Evaluation of Anaerobic Digestion Amended with Micro-Aeration and/or Sound Treatment on the Resistome and Virulence Factor Gene Profiles in Poultry Litter
Abstract
1. Introduction
2. Results
2.1. Description of Sequencing Outputs
2.2. Effect of Anaerobic Digestion with or Without Micro-Aeration or Sound Treatment on Antimicrobial Resistance Genes
2.2.1. Macrolide, Lincosamide and Streptogramin (MLS) Resistance Genes
2.2.2. Tetracycline Resistance Genes
2.2.3. Aminoglycoside Resistance
2.2.4. Glycopeptide Resistance
2.2.5. Folate Pathway Inhibitor Resistance
2.2.6. Other Antimicrobial Resistance Gene Classes
2.3. Effect of Anaerobic Digestion Treated with Micro-Aeration and/or Sound on Virulence Factor Genes in Poultry Litter
2.3.1. Total Abundance of Virulence Factor Genes
2.3.2. Origin Species by Genera Associated with Virulence Factor Genes
2.3.3. Origin Species Found in the Taxa Profiling of the Present Study
3. Discussion
4. Materials and Methods
4.1. Digester Design and Sampling
4.2. DNA Extraction, Library Preparation, Sequencing and Bioinformatics Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashworth, A.J.; Chastain, J.P.; Moore, P.A., Jr. Nutrient Characteristics of Poultry Manure and Litter. In Animal Manure; American Society of Agronomy, Inc.: Madison, WI, USA, 2020; pp. 63–87. [Google Scholar]
- Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M.J.J.; Panneerselvam, P. Uses and management of poultry litter. World’s Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef]
- Congilosi, J.L.; Aga, D.S. Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. J. Hazard. Mater. 2021, 405, 123634. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Agga, G.E.; Durso, L.M.; Sistani, K.R. Effect of poultry litter soil amendment on antibiotic-resistant Escherichia coli. J. Environ. Qual. 2024, 53, 300–313. [Google Scholar] [CrossRef]
- Agga, G.E.; Durso, L.M.; Sistani, K.R. Poultry litter as a soil amendment enriches antibiotic resistant enterococci. Environ. Pollut. 2025, 380, 126531. [Google Scholar] [CrossRef]
- Agga, G.E.; Looft, T.; Sistani, K.R. Enrichment of soil microbiome and antimicrobial resistance genes following poultry litter application. Sci. Total Environ. 2025, 999, 180306. [Google Scholar] [CrossRef]
- Agga, G.E.; Couch, M.; Parekh, R.R.; Mahmoudi, F.; Appala, K.; Kasumba, J.; Loughrin, J.H.; Conte, E.D. Lagoon, anaerobic digestion, and composting of animal manure treatments impact on tetracycline resistance genes. Antibiotics 2022, 11, 391. [Google Scholar] [CrossRef] [PubMed]
- FAO. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- van Hoek, A.H.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef]
- American Society for Microbiology. Role of Microbes in Mediating Methane Emissions; American Academy of Microbiology Colloquia Reports; American Society for Microbiology: Washington, DC, USA, 2023. [Google Scholar]
- Błaszczyk, W.; Siatecka, A.; Tlustoš, P.; Oleszczuk, P. Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review. Sci. Total Environ. 2024, 945, 173517. [Google Scholar] [CrossRef]
- Couch, M.; Agga, G.E.; Kasumba, J.; Parekh, R.R.; Loughrin, J.H.; Conte, E.D. Abundances of tetracycline resistance genes and tetracycline antibiotics during anaerobic digestion of swine waste. J. Environ. Qual. 2019, 48, 171–178. [Google Scholar] [CrossRef]
- Agga, G.E.; Kasumba, J.; Loughrin, J.H.; Conte, E.D. Anaerobic Digestion of Tetracycline Spiked Livestock Manure and Poultry Litter Increased the Abundances of Antibiotic and Heavy Metal Resistance Genes. Front. Microbiol. 2020, 11, 614424. [Google Scholar] [CrossRef]
- Kasumba, J.; Appala, K.; Agga, G.E.; Loughrin, J.H.; Conte, E.D. Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics. J. Environ. Sci. Health B 2020, 55, 135–147. [Google Scholar] [CrossRef]
- Loughrin, J.; Antle, S.; Bryant, M.; Berry, Z.; Lovanh, N. Evaluation of Microaeration and Sound to Increase Biogas Production from Poultry Litter. Environments 2020, 7, 62. [Google Scholar] [CrossRef]
- Loughrin, J.; Antle, S.; Sistani, K.; Lovanh, N. In Situ Acoustic Treatment of Anaerobic Digesters to Improve Biogas Yields. Environments 2020, 7, 11. [Google Scholar] [CrossRef]
- Loughrin, J.H.; Parekh, R.R.; Agga, G.E.; Silva, P.J.; Sistani, K.R. Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound. Microorganisms 2023, 11, 2349. [Google Scholar] [CrossRef]
- Pérez-Cobas, A.E.; Gomez-Valero, L.; Buchrieser, C. Metagenomic approaches in microbial ecology: An update on whole-genome and marker gene sequencing analyses. Microb. Genom. 2020, 6, mgen000409. [Google Scholar] [CrossRef] [PubMed]
- Pourrostami Niavol, K.; Bordoloi, A.; Suri, R. An overview of the occurrence, impact of process parameters, and the fate of antibiotic resistance genes during anaerobic digestion processes. Environ. Sci. Pollut. Res. Int. 2024, 31, 41745–41774. [Google Scholar] [CrossRef]
- Roberts, M.C. One Health: The role of wastewater treatment plants play as reservoirs, amplifiers, and transmitters of antibiotic resistance genes and antibiotic resistant bacteria. In Antimicrobial Resistance in Wastewater Treatment Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 35–53. [Google Scholar]
- Sun, H.; Bjerketorp, J.; Levenfors, J.J.; Schnürer, A. Isolation of antibiotic-resistant bacteria in biogas digestate and their susceptibility to antibiotics. Environ. Pollut. 2020, 266, 115265. [Google Scholar] [CrossRef]
- Karaolia, P.; Michael, S.; Fatta-Kassinos, D. The effect of advanced treatment technologies on the removal of antibiotic resistance. In Antimicrobial Resistance in Wastewater Treatment Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 179–206. [Google Scholar]
- Roberts, M.C. Environmental macrolide-lincosamide-streptogramin and tetracycline resistant bacteria. Front. Microbiol. 2011, 2, 40. [Google Scholar] [CrossRef]
- Sutcliffe, J.; Grebe, T.; Tait-Kamradt, A.; Wondrack, L. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 1996, 40, 2562–2566. [Google Scholar] [CrossRef]
- Roberts, M.C.; Schwarz, S. Tetracycline and phenicol resistance genes and mechanisms: Importance for agriculture, the environment, and humans. J. Environ. Qual. 2016, 45, 576–592. [Google Scholar] [CrossRef]
- Stogios, P.J.; Savchenko, A. Molecular mechanisms of vancomycin resistance. Protein Sci. 2020, 29, 654–669. [Google Scholar] [CrossRef]
- Venkatesan, M.; Fruci, M.; Verellen, L.A.; Skarina, T.; Mesa, N.; Flick, R.; Pham, C.; Mahadevan, R.; Stogios, P.J.; Savchenko, A. Molecular mechanism of plasmid-borne resistance to sulfonamide antibiotics. Nat. Commun. 2023, 14, 4031. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Athanasaki, F.; Voulgaris, G.L.; Triarides, N.A.; Vardakas, K.Z. Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int. J. Antimicrob. Agents 2019, 53, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Dawson, C.J.; Bartczak, A.; Hassan, K.A. Mutations in the efflux regulator gene oqxR provide a simple genetic switch for antimicrobial resistance in Klebsiella pneumoniae. Microbiology 2024, 170, 001499. [Google Scholar] [CrossRef] [PubMed]
- Hansson, I.; Dzieciolowski, T.; Rydén, J.; Boqvist, S. Evaluation of Cleaning and Disinfection Procedures on Poultry Farms. Poult. Sci. 2025, 104, 105453. [Google Scholar] [CrossRef]
- Kücken, D.; Feucht, H.-H.; Kaulfers, P.-M. Association of qacE and qacE Δ1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. FEMS Microbiol. Lett. 2000, 183, 95–98. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, A.; Amon, T.; Roesler, U.; Friese, A.; Merle, R.; Kabelitz, T. Temporal dynamics of antimicrobial resistance gene abundances in chicken manure and anaerobic digestate. Front. Antibiot. 2025, 4, 1612886. [Google Scholar] [CrossRef] [PubMed]








| Antimicrobial Class | Anaerobic Digester Group | ||||
|---|---|---|---|---|---|
| Control | Air | Sound | Air & Sound | Total | |
| Aminoglycosides | 90 | 83 | 87 | 77 | 337 |
| Beta-lactams | 14 | 12 | 19 | 8 | 53 |
| Fluoroquinolones | 1 | 2 | 1 | 0 | 4 |
| Folate pathway inhibitors | 25 | 15 | 21 | 16 | 77 |
| Fosfomycin | 5 | 8 | 8 | 7 | 28 |
| Glycopeptides | 53 | 61 | 53 | 48 | 215 |
| MLS | 140 | 138 | 152 | 129 | 559 |
| Multidrug resistance | 6 | 8 | 9 | 3 | 26 |
| Mupirocin | 3 | 4 | 5 | 1 | 13 |
| Phenicols | 12 | 14 | 11 | 11 | 48 |
| QACs | 5 | 2 | 5 | 2 | 14 |
| Rifamycins | 11 | 15 | 14 | 8 | 48 |
| Tetracyclines | 135 | 125 | 139 | 119 | 518 |
| Thiopeptide | 3 | 3 | 3 | 1 | 10 |
| Total | 503 | 490 | 527 | 430 | 1950 |
| Antimicrobial Class | Experimental Components | ||||
| Initial Digestate | Poultry Litter | Initial Mix | Wood Disc | Total | |
| Aminoglycosides | 16 | 84 | 55 | 50 | 205 |
| Beta-lactams | 2 | 5 | 44 | 10 | 61 |
| Fluoroquinolones | 1 | 3 | 4 | 0 | 8 |
| Folate pathway inhibitors | 5 | 35 | 7 | 18 | 65 |
| Fosfomycin | 3 | 25 | 1 | 8 | 37 |
| Fusidic acid | 0 | 3 | 0 | 0 | 3 |
| Glycopeptides | 20 | 18 | 8 | 25 | 71 |
| MLS | 40 | 166 | 53 | 97 | 356 |
| Multidrug resistance | 2 | 3 | 10 | 4 | 19 |
| Mupirocin | 1 | 6 | 3 | 3 | 13 |
| Phenicols | 4 | 3 | 16 | 12 | 35 |
| Polymyxins | 0 | 0 | 1 | 0 | 1 |
| QACs | 1 | 8 | 17 | 5 | 31 |
| Rifamycins | 4 | 17 | 9 | 13 | 43 |
| Tetracyclines | 37 | 106 | 59 | 82 | 284 |
| Thiopeptide | 0 | 6 | 0 | 2 | 8 |
| Total | 136 | 488 | 287 | 329 | 1240 |
| Origin Gena | Initial Digestate | Initial Mix | Poultry Litter | Wood Discs | Total |
|---|---|---|---|---|---|
| Acinetobacter | 1 | 5 | 0 | 0 | 6 |
| Actinobacillus | 12 | 37 | 41 | 31 | 121 |
| Aeromonas | 0 | 1 | 0 | 0 | 1 |
| Aspergillus | 0 | 2 | 0 | 4 | 6 |
| Bacillus | 4 | 7 | 24 | 21 | 56 |
| Bartonella | 2 | 13 | 5 | 10 | 30 |
| Bordetella | 6 | 24 | 8 | 28 | 66 |
| Borrelia | 0 | 0 | 2 | 1 | 3 |
| Brucella | 150 | 487 | 317 | 382 | 1336 |
| Burkholderia | 15 | 74 | 45 | 51 | 185 |
| Campylobacter | 4 | 14 | 13 | 40 | 71 |
| Candida | 3 | 7 | 0 | 3 | 13 |
| Chlamydia | 2 | 2 | 4 | 4 | 12 |
| Clostridium | 1 | 1 | 10 | 2 | 14 |
| Coccidioides | 1 | 2 | 3 | 2 | 8 |
| Corynebacterium | 0 | 0 | 1 | 0 | 1 |
| Coxiella | 1 | 2 | 3 | 2 | 8 |
| Cryptococcus | 4 | 13 | 19 | 18 | 54 |
| Enterococcus | 10 | 12 | 57 | 15 | 94 |
| Escherichia | 21 | 59 | 95 | 67 | 242 |
| Francisella | 24 | 87 | 83 | 51 | 245 |
| Haemophilus | 10 | 25 | 29 | 20 | 84 |
| Helicobacter | 7 | 21 | 22 | 25 | 75 |
| Legionella | 9 | 34 | 21 | 22 | 86 |
| Leishmania | 1 | 0 | 1 | 2 | 4 |
| Listeria | 19 | 34 | 122 | 52 | 227 |
| Mycobacterium | 127 | 300 | 805 | 461 | 1693 |
| Neisseria | 16 | 54 | 58 | 39 | 167 |
| Paenibacillus | 1 | 0 | 2 | 0 | 3 |
| Pasteurella | 0 | 8 | 2 | 1 | 11 |
| Pseudomonas | 28 | 403 | 88 | 81 | 600 |
| Saccharomyces | 1 | 0 | 4 | 2 | 7 |
| Salmonella | 30 | 76 | 105 | 82 | 293 |
| Shigella | 5 | 53 | 31 | 35 | 124 |
| Staphylococcus | 18 | 23 | 138 | 44 | 223 |
| Streptococcus | 51 | 74 | 302 | 114 | 541 |
| Toxoplasma | 0 | 3 | 3 | 3 | 9 |
| Vaccinia | 0 | 2 | 0 | 0 | 2 |
| Vibrio | 21 | 81 | 71 | 49 | 222 |
| Victors | 0 | 0 | 1 | 2 | 3 |
| Yersinia | 14 | 57 | 49 | 44 | 164 |
| Total accessions | 619 | 2097 | 2584 | 1810 | 7110 |
| Number of genera | 33 | 35 | 36 | 36 | 41 |
| Origin Genus | Air | Air &Sound | Control | Sound | Total |
|---|---|---|---|---|---|
| Actinobacillus | 34 | 25 | 39 | 34 | 132 |
| Aeromonas | 0 | 1 | 0 | 0 | 1 |
| Bacillus | 14 | 10 | 11 | 14 | 49 |
| Bartonella | 7 | 9 | 5 | 7 | 28 |
| Bordetella | 21 | 17 | 21 | 25 | 84 |
| Borrelia | 3 | 2 | 2 | 2 | 9 |
| Brucella | 421 | 310 | 350 | 437 | 1518 |
| Burkholderia | 48 | 39 | 45 | 48 | 180 |
| Campylobacter | 28 | 25 | 18 | 24 | 95 |
| Candida | 4 | 2 | 3 | 3 | 12 |
| Chlamydia | 6 | 4 | 5 | 5 | 20 |
| Clostridium | 5 | 2 | 2 | 4 | 13 |
| Coccidioides | 1 | 0 | 1 | 1 | 3 |
| Corynebacterium | 0 | 0 | 0 | 1 | 1 |
| Coxiella | 3 | 3 | 2 | 3 | 11 |
| Cryptococcus | 10 | 8 | 7 | 9 | 34 |
| Enterococcus | 33 | 27 | 32 | 33 | 125 |
| Escherichia | 82 | 66 | 89 | 94 | 331 |
| Francisella | 71 | 65 | 74 | 74 | 284 |
| Haemophilus | 24 | 24 | 22 | 25 | 95 |
| Helicobacter | 26 | 17 | 17 | 25 | 85 |
| Legionella | 37 | 34 | 29 | 32 | 132 |
| Leishmania | 3 | 3 | 3 | 3 | 12 |
| Listeria | 76 | 60 | 72 | 75 | 283 |
| Mycobacterium | 459 | 290 | 345 | 511 | 1605 |
| Neisseria | 50 | 34 | 45 | 48 | 177 |
| Paenibacillus | 2 | 0 | 0 | 0 | 2 |
| Pasteurella | 1 | 1 | 0 | 1 | 3 |
| Pseudomonas | 69 | 45 | 59 | 84 | 257 |
| Saccharomyces | 1 | 0 | 0 | 1 | 2 |
| Salmonella | 99 | 83 | 120 | 114 | 416 |
| Shigella | 26 | 23 | 34 | 33 | 116 |
| Staphylococcus | 50 | 47 | 53 | 57 | 207 |
| Streptococcus | 176 | 135 | 163 | 174 | 648 |
| Toxoplasma | 3 | 2 | 3 | 2 | 10 |
| Vibrio | 65 | 48 | 63 | 67 | 243 |
| Yersinia | 45 | 40 | 53 | 51 | 189 |
| Total accessions | 2003 | 1501 | 1787 | 2121 | 7412 |
| Number of genera | 35 | 33 | 32 | 35 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Agga, G.E.; Loughrin, J. Evaluation of Anaerobic Digestion Amended with Micro-Aeration and/or Sound Treatment on the Resistome and Virulence Factor Gene Profiles in Poultry Litter. Antibiotics 2026, 15, 153. https://doi.org/10.3390/antibiotics15020153
Agga GE, Loughrin J. Evaluation of Anaerobic Digestion Amended with Micro-Aeration and/or Sound Treatment on the Resistome and Virulence Factor Gene Profiles in Poultry Litter. Antibiotics. 2026; 15(2):153. https://doi.org/10.3390/antibiotics15020153
Chicago/Turabian StyleAgga, Getahun E., and John Loughrin. 2026. "Evaluation of Anaerobic Digestion Amended with Micro-Aeration and/or Sound Treatment on the Resistome and Virulence Factor Gene Profiles in Poultry Litter" Antibiotics 15, no. 2: 153. https://doi.org/10.3390/antibiotics15020153
APA StyleAgga, G. E., & Loughrin, J. (2026). Evaluation of Anaerobic Digestion Amended with Micro-Aeration and/or Sound Treatment on the Resistome and Virulence Factor Gene Profiles in Poultry Litter. Antibiotics, 15(2), 153. https://doi.org/10.3390/antibiotics15020153

