Climate Change and AMR: Interconnected Threats and One Health Solutions
Abstract
1. Introduction
2. Research Methodology
3. Climate Change and Public Health
4. AMR and Climate Change: Interlinked Global Challenges
Burden of Diseases and Economic Impact of AMR in Context to Climate Change
5. Post-Pandemic Scenarios for Climate and AMR
6. Impact of AMR Along with Climate Change on Food Security
Interventions and Recommendations at the Human–Animal–Environment Interface
7. Diverse Actions: Global Strategies for Climate Change and AMR
8. The Potential Role of AI in Tackling Interconnected Global Challenges
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- McMichael, A.J. Globalization, climate change, and human health. N. Engl. J. Med. 2013, 368, 1335–1343. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H. Summary for policymakers. Clim. Change 2007, 1–18. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R. Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 C Above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Lenzen, M.; Malik, A.; Li, M.; Fry, J.; Weisz, H.; Pichler, P.P.; Chaves, L.S.M.; Capon, A.; Pencheon, D. The environmental footprint of health care: A global assessment. Lancet Planet. Health 2020, 4, e271–e279. [Google Scholar] [CrossRef]
- Watson, R. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Integovernmental Panel on Climate Change. In IPCC 2001: Climate Change 2001: Synthesis Report; Cambridge University Press: Cambridge, UK, 2001; p. 398. [Google Scholar]
- Fouladkhah, A.C.; Thompson, B.; Camp, J.S. Safety of Food and Water Supplies in the Landscape of Changing Climate. Microorganisms 2019, 7, 469. [Google Scholar] [CrossRef]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef]
- Murray, C.J.L. Findings from the Global Burden of Disease Study 2021. Lancet 2024, 403, 2259–2262. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Griffin, P.M.; Angulo, F.J.; Tauxe, R.V.; Hoekstra, R.M. Foodborne illness acquired in the United States—Unspecified agents. Emerg. Infect. Dis. 2011, 17, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Fouladkhah, A.C.; Thompson, B.; Camp, J.S. The Threat of Antibiotic Resistance in Changing Climate. Microorganisms 2020, 8, 748. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2022–2020 Data. 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data (accessed on 23 April 2025).
- Bank, W. Drug-Resistant Infections: A Threat to Our Economic Future. 2017. Available online: https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future (accessed on 27 April 2025).
- Lambraki, I.A.; Cousins, M.; Graells, T.; Léger, A.; Abdelrahman, S.; Desbois, A.P.; Gallagher, R.; Staaf Larsson, B.; Mattson, B.; Henriksson, P.; et al. Governing Antimicrobial Resistance (AMR) in a Changing Climate: A Participatory Scenario Planning Approach Applied to Sweden in 2050. Front. Public Health 2022, 10, 831097. [Google Scholar] [CrossRef]
- Zambrano, M.M. Interplay Between Antimicrobial Resistance and Global Environmental Change. Annu. Rev. Genet. 2023, 57, 275–296. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Mushtaq, M.A.; Ullah, K.; Hassan, B.; Azam, M.; Zahoor, M.A.; Wang, J.; Xu, J.; Toleman, M.A.; Mohsin, M. Dissemination of clinical Escherichia coli harboring the mcr-1 gene in Pakistan. Front. Microbiol. 2024, 15, 1502528. [Google Scholar] [CrossRef] [PubMed]
- Helwig, K. Justice at the intersection of climate change and anti-microbial resistance. In Proceedings of the World Forum on Climate Justice, Glasgow, UK, 19–21 June 2019. [Google Scholar]
- Davies, D.S.; Grant, J.; Catchpole, M. The Drugs Don’t Work: A Global Threat; Penguin: London, UK, 2013. [Google Scholar]
- Helwig, M. Motivating Mathematicians: A Theoretical Framework of Professional Development to Support Efficacious Behaviors for Teachers of Elementary Mathematics; University of Missouri-Kansas City: Kansas City, MO, USA, 2021. [Google Scholar]
- Kumar, S. Antimicrobial resistance: A top ten global public health threat. EClinicalMedicine 2021, 41, 2021. [Google Scholar]
- WHO. Ten Threats to Global Health in 2019. 2019. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 23 April 2025).
- Cutter, S.L.; Boruff, B.L.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Climate Change Impacts on Health. 2021. Available online: https://www.epa.gov/climateimpacts/climate-change-impacts-health (accessed on 23 April 2025).
- EPA. 2021. Available online: https://www.govinfo.gov/app/collection/fr (accessed on 23 April 2025).
- Service, N.W. Weather Related Fatality and Injury Statistics. 2020. Available online: https://www.weather.gov/hazstat (accessed on 27 April 2025).
- Centers for Disease Control and Prevention. Climate and Health; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2024.
- One Earth. Why Climate Change is a Public Health Issue. 2024. Available online: https://www.oneearth.org/why-climate-change-is-a-public-health-issue/ (accessed on 28 April 2025).
- Dechet, A.M.; Parsons, M.; Rambaran, M.; Mohamed-Rambaran, P.; Florendo-Cumbermack, A.; Persaud, S.; Baboolal, S.; Ari, M.D.; Shadomy, S.V.; Zaki, S.R. Leptospirosis outbreak following severe flooding: A rapid assessment and mass prophylaxis campaign; Guyana, January–February 2005. PLoS ONE 2012, 7, e39672. [Google Scholar] [CrossRef]
- Omazic, A.; Bylund, H.; Boqvist, S.; Högberg, A.; Björkman, C.; Tryland, M.; Evengård, B.; Koch, A.; Berggren, C.; Malogolovkin, A. Identifying climate-sensitive infectious diseases in animals and humans in Northern regions. Acta Vet. Scand. 2019, 61, 53. [Google Scholar] [CrossRef]
- Semenza, J.C.; Rocklöv, J.; Ebi, K.L. Climate change and cascading risks from infectious disease. Infect. Dis. Ther. 2022, 11, 1371–1390. [Google Scholar] [CrossRef]
- Yakobi, S.H.; Nwodo, U.U. Prevalence of Antimicrobial Resistance in Klebsiella pneumoniae in the South African Populations: A Systematic Review and Meta-Analysis of Surveillance Studies. Microbiol. Open 2025, 14, e70037. [Google Scholar] [CrossRef]
- von Seidlein, L.; DeenJ, L. Preventing cholera outbreaks through early targeted interventions. PLoS Med. 2018, 15, e1002510. [Google Scholar] [CrossRef]
- Chaves, L.F.; Koenraadt, C.J. Climate change and highland malaria: Fresh air for a hot debate. Q. Rev. Biol. 2010, 85, 27–55. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease 2019 (COVID-19), Situation Report—57; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Wang, P.; Goggins, W.B.; Chan, E.Y. Associations of Salmonella hospitalizations with ambient temperature, humidity and rainfall in Hong Kong. Environ. Int. 2018, 120, 223–230. [Google Scholar] [CrossRef]
- Arora, P.; Singh, P.; Wang, Y.; Yadav, A.; Pawar, K.; Singh, A.; Padmavati, G.; Xu, J.; Chowdhary, A. Environmental isolation of Candida auris from the coastal wetlands of Andaman Islands, India. MBio 2021, 12, e03181-20. [Google Scholar] [CrossRef]
- Shuman, E.K. Global climate change and infectious diseases. Int. J. Occup. Environ. Med. 2011, 2, 11–19. [Google Scholar] [CrossRef]
- Manzanedo, R.D.; Manning, P. COVID-19: Lessons for the climate change emergency. Sci. Total Environ. 2020, 742, 140563. [Google Scholar] [CrossRef]
- Reidmiller, D.R.; Avery, C.W.; Easterling, D.R.; Kunkel, K.E.; Lewis, K.L.; Maycock, T.K.; Stewart, B.C. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II; US Global Change Research Program: Washington, DC, USA, 2017.
- U.S. Environmental Protection Agency. Climate Change and Human Health; U.S. Environmental Protection Agency: Washington, DC, USA, 2024.
- Vose, J.M. Forest and Water in the 21st Century: A Global Perspective; Oxford University Press US: New York, NY, USA, 2019. [Google Scholar]
- WHO Climate Change. 2023. Available online: www.who.int/news-room/fact-sheets/detail/climate-change-and-health (accessed on 30 April 2025).
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J. Extreme weather and climate change: Population health and health system implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef]
- Gamble, J.L.; Balbus, J.; Berger, M.; Bouye, K.; Campbell, V.; Chief, K.; Conlon, K.; Crimmins, A.; Flanagan, B.; Gonzalez-Maddux, C. Chapter 9: Populations of Concern; US Global Change Research Program: Washington, DC, USA, 2016.
- Kaba, H.E.; Kuhlmann, E.; Scheithauer, S. Thinking outside the box: Association of antimicrobial resistance with climate warming in Europe–A 30 country observational study. Int. J. Hyg. Environ. Health 2020, 223, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, C.; Ho, H.C.; Shi, L.; Zeng, Y.; Yang, X.; Huang, Q.; Pei, Y.; Huang, C.; Yang, L. Association between antibiotic resistance and increasing ambient temperature in China: An ecological study with nationwide panel data. Lancet Reg. Health–West. Pac. 2023, 30, 100628. [Google Scholar] [CrossRef]
- McGough, S.F.; MacFadden, D.R.; Hattab, M.W.; Mølbak, K.; Santillana, M. Rates of increase of antibiotic resistance and ambient temperature in Europe: A cross-national analysis of 28 countries between 2000 and 2016. Eurosurveillance 2020, 25, 1900414. [Google Scholar] [CrossRef]
- Camacho, A.; Bouhenia, M.; Alyusfi, R.; Alkohlani, A.; Naji, M.A.M.; de Radiguès, X.; Abubakar, A.M.; Almoalmi, A.; Seguin, C.; Sagrado, M.J. Cholera epidemic in Yemen, 2016–2018: An analysis of surveillance data. Lancet Glob. Health 2018, 6, e680–e690. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, A.R.; Kroer, N. Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events. FEMS Microbiol. Ecol. 2007, 59, 718–728. [Google Scholar] [CrossRef]
- Barros, V.; Stocker, T.F. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Khan, M.D.; Thi Vu, H.H.; Lai, Q.T.; Ahn, J.W. Aggravation of human diseases and climate change nexus. Int. J. Environ. Res. Public Health 2019, 16, 2799. [Google Scholar] [CrossRef] [PubMed]
- WHO. Protecting Health from Climate Change: Global Research Priorities; WHO: Geneva, Switzerland, 29 May 2009. [Google Scholar]
- Pitchforth, E.; Smith, E.; Taylor, J.; Davies, S.; Ali, G.-C.; d’Angelo, C. Global action on antimicrobial resistance: Lessons from the history of climate change and tobacco control policy. BMJ Glob. Health 2022, 7, e009283. [Google Scholar] [CrossRef]
- Leal Filho, W.; Nagy, G.J.; Gbaguidi, G.J.; Paz, S.; Dinis, M.A.P.; Luetz, J.M.; Sharifi, A. The role of climatic changes in the emergence and re-emergence of infectious diseases: Bibliometric analysis and literature-supported studies on zoonoses. One Health Outlook 2025, 7, 12. [Google Scholar] [CrossRef]
- Ruszkiewicz, J.A.; Tinkov, A.A.; Skalny, A.V.; Siokas, V.; Dardiotis, E.; Tsatsakis, A.; Bowman, A.B.; da Rocha, J.B.; Aschner, M. Brain diseases in changing climate. Environ. Res. 2019, 177, 108637. [Google Scholar] [CrossRef]
- Burge, C.A.; Mark Eakin, C.; Friedman, C.S.; Froelich, B.; Hershberger, P.K.; Hofmann, E.E.; Petes, L.E.; Prager, K.C.; Weil, E.; Willis, B.L. Climate change influences on marine infectious diseases: Implications for management and society. Annu. Rev. Mar. Sci. 2014, 6, 249–277. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Woolhouse, M.; Farrar, J. Policy: An intergovernmental panel on antimicrobial resistance. Nature 2014, 509, 555–557. [Google Scholar] [CrossRef]
- Pallett, S.J.; Charani, E.; Hawkins, L.; Mazzella, A.; Anton-Vazquez, V.; Banerjee, R.; Evans, T.J.; Patterson, B.; Subbarao, S.; Alqahtani, S.; et al. National action plans for antimicrobial resistance and variations in surveillance data platforms. Bull. World Health Organ. 2023, 101, 501f–512f. [Google Scholar] [CrossRef]
- Nischal, P. Global leaders’ group on antimicrobial resistance. Natl. Med. J. India 2021, 34, 61. [Google Scholar]
- Gomes, M.P. The convergence of antibiotic contamination, resistance, and climate dynamics in freshwater ecosystems. Water 2024, 16, 2606. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Bloom, D.E.; Cafiero, E.; Jané-Llopis, E.; Abrahams-Gessel, S.; Bloom, L.R.; Fathima, S.; Feigl, A.B.; Gaziano, T.; Hamandi, A.; Mowafi, M. The Global Economic Burden of Noncommunicable Diseases; Program on the Global Demography of Aging: Cambridge, MA, USA, 2012. [Google Scholar]
- de Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef]
- O’Neill, J. Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Wellcome Trust: London, UK, 2016. [Google Scholar]
- Lamperti, F.; Bosetti, V.; Roventini, A.; Tavoni, M.; Treibich, T. Three green financial policies to address climate risks. J. Financ. Stab. 2021, 54, 100875. [Google Scholar] [CrossRef]
- Raihan, A. A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. J. Environ. Sci. Econ. 2023, 2, 36–58. [Google Scholar] [CrossRef]
- Group, W.B. World Development Report 2017: Governance and the Law; World Bank Publications: Washington, DC, USA, 2017. [Google Scholar]
- Roope, L.S.; Smith, R.D.; Pouwels, K.B.; Buchanan, J.; Abel, L.; Eibich, P.; Butler, C.C.; Tan, P.S.; Walker, A.S.; Robotham, J.V. The challenge of antimicrobial resistance: What economics can contribute. Science 2019, 364, eaau4679. [Google Scholar] [CrossRef]
- MacFadden, D.R.; McGough, S.F.; Fisman, D.; Santillana, M.; Brownstein, J.S. Antibiotic Resistance Increases with Local Temperature. Nat. Clim. Change 2018, 8, 510–514. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. Int. 2020, 27, 22336–22352. [Google Scholar] [CrossRef]
- Ayala-Romero, C.; Ballen-Parada, C.; Rico-Gaitán, M.; Chamorro-Tobar, I.; Zambrano-Moreno, D.; Poutou-Piñales, R.; Carrascal-Camacho, A. Prevalence of Salmonella spp., in mesenteric pig’s ganglia at Colombian benefit plants. Rev. MVZ Córdoba 2018, 23, 6474–6486. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef]
- Worobey, M.; Han, G.-Z.; Rambaut, A. Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. Proc. Natl. Acad. Sci. USA 2014, 111, 8107–8112. [Google Scholar] [CrossRef]
- Hopkins, J. Coronavirus Resource Center. Im Internet (Stand: 19.04. 2020). 2020. Available online: https://coronavirus.jhu.edu/data (accessed on 11 September 2025).
- Walton, D.; van Aalst, M. Climate-related extreme weather events and COVID-19. In A First Look at the Number of People Affected by Intersecting Disasters; Red Cross Red Crescent Climate Centre: Hague, The Netherlands, 2020; p. 2134. [Google Scholar]
- Van Oldenborgh, G.J.; Krikken, F.; Lewis, S.; Leach, N.J.; Lehner, F.; Saunders, K.R.; Van Weele, M.; Haustein, K.; Li, S.; Wallom, D. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 21, 941–960. [Google Scholar] [CrossRef]
- Pinner, D.; Rogers, M.; Samandari, H. Addressing Climate Change Post-Coronavirus. McKinsey Q. April. 2020, 7, 2020. [Google Scholar]
- Srivastava, S.; Khokhar, F.; Madhav, A.; Pembroke, B.; Shetty, V.; Mutreja, A. COVID-19 Lessons for Climate Change and Sustainable Health. Energies 2021, 14, 5938. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Rizvi, S.G.; Ahammad, S.Z. COVID-19 and antimicrobial resistance: A cross-study. Sci. Total Environ. 2022, 807, 150873. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Rawson, T.M.; Ming, D.; Ahmad, R.; Moore, L.S.; Holmes, A.H. Antimicrobial use, drug-resistant infections and COVID-19. Nat. Rev. Microbiol. 2020, 18, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Romanello, M.; Di Napoli, C.; Drummond, P.; Green, C.; Kennard, H.; Lampard, P.; Scamman, D.; Arnell, N.; Ayeb-Karlsson, S.; Ford, L.B. The 2022 report of the Lancet Countdown on health and climate change: Health at the mercy of fossil fuels. Lancet 2022, 400, 1619–1654. [Google Scholar] [CrossRef] [PubMed]
- McMullen, K.M.; Smith, B.A.; Rebmann, T. Impact of SARS-CoV-2 on hospital acquired infection rates in the United States: Predictions and early results. Am. J. Infect. Control 2020, 48, 1409–1411. [Google Scholar] [CrossRef]
- Jamshidi, S.; Baniasad, M.; Niyogi, D. Global to USA county scale analysis of weather, urban density, mobility, homestay, and mask use on COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7847. [Google Scholar] [CrossRef]
- Meo, S.; Abukhalaf, A.; Alomar, A.; Sumaya, O.; Sami, W.; Shafi, K.; Meo, A.; Usmani, A.; Akram, J. Effect of heat and humidity on the incidence and mortality due to COVID-19 pandemic in European countries. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9216–9225. [Google Scholar]
- Water, W.; Sanitation, H. Waste Management for the COVID-19 Virus: Interim Guidance; World Health Organisation: Geneva, Switzerland, 2020. [Google Scholar]
- Bhat, S.A.; Bashir, O.; Bilal, M.; Ishaq, A.; Dar, M.U.D.; Kumar, R.; Bhat, B.A.; Sher, F. Impact of COVID-related lockdowns on environmental and climate change scenarios. Environ. Res. 2021, 195, 110839. [Google Scholar] [CrossRef]
- Din, M.S.U.; Mubeen, M.; Hussain, S.; Ahmad, A.; Hussain, N.; Ali, M.A.; El Sabagh, A.; Elsabagh, M.; Shah, G.M.; Qaisrani, S.A. World nations priorities on climate change and food security. In Building Climate Resilience in Agriculture: Theory, Practice and Future Perspective; Springer: Berlin/Heidelberg, Germany, 2022; pp. 365–384. [Google Scholar]
- Chan, M. Ten Years in Public Health 2007–2017: Report by Dr Margaret Chan Director-General World Health Organization; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Popkin, B.M. Nutrition, agriculture and the global food system in low and middle income countries. Food Policy 2014, 47, 91–96. [Google Scholar] [CrossRef]
- Authority, E.F.S.; Maggiore, A.; Afonso, A.; Barrucci, F.; Sanctis, G.D. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA Support. Publ. 2020, 17, 1881E. [Google Scholar] [PubMed]
- Tirado, M.C.; Clarke, R.; Jaykus, L.; McQuatters-Gollop, A.; Frank, J. Climate change and food safety: A review. Food Res. Int. 2010, 43, 1745–1765. [Google Scholar] [CrossRef]
- Van der Spiegel, M.; Van der Fels-Klerx, H.; Marvin, H. Effects of climate change on food safety hazards in the dairy production chain. Food Res. Int. 2012, 46, 201–208. [Google Scholar] [CrossRef]
- Grigorieva, E.A. Climate Change and Human Health in the Arctic: A Review. Climate 2024, 12, 89. [Google Scholar] [CrossRef]
- Duchenne-Moutien, R.A.; Neetoo, H. Climate change and emerging food safety issues: A review. J. Food Prot. 2021, 84, 1884–1897. [Google Scholar] [CrossRef]
- Change, F.C. Unpacking the Burden on Food Safety; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Croll, D.; McDonald, B.A. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Mol. Ecol. 2017, 26, 2027–2040. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Qi, J.; Feng, P.; Zhang, X.; Liu, D.L.; Marek, G.W.; Srinivasan, R.; Chen, Y. Assessing impacts of global climate change on water and food security in the black soil region of Northeast China using an improved SWAT-CO2 model. Sci. Total Environ. 2023, 857, 159482. [Google Scholar]
- Li, B. Research on the Path of Promoting the Common Prosperity of Farmers and Countryside in the New Era. Acad. J. Humanit. Soc. Sci. 2023, 6, 105–111. [Google Scholar] [CrossRef]
- Ratnayake, S.S.; Reid, M.; Larder, N.; Kadupitiya, H.K.; Hunter, D.; Dharmasena, P.B.; Kumar, L.; Kogo, B.; Herath, K.; Kariyawasam, C.S. Impact of climate change on paddy farming in the village Tank Cascade Systems of Sri Lanka. Sustainability 2023, 15, 9271. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Manning, M.; Dlugokencky, E.; Fisher, R.; Lowry, D.; Michel, S.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P. Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Greaver, T.; Clark, C.; Compton, J.; Vallano, D.; Talhelm, A.; Weaver, C.; Band, L.; Baron, J.; Davidson, E.; Tague, C. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Change 2016, 6, 836–843. [Google Scholar]
- Boussard, J.; Trouvé, A.; Choplin, G.; Strickner, A.; Trouvé, A. World Food Summit Plan of Action. In Proceedings of the World Food Summit, Roma, Italy, 13–17 November 1996. [Google Scholar]
- FAO. Economic crises-impacts and lessons learned. In The State of Food Insecurity in the World; FAO: Roma, Italy; Agriregionieuropa: Ancona, Italy, 2009; p. 30. [Google Scholar]
- Clapp, J.; Moseley, W.G.; Burlingame, B.; Termine, P. The case for a six-dimensional food security framework. Food Policy 2022, 106, 102164. [Google Scholar] [CrossRef]
- World Health Organization. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets; Food & Agriculture Organization: Roma, Italy, 2020; Volume 2020. [Google Scholar]
- Arora, N.K.; Mishra, I.; Arora, P. SDG 14: Life below water-viable oceans necessary for a sustainable planet. Environ. Sustain. 2023, 6, 433–439. [Google Scholar] [CrossRef]
- Harrison, E.M.; Paterson, G.K.; Holden, M.T.; Larsen, J.; Stegger, M.; Larsen, A.R.; Petersen, A.; Skov, R.L.; Christensen, J.M.; Bak Zeuthen, A. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 2013, 5, 509–515. [Google Scholar] [CrossRef]
- Garcia, S.N.; Osburn, B.I.; Jay-Russell, M.T. One health for food safety, food security, and sustainable food production. Front. Sustain. Food Syst. 2020, 4, 1. [Google Scholar] [CrossRef]
- Gardy, J.L.; Loman, N.J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [PubMed]
- Gostin, L.O.; Friedman, E.A. The sustainable development goals: One-health in the world’s development agenda. JAMA 2015, 314, 2621–2622. [Google Scholar] [CrossRef]
- De La Rocque, S.; Caya, F.; El Idrissi, A.; Mumford, L.; Belot, G.; Carron, M.; Sreedharan, R.; Suryantoro, L.; Stelter, R.; Copper, F. One Health operations: A critical component in the international health regulations monitoring and evaluation framework. Rev. Sci. Tech. 2019, 38, 303–314. [Google Scholar] [CrossRef]
- World Health Organization. Taking a Multisectoral One Health Approach: A Tripartite Guide to Addressing Zoonotic Diseases in Countries; Food & Agriculture Organization: Roma, Italy, 2019. [Google Scholar]
- World Health Organization. Quadripartite Memorandum of Understanding (MoU) Signed for a New Era of One Health Collaboration. 2022. Available online: https://www.who.int/news/item/29-04-2022-quadripartite-memorandum-of-understanding-(mou)-signed-for-a-new-era-of-one-health-collaboration (accessed on 1 May 2025).
- Erkyihun, G.A.; Alemayehu, M.B. One Health approach for the control of zoonotic diseases. Zoonoses 2022, 2, 963. [Google Scholar] [CrossRef]
- WHO. One Health Joint Plan of Action (2022–2026): Working Together for the Health of Humans, Animals, Plants and the Environment; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Zinsstag, J.; Crump, L.; Schelling, E.; Hattendorf, J.; Maidane, Y.O.; Ali, K.O.; Muhummed, A.; Umer, A.A.; Aliyi, F.; Nooh, F. Climate change and one health. FEMS Microbiol. Lett. 2018, 365, fny085. [Google Scholar] [CrossRef]
- Rabinowitz, P.M.; Natterson-Horowitz, B.J.; Kahn, L.H.; Kock, R.; Pappaioanou, M. Incorporating one health into medical education. BMC Med. Educ. 2017, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Nyatanyi, T.; Wilkes, M.; McDermott, H.; Nzietchueng, S.; Gafarasi, I.; Mudakikwa, A.; Kinani, J.F.; Rukelibuga, J.; Omolo, J.; Mupfasoni, D. Implementing One Health as an integrated approach to health in Rwanda. BMJ Glob. Health 2017, 2, e000121. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Stewardship Programmes in Health-Care Facilities in Low-and Middle-Income Countries: A WHO Practical Toolkit; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Andre, F.E.; Booy, R.; Bock, H.L.; Clemens, J.; Datta, S.K.; John, T.J.; Lee, B.W.; Lolekha, S.; Peltola, H.; Ruff, T.A.; et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 2008, 86, 140–146. [Google Scholar] [CrossRef]
- Ajulo, S.; Awosile, B. Global antimicrobial resistance and use surveillance system (GLASS 2022): Investigating the relationship between antimicrobial resistance and antimicrobial consumption data across the participating countries. PLoS ONE 2024, 19, e0297921. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Pariente, N. The antimicrobial resistance crisis needs action now. PLoS Biol. 2022, 20, e3001918. [Google Scholar] [CrossRef]
- Singer, A.C.; Shaw, H.; Rhodes, V.; Hart, A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front. Microbiol. 2016, 7, 1728. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Andremont, A.; Bengtsson-Palme, J.; Brandt, K.K.; de Roda Husman, A.M.; Fagerstedt, P.; Fick, J.; Flach, C.F.; Gaze, W.H.; Kuroda, M.; et al. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ. Int. 2018, 117, 132–138. [Google Scholar] [CrossRef]
- World Health Organization. WHO Strategic Priorities on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Magnano San Lio, R.; Favara, G.; Maugeri, A.; Barchitta, M.; Agodi, A. How antimicrobial resistance is linked to climate change: An overview of two intertwined global challenges. Int. J. Environ. Res. Public Health 2023, 20, 1681. [Google Scholar] [CrossRef] [PubMed]
- Region, A.; Region, S.-E.A.; Region, E.M.; Region, W.P. Global action plan on antimicrobial resistance. Microbe Mag. 2015, 10, 354–355. [Google Scholar] [CrossRef]
- Huang, Q.; Horn, M.A.; Ruan, S. Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Math. Biosci. Eng. 2019, 16, 3641–3673. [Google Scholar] [CrossRef]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, D.H.; Page, S.W. Antimicrobial stewardship in veterinary medicine. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; ASM Press: Washington, DC, USA, 2018; pp. 675–697. [Google Scholar]
- Payumo, J.; Alocilja, E.; Boodoo, C.; Luchini-Colbry, K.; Ruegg, P.; McLamore, E.; Vanegas, D.; Briceno, R.K.; Castaneda-Sabogal, A.; Watanabe, K. Next generation of amr network. Encyclopedia 2021, 1, 871–892. [Google Scholar] [CrossRef]
- Arsene, M.M.J.; Jorelle, A.B.; Sarra, S.; Viktorovna, P.I.; Davares, A.K.; Ingrid, N.K.; Steve, A.A.; Andreevna, S.L.; Vyacheslavovna, Y.N.; Carime, B.Z. Short review on the potential alternatives to antibiotics in the era of antibiotic resistance. J. Appl. Pharm. Sci. 2021, 12, 029–040. [Google Scholar]
- Van Panhuis, W.G.; Grefenstette, J.; Jung, S.Y.; Chok, N.S.; Cross, A.; Eng, H.; Lee, B.Y.; Zadorozhny, V.; Brown, S.; Cummings, D. Contagious diseases in the United States from 1888 to the present. N. Engl. J. Med. 2013, 369, 2152. [Google Scholar] [CrossRef]
- François, B.; Jafri, H.S.; Bonten, M. Alternatives to antibiotics. Intensive Care Med. 2016, 42, 2034–2036. [Google Scholar] [CrossRef]
- Gaggìa, F.; Mattarelli, P.; Biavati, B. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 2010, 141, S15–S28. [Google Scholar] [CrossRef]
- Romero-Calle, D.; Guimarães Benevides, R.; Góes-Neto, A.; Billington, C. Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics 2019, 8, 138. [Google Scholar] [CrossRef]
- Dwidar, M.; Monnappa, A.K.; Mitchell, R.J. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep. 2012, 45, 71–78. [Google Scholar] [CrossRef]
- Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol. 2012, 7, 979–990. [Google Scholar] [CrossRef]
- Parisien, A.; Allain, B.; Zhang, J.; Mandeville, R.; Lan, C. Novel alternatives to antibiotics: Bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J. Appl. Microbiol. 2008, 104, 1–13. [Google Scholar] [CrossRef]
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef]
- Le, C.-F.; Fang, C.-M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother. 2017, 61, e02340-16. [Google Scholar] [CrossRef]
- Scorciapino, M.A.; Rinaldi, A.C. Antimicrobial peptidomimetics: Reinterpreting nature to deliver innovative therapeutics. Front. Immunol. 2012, 3, 171. [Google Scholar] [CrossRef] [PubMed]
- Prokopenko, O.; Prokopenko, M.; Chechel, A.; Marhasova, V.; Omelyanenko, V.; Orozonova, A. Ecological and economic assessment of the possibilities of public-private partnerships at the national and local levels to reduce greenhouse gas emissions. Econ. Aff. 2023, 68, 133–142. [Google Scholar] [CrossRef]
- Kaur, G. Economic Growth, Climate Crisis and Natural Disasters; IMPRI Impact and Policy Research Institute: Delhi, India, 2022. [Google Scholar]
- Austin, S.E.; Biesbroek, R.; Berrang-Ford, L.; Ford, J.D.; Parker, S.; Fleury, M.D. Public health adaptation to climate change in OECD countries. Int. J. Environ. Res. Public Health 2016, 13, 889. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.S.; Karmakar, S.; Ghosh, S. Hazard at weather scale for extreme rainfall forecast reduces uncertainty. Water Secur. 2021, 14, 100106. [Google Scholar] [CrossRef]
- Pichler, P.-P.; Jaccard, I.S.; Weisz, U.; Weisz, H. International comparison of health care carbon footprints. Environ. Res. Lett. 2019, 14, 064004. [Google Scholar] [CrossRef]
- Allen, M.; Dube, O.P.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M. Special report: Global warming of 1.5 C. Intergov. Panel Clim. Change (IPCC) 2018, 677, 393. Available online: https://www.ipcc.ch/sr15 (accessed on 11 September 2025).
- Watts, N.; Adger, W.N.; Ayeb-Karlsson, S.; Bai, Y.; Byass, P.; Campbell-Lendrum, D.; Colbourn, T.; Cox, P.; Davies, M.; Depledge, M. The Lancet Countdown: Tracking progress on health and climate change. Lancet 2017, 389, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Gudipati, S.; Zervos, M.; Herc, E. Can the one health approach save us from the emergence and reemergence of infectious pathogens in the era of climate change: Implications for antimicrobial resistance? Antibiotics 2020, 9, 599. [Google Scholar] [CrossRef]
- Rodríguez-González, A.; Zanin, M.; Menasalvas-Ruiz, E. Public health and epidemiology informatics: Can artificial intelligence help future global challenges? An overview of antimicrobial resistance and impact of climate change in disease epidemiology. Yearb. Med. Inform. 2019, 28, 224–231. [Google Scholar] [CrossRef] [PubMed]
- González, C.; Wang, O.; Strutz, S.E.; González-Salazar, C.; Sánchez-Cordero, V.; Sarkar, S. Climate change and risk of leishmaniasis in North America: Predictions from ecological niche models of vector and reservoir species. PLoS Neglected Trop. Dis. 2010, 4, e585. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Gu, J.; Zhou, Z.; Wang, Z. Artificial neural networks for infectious diarrhea prediction using meteorological factors in Shanghai (China). Appl. Soft Comput. 2015, 35, 280–290. [Google Scholar] [CrossRef]
- Su, M.; Satola, S.W.; Read, T.D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol. 2019, 57, e01405-18. [Google Scholar] [CrossRef]
- Meystre, S.M.; Lovis, C.; Bürkle, T.; Tognola, G.; Budrionis, A.; Lehmann, C.U. Clinical data reuse or secondary use: Current status and potential future progress. Yearb. Med. Inform. 2017, 26, 38–52. [Google Scholar] [CrossRef][Green Version]
- Lv, J.; Deng, S.; Zhang, L. A review of artificial intelligence applications for antimicrobial resistance. Biosaf. Health 2021, 3, 22–31. [Google Scholar] [CrossRef]
- Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to aid climate change research and preparedness. Environ. Res. Lett. 2019, 14, 124007. [Google Scholar] [CrossRef]
- Bakleh, M.Z.; Kohailan, M.; Marwan, M.; Alhaj Sulaiman, A. A Systematic Review and Comprehensive Analysis of mcr Gene Prevalence in Bacterial Isolates in Arab Countries. Antibiotics 2024, 13, 958. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Disease | Role of Climate Change | Reference |
---|---|---|---|
Leptospira spp. | Leptospirosis | Heavy rainfall and floodwater are significantly involved in the spread of water contaminated with resistant pathogens. | [29] |
Campylobacter spp. | Waterborne infection | An increase in water system temperature helps these microbes survive longer. | [30] |
Dengue virus | Dengue | Warmer temperatures led to rising spread of vectors | [31] |
Trypanosoma cruzi | Chagas Disease | Warmer temperatures increased the propagation of vectors, even in winter. | [31] |
Schistosoma spp. | Intestinal schistosomiasis | An increase in temperature can widen transmission areas for fluke to spread infection. | [32] |
Vibrio cholera | Cholera | Natural catastrophes brought on by rising temperatures created an environment that was more favorable to microbes. | [33] |
Plasmodium falciparum | Malaria | Rising temperatures and humidity can lead to greater transmissibility. | [34] |
SARS-CoV-2 | COVID-19 | Droughts and rising aridity have caused bat migration and virus transmission. | [35] |
Salmonella spp. | Typhoid Fever | Increased ambient temperature leads to a direct rise in replication rates. | [36] |
Candida auris | Candidiasis | Gained thermo-tolerance and salinity tolerance on the wetland ecosystem. | [37] |
Pathways of Change | Action Tracks | Outcomes |
---|---|---|
Pathway 1
| 1—Enhancing One Health capacities to strengthen the health system | Improved health of humans, animals, plants, and the environment while identifying sustainable system-wide One Health solutions that allow our ecosystems to thrive in harmony |
2—Reducing the risk of emerging and re-emerging zoonotic pandemics and epidemics | Reduced risk and impact of health threats at the human–animal–plant–environment interface using a One Health approach efficiently, effectively, and equitably. | |
Pathway 2
| 3—Controlling and eliminating zoonotic, neglected tropical, and vector-borne diseases | Effective collaboration and synergy to build advocacy and political will and to leverage investment for an evidence based One Health approach. |
4—Strengthening the assessment, management, and communication of food security risks | Improved coordination, communication, and alignment of One Health activities and capacity-building efforts, including in the provision of technical support, normative frameworks, research, education, and guidance. | |
Pathway 3
| 5—Curbing the silent pandemic of Antimicrobial Resistance | Strengthened cross-sectoral capacity to co-design and implement inclusive and equitable multilevel work plans and strategies in line with One Health principles. |
6—Integrating the environment into One Health | Improved and harmonized One Health tools, technologies and practices that integrate data and knowledge are developed, disseminated and utilized. |
Global Action Plan | |
---|---|
1 | Increase awareness and knowledge of antimicrobial resistance through Training, communication, and education. |
2 | Improve knowledge and evidence bases through surveillance and research. |
3 | Reduce infection rate by implementing adequate sanitation, hygiene, and infection prevention measures. |
4 | Optimize the use of antimicrobial drugs in human and animal health. |
5 | Establish an economic case for ongoing investment in new drugs, diagnostic tools, vaccinations, and other treatments. |
Alternatives | Properties | Advantages | References |
---|---|---|---|
Vaccines |
| Promote Specific Immunological Protection Preventing Bacterial and Viral Infections | [137] |
Monoclonal Antibodies |
| Long half-life Highly specific Do not disrupt normal flora | [138] |
Probiotics |
| Useful for commensal gut bacterial health. Prevent pathogen colonization | [139] |
Phage Therapy |
| Lytic activity is independent of antibiotic resistance Do not infect eukaryotic cells Found naturally in the environment | [136] |
Engineered Phages |
| Applicable against a wide variety of host ranges Highly effective against biofilms | [140] |
Predatory Bacteria |
| Effective against biofilm Can access recalcitrant infection | [141] |
Herbal Medicine |
| Efflux inhibitory activity against Gram-negative bacteria Biofilm inhibitors Quorum-sensing inhibitors | [142] |
Nanoparticles |
| Can target multiple cellular pathways at once It can penetrate through the cell wall and kill bacteria Used to treat multiple drug-resistant bacteria | [136] |
Bacterial cell wall hydrolysis (BCWH) |
| Highly effective against antibiotic-resistant bacteria Safe and well understood Immunogenicity is not a concern for their effectiveness | [143] |
CRISPR-based Antimicrobial |
| Can be tuned for a variety of antimicrobial applications Reversal of antibiotic usage Specificity towards pathogenic strains | [144] |
Antimicrobial Peptides |
| Not prone to resistance development. Broad-spectrum activity is an advantage, depending on the application | [145] |
Synthetic mimics of antimicrobial peptides (SMAMPs) |
| Ease of synthesis Not prone to resistance development Broad-spectrum activity is an advantage, depending on the application | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, B.; Aljasir, S.F. Climate Change and AMR: Interconnected Threats and One Health Solutions. Antibiotics 2025, 14, 946. https://doi.org/10.3390/antibiotics14090946
Aslam B, Aljasir SF. Climate Change and AMR: Interconnected Threats and One Health Solutions. Antibiotics. 2025; 14(9):946. https://doi.org/10.3390/antibiotics14090946
Chicago/Turabian StyleAslam, Bilal, and Sulaiman F. Aljasir. 2025. "Climate Change and AMR: Interconnected Threats and One Health Solutions" Antibiotics 14, no. 9: 946. https://doi.org/10.3390/antibiotics14090946
APA StyleAslam, B., & Aljasir, S. F. (2025). Climate Change and AMR: Interconnected Threats and One Health Solutions. Antibiotics, 14(9), 946. https://doi.org/10.3390/antibiotics14090946