGTTCGTCGTAGT | 613 | 50 | [37] |
| mcr-6 | F: GTCCGGTCAATCCCTATCTGT R: ATCACGGGATTGACATAGCTAC | 556 | 55 | [38] |
| BlaTem | F: TTTCGTGTCGCCCTTATTC R: CCGGCTCCAGATTTATCA | 445 | 60 | [39] |
| Sul2 | F: CGGCATCGTCAACATAA R: GTGTGCGGATGAAGTCA | 625 | 50 |
| Listeria spp. | |||
|---|---|---|---|
| Type of meat | Number of screened presumptive isolates (n = 48) | Number of confirmed Listeria spp. (n = 37) | Number of confirmed LMO (n = 30) |
| Beef | 18 | 16 | 12 |
| Mutton | 12 | 8 | 6 |
| Sausage | 10 | 8 | 8 |
| Pork | 8 | 5 | 4 |
| Total | 48 | 37 | 30 |
| Salmonella spp. | |||
| Type of meat | Number of screened presumptive isolates (n = 44) | Number of confirmed Salmonella isolates | |
| Beef | 18 | 18 | |
| Mutton | 8 | 8 | |
| Sausage | 11 | 6 | |
| Pork | 7 | - | |
| Total | 44 | 32 | |
| No. of Salmonella spp. Isolates | MARP of Salmonella spp. | MARI |
|---|---|---|
| 1 | TS-CAZ-T | 0.3 |
| 29 | TS-CAZ-T | 0.3 |
| 36 | CAZ-T-CO | 0.3 |
| 18 | TS-T-CO | 0.3 |
| 20 | TS-CAZ-T | 0.3 |
| 3 | TS-CTX-CAZ-CO | 0.4 |
| 4 | TS-CAZ-T-CO | 0.4 |
| 35 | TS-CAZ-T-CO | 0.4 |
| 40 | TS-CAZ-T-CO | 0.4 |
| 5 | TS-CAZ-T-CO | 0.4 |
| 39 | TS-CTX-CAZ-CO | 0.4 |
| 7 | TS-CAZ-T-CO | 0.4 |
| 8 | TS-CTX-CAZ-CO | 0.4 |
| 10 | TS-CAZ-CTX-CO | 0.4 |
| 11 | TS-CAZ-T-CO | 0.4 |
| 13 | TS-CAZ-T-CO | 0.4 |
| 14 | TS-CTX-T-CO | 0.4 |
| 15 | TS-CAZ-T-CO | 0.4 |
| 16 | TS-CAZ-T-CO | 0.4 |
| 17 | TS-T-ATH-CO | 0.4 |
| 23 | TS-CAZ-T-CO | 0.4 |
| 32 | TS-CTX-CAZ-CO | 0.4 |
| 33 | TS-CTX-CAZ-CO | 0.4 |
| 34 | TS-CTX-CAZ-T-CO | 0.5 |
| 22 | TS-CAZ-T-ATH-CO | 0.5 |
| 31 | TS-CTX-CAZ-T-CO | 0.5 |
| 38 | TS-CTX-CAZ-T-CO | 0.5 |
| 2 | TS-CTX-CAZ-T-CO | 0.5 |
| 6 | TS-CAZ-CTX-T-CO | 0.5 |
| 9 | TS-CAZ-CTX-T-CO | 0.5 |
| 12 | TS-CTX-CAZ-T-CO | 0.5 |
| MAR Phenotypes | Number of Antibiotics | No Observed | MARI |
|---|---|---|---|
| PG-NI-CO | 3 | 5 | 0.27 |
| PG-MEM-CO | 3 | 1 | 0.27 |
| PG-NI-CO | 3 | 5 | 0.27 |
| PG-AP-NI | 3 | 1 | 0.27 |
| PG-E-NI-CO | 3 | 1 | 0.27 |
| CIP-NI-CO | 3 | 1 | 0.27 |
| PG-AP-NI-CO | 4 | 4 | 0.36 |
| PG-CIP-CO-OT | 4 | 1 | 0.36 |
| PG-MEM-NI-CO | 4 | 3 | 0.36 |
| PG-E-NI-CO | 4 | 3 | 0.36 |
| PG-AP-NI-CO | 4 | 4 | 0.36 |
| PG-E-NI-CO | 4 | 3 | 0.36 |
| PG-MEM-NI-CO | 4 | 3 | 0.36 |
| PG-E-NI-CO | 4 | 3 | 0.36 |
| PG-AP-NI-CO | 4 | 4 | 0.36 |
| PG-E-NI-CO | 4 | 3 | 0.36 |
| PG-MEM-NI-CO | 4 | 3 | 0.36 |
| PG-AP-NI-CO | 4 | 4 | 0.36 |
| PG-AP-E-MEM-CO | 5 | 1 | 0.45 |
| PG-E-CIP-NI-CO | 5 | 1 | 0.45 |
| PG-E-MEM-NI-CO | 5 | 1 | 0.45 |
| PG-ATH-CIP-CO-OT | 5 | 1 | 0.45 |
| Retailer(s) | Type of Meat | Percentage Distribution of β-Lactam-Resistant Salmonella Isolates | Percentage Distribution of β-Lactam-Resistant LMO Isolates |
|---|---|---|---|
| Site A | Beef | ND | 7.6% |
| Site B | Mutton | 11.1% | 15% |
| Beef | ND | 7.6% | |
| Sausage | ND | 7.6% | |
| Site D | Beef | ND | 15% |
| Sausage | ND | 7.6% | |
| Mutton | ND | 15% | |
| Site E | Pork | ND | 7.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Msolo, L.; Mbiko, Z.; Nokhatyana, S.; Okoh, A.I. Appraisal of Multidrug-Resistant Listeria monocytogenes and Salmonella spp. Recovered from Commercial Meat Samples in the Eastern Cape, South Africa: Implications for Public Health Safety. Antibiotics 2026, 15, 175. https://doi.org/10.3390/antibiotics15020175
Msolo L, Mbiko Z, Nokhatyana S, Okoh AI. Appraisal of Multidrug-Resistant Listeria monocytogenes and Salmonella spp. Recovered from Commercial Meat Samples in the Eastern Cape, South Africa: Implications for Public Health Safety. Antibiotics. 2026; 15(2):175. https://doi.org/10.3390/antibiotics15020175
Chicago/Turabian StyleMsolo, Luyanda, Zanda Mbiko, Sindisiwe Nokhatyana, and Antony Ifeanyi Okoh. 2026. "Appraisal of Multidrug-Resistant Listeria monocytogenes and Salmonella spp. Recovered from Commercial Meat Samples in the Eastern Cape, South Africa: Implications for Public Health Safety" Antibiotics 15, no. 2: 175. https://doi.org/10.3390/antibiotics15020175
APA StyleMsolo, L., Mbiko, Z., Nokhatyana, S., & Okoh, A. I. (2026). Appraisal of Multidrug-Resistant Listeria monocytogenes and Salmonella spp. Recovered from Commercial Meat Samples in the Eastern Cape, South Africa: Implications for Public Health Safety. Antibiotics, 15(2), 175. https://doi.org/10.3390/antibiotics15020175

