Epidemiological Trends of Carbapenemase-Producing Pseudomonas aeruginosa in a Tertiary Care Hospital in Athens, Greece, During 2020–2023 †
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Hospital Setting
4.2. Bacterial Identification and Antimicrobial Susceptibility Testing
4.3. Detection of Carbapenemases
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jean, S.S.; Harnod, D.; Hsueh, P.R. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2022, 12, 823684. [Google Scholar] [CrossRef] [PubMed]
- Shortridge, D.; Gales, A.C.; Streit, J.M.; Huband, M.D.; Tsakris, A.; Jones, R.N. Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa Over 20 Years From the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 2019, 6, S63–S68. [Google Scholar] [CrossRef]
- Hammoudi Halat, D.; Ayoub Moubareck, C. The Intriguing Carbapenemases of Pseudomonas aeruginosa: Current Status, Genetic Profile, and Global Epidemiology. Yale J. Biol. Med. 2022, 95, 507–515. [Google Scholar]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 212527. [Google Scholar] [CrossRef]
- Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa–Mechanisms, epidemiology and evolution. Drug Resist. Updat. 2019, 44, 100640. [Google Scholar] [CrossRef]
- WHO. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024; Licence: CC BY-NC-SA 3.0 IGO, 2024. [Google Scholar]
- Reyes, J.; Komarow, L.; Chen, L.; Ge, L.; Hanson, B.M.; Cober, E.; Herc, E.; Alenazi, T.; Kaye, K.S.; Garcia-Diaz, J.; et al. Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP): A prospective cohort study. Lancet Microbe 2023, 4, e159–e170. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Hong, D.J.; Bae, I.K.; Jang, I.H.; Jeong, S.H.; Kang, H.K.; Lee, K. Epidemiology and Characteristics of Metallo-beta-Lactamase-Producing Pseudomonas aeruginosa. Infect. Chemother. 2015, 47, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Tsilipounidaki, K.; Gkountinoudis, C.G.; Florou, Z.; Fthenakis, G.C.; Miriagou, V.; Petinaki, E. First Detection and Molecular Characterization of Pseudomonas aeruginosa bla(NDM-1) ST308 in Greece. Microorganisms 2023, 11, 2159. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Nicolau, D.P.; Gill, C.M. Carbapenemase-producing Pseudomonas aeruginosa—an emerging challenge. Emerg. Microbes Infect. 2022, 11, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Meletis, G.; Exindari, M.; Vavatsi, N.; Sofianou, D.; Diza, E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia 2012, 16, 303–307. [Google Scholar] [PubMed]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: An approach based on the mechanisms of resistance to carbapenems. Infection 2020, 48, 835–851. [Google Scholar] [CrossRef] [PubMed]
- Tsakris, A.; Pournaras, S.; Woodford, N.; Palepou, M.F.; Babini, G.S.; Douboyas, J.; Livermore, D.M. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J. Clin. Microbiol. 2000, 38, 1290–1292. [Google Scholar] [CrossRef]
- Protonotariou, E.; Meletis, G.; Vlachodimou, N.; Malousi, A.; Tychala, A.; Katsanou, C.; Daviti, A.; Mantzana, P.; Skoura, L. Rapid Reversal of Carbapenemase-Producing Pseudomonas aeruginosa Epidemiology from bla(VIM)- to bla(NDM)-harbouring Isolates in a Greek Tertiary Care Hospital. Antibiotics 2024, 13, 762. [Google Scholar] [CrossRef]
- Papagiannitsis, C.C.; Verra, A.; Galani, V.; Xitsas, S.; Bitar, I.; Hrabak, J.; Petinaki, E. Unravelling the Features of Success of VIM-Producing ST111 and ST235 Pseudomonas aeruginosa in a Greek Hospital. Microorganisms 2020, 8, 1884. [Google Scholar] [CrossRef]
- Liakopoulos, A.; Mavroidi, A.; Katsifas, E.A.; Theodosiou, A.; Karagouni, A.D.; Miriagou, V.; Petinaki, E. Carbapenemase-producing Pseudomonas aeruginosa from central Greece: Molecular epidemiology and genetic analysis of class I integrons. BMC Infect. Dis. 2013, 13, 505. [Google Scholar] [CrossRef]
- Pappa, O.; Louka, C.; Karadimas, K.; Maikousi, E.; Tzoukmani, A.; Polemis, M.; Panopoulou, A.D.; Daniil, I.; Chryssou, S.; Mellou, K.; et al. Emergence of NDM-1-Producing Pseudomonas aeruginosa Nosocomial Isolates in Attica Region of Greece. Microorganisms 2024, 12, 1753. [Google Scholar] [CrossRef]
- Koumaki, V.; Voudanta, E.; Michelaki, A.; Orfanidou, M.; Vagiakou, E.; Vrioni, G.; Tsakris, A. Epidemiology of carbapenemases in carbapenemase producing Klebsiella spp., and Pseudomonas spp. strains isolated from a tertiary hospital in Athens, Greece during 2020–2022”. In Proceedings of the ESCMID Global, Congress of the European Society of Clinical Microbiology and Infectious Diseases, Barcelona, Spain, 27–30 April 2024. [Google Scholar]
- Shields, R.K.; Zhou, Y.; Kanakamedala, H.; Cai, B. Burden of illness in US hospitals due to carbapenem-resistant Gram-negative urinary tract infections in patients with or without bacteraemia. BMC Infect. Dis. 2021, 21, 572. [Google Scholar] [CrossRef]
- EMA. E.M.A. Emblaveo: EPAR–Public Assessment Report. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/emblaveo (accessed on 15 August 2025).
- AbbVie. FDA Approves EMBLAVEO™ (Aztreonam and Avibactam) for the Treatment of Adults with Complicated Intra-Abdominal Infections with Limited or No Treatment Options. Available online: https://news.abbvie.com/2025-02-07-U-S-FDA-Approves-EMBLAVEO-TM-aztreonam-and-avibactam-for-the-Treatment-of-Adults-With-Complicated-Intra-Abdominal-Infections-With-Limited-or-No-Treatment-Options (accessed on 3 July 2025).
- Zasheva, A.; Batcheva, E.; Ivanova, K.D.; Yanakieva, A. Differences in Patient Access to Newly Approved Antibacterial Drugs in EU/EEA Countries. Antibiotics 2024, 13, 1077. [Google Scholar] [CrossRef]
- Soriano, M.C.; Montufar, J.; Blandino-Ortiz, A. Cefiderocol. Rev. Esp. Quimioter. 2022, 35 (Suppl. 1), 31–34. [Google Scholar] [CrossRef] [PubMed]
- Plaisance, C.J.; Borne, G.E.; Daniel, C.P.; Wagner, M.J.; Shelvan, A.; Mathew, J.; Ahmadzadeh, S.; Paladini, A.; Varrassi, G.; Shekoohi, S.; et al. Cefiderocol (Fetroja) as a Treatment for Hospital-Acquired Pneumonia. Cureus 2024, 16, e52230. [Google Scholar] [CrossRef] [PubMed]
- Shionogi & Co. Ltd. (Shionogi); GARDP; the Clinton Health Access Initiative (CHAI). Critical Agreement Paves Way for New Model to Accelerate Access to Important Antibiotics for Serious Bacterial Infections. Available online: https://www.shionogi.com/us/en/news/2023/09/critical-agreement-paves-way-for-new-model-to-accelerate-access-to-important-antibiotics-for-serious-bacterial-infections.html (accessed on 3 July 2025).
- Lopez Montesinos, I.; Gomez-Zorrilla, S.; Palacios-Baena, Z.R.; Prim, N.; Echeverria-Esnal, D.; Gracia, M.P.; Montero, M.M.; Duran-Jorda, X.; Sendra, E.; Sorli, L.; et al. Aminoglycoside or Polymyxin Monotherapy for Treating Complicated Urinary Tract Infections Caused by Extensively Drug-Resistant Pseudomonas aeruginosa: A Propensity Score-Adjusted and Matched Cohort Study. Infect. Dis. Ther. 2022, 11, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Samonis, G.; Maraki, S.; Karageorgopoulos, D.E.; Vouloumanou, E.K.; Falagas, M.E. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Ferous, S.; Anastassopoulou, C.; Pitiriga, V.; Vrioni, G.; Tsakris, A. Antimicrobial and Diagnostic Stewardship of the Novel beta-Lactam/beta-Lactamase Inhibitors for Infections Due to Carbapenem-Resistant Enterobacterales Species and Pseudomonas aeruginosa. Antibiotics 2024, 13, 285. [Google Scholar] [CrossRef] [PubMed]
- Betrosian, A.P.; Frantzeskaki, F.; Xanthaki, A.; Douzinas, E.E. Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. J. Infect. 2008, 56, 432–436. [Google Scholar] [CrossRef]
- Nation, R.L.; Li, J. Colistin in the 21st century. Curr. Opin. Infect. Dis. 2009, 22, 535–543. [Google Scholar] [CrossRef]
- Karaiskos, I.; Souli, M.; Galani, I.; Giamarellou, H. Colistin: Still a lifesaver for the 21st century? Expert. Opin. Drug Metab. Toxicol. 2017, 13, 59–71. [Google Scholar] [CrossRef]
- Karakosta, P.; Vourli, S.; Kousouli, E.; Meletis, G.; Tychala, A.; Louka, C.; Vasilakopoulou, A.; Protonotariou, E.; Mamali, V.; Zarkotou, O.; et al. Multidrug-resistant organism bloodstream infection and hospital acquisition among inpatients in three tertiary Greek hospitals during the COVID-19 era. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 1241–1246. [Google Scholar] [CrossRef]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 10.0; EUCAST: Växjö, Sweden, 2019. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 30 April 2025).
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp: Armonk, NY, USA, 2020.
Type of Samples (%) | 2020 | 2021 | 2022 | 2023 | 2020–2023 |
---|---|---|---|---|---|
Blood culture | 9 (9%) | 5 (5%) | 9 (7%) | 22 (7%) | 45 (7%) |
Bronchial secretions | 35 (34%) | 39 (37%) | 17 (14%) | 37 (12%) | 128 (20%) |
CVC * | 4 (4%) | 4 (4%) | 7 (6%) | 15 (5%) | 30 (5%) |
Urine | 23 (23%) | 36 (34%) | 54 (44%) | 131 (44%) | 244 (39%) |
Wound swabs | 15 (15%) | 12 (11%) | 11 (9%) | 46 (15%) | 84 (13%) |
Multiple sample areas | 16 (16%) | 8 (8%) | 22 (18%) | 42 (14%) | 88 (14%) |
Other ** | 0 (0%) | 1 (1%) | 3 (2%) | 5 (2%) | 9 (1%) |
Total | n = 102 | n = 105 | n = 123 | n = 298 | 628 |
2020 | 2021 | 2022 | 2023 | 2020–2023 | |
---|---|---|---|---|---|
Pathology | 10 (10%) | 18 (17%) | 38 (31%) | 92 (31%) | 158 (25%) |
ICU * | 51 (50%) | 44 (42%) | 11 (9%) | 35 (12%) | 141 (22%) |
Surgery | 28 (27%) | 19 (18%) | 20 (16%) | 48 (16%) | 115 (18%) |
AED ** | 2 (2%) | 5 (5%) | 17 (14%) | 38 (13%) | 62 (10%) |
Orthopedics | 0 (0%) | 1 (1%) | 5 (4%) | 6 (2%) | 12 (2%) |
Hematology | 1 (1%) | 2 (2%) | 3 (2%) | 4 (1%) | 10 (2%) |
AED-COVID | 0 (0%) | 0 (0%) | 6 (5%) | 13 (4%) | 19 (3%) |
Nephrology/Urology | 3 (3%) | 10 (10%) | 3 (2%) | 10 (3%) | 26 (4%) |
Others *** | 7 (7%) | 6 (6%) | 20 (16%) | 52 (17%) | 85 (14%) |
Total | 102 | 105 | 123 | 298 | 628 |
2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|
VIM | 102 (100%) | 105 (100%) | 70 (57%) | 136 (45.6%) |
NDM | 0 (0%) | 0 (0%) | 53 (43%) | 162 (54.4%) |
Total | n = 102 | n = 105 | n = 123 | n = 298 |
Antibiotic | Resistance | 2020 vs. 2021 | 2021 vs. 2022 | 2022 vs. 2023 | 2020 vs. 2023 |
---|---|---|---|---|---|
Piperacillin/Tazobactam | 2020—78/97 (80.4%) | p-value = < 0.00001 | NS | NS | p-value = < 0.00001 |
2021—105/105 (100%) | |||||
2022—123/123 (100%) | |||||
2023—298/298 (100%) | |||||
Ceftazidime | 2020—79/102 (77.5%) | p-value = < 0.00001 | NS | NS | p-value = < 0.00001 |
2021—105/105 (100%) | |||||
2022—123/123 (100%) | |||||
2023—297/297 (100%) | |||||
Cefepime | 2020—87/102 (85.3%) | p-value = 0.000797 | NS | NS | p-value = < 0.00001 |
2021—103/105 (98.1%) | |||||
2022—122/123 (99.2%) | |||||
2023—295/298 (99.0%) | |||||
Aztreonam | 2020—17/101 (16.8%) | NS | p-value = 0.015737 | NS | p-value = < 0.00001 |
2021—26/105 (24.8%) | |||||
2022—49/123 (39.8%) | |||||
2023—124/296 (41.9%) | |||||
Imipenem | 2020—102/102 (100%) | NS | NS | NS | NS |
2021—105/105 (100%) | |||||
2022—123/123 (100%) | |||||
2023—298/298 (100%) | |||||
Meropenem | 2020—101/102 (99.0%) | NS | NS | NS | NS |
2021—102/105 (97.1%) | |||||
2022—122/123 (99.2%) | |||||
2023—297/298 (99.7%) | |||||
Gentamicin | 2020—80/100 (80.0%) | p-value = 0.000377 | NS | NS | p-value = < 0.00001 |
2021—99/103 (96.1%) | |||||
2022—107/114 (93.9%) | |||||
2023—261/268 (97.4%) | |||||
Tobramycin | 2020—98/102 (96.1%) | NS | NS | NS | NS |
2021—103/105 (98.1%) | |||||
2022—120/121 (99.2%) | |||||
2023—203/208 (97.6%) | |||||
Amikacin | 2020—38/45 (84.4%) | NS | p-value = 0.019517 | p-value = 0.018257 | NS |
2021—87/95 (91.6%) | |||||
2022—118/120 (98.3%) | |||||
2023—275/298 (92.3%) | |||||
Ciprofloxacin | 2020—90/98 (91.8%) | p-value = 0.012626 | NS | NS | NS |
2021—104/105 (99.0%) | |||||
2022—119/122 (97.5%) | |||||
2023—267/282 (94.7%) | |||||
Levofloxacin | 2020—87/94 (92.6%) | NS | NS | NS | NS |
2021—104/105 (99.0%) | |||||
2022—120/123 (97.6%) | |||||
2023—281/298 (94.3%) | |||||
Colistin | 2020—3/102 (2.9%) | NS | NS | NS | NS |
2021—2/105 (1.9%) | |||||
2022—2/123 (1.6%) | |||||
2023—8/298 (2.7%) | |||||
Ceftazidime/Avibactam | 2020- | ||||
2021—2/2 (100%) | |||||
2022—60/60 (100%) | |||||
2023—269/269 (100%) |
2020 | 2021 | 2022 | 2023 | 2020–2023 | ||||
---|---|---|---|---|---|---|---|---|
Antimicrobial | VIM | VIM | VIM | NDM | VIM | NDM | VIM | NDM |
Piperacillin/Tazobactam | 78/97 (80%) | 105/105 (100%) | 70/70 (100%) | 53/53 (100%) | 136/136 (100%) | 162/162 (100%) | 389/408 (95.3%) | 215/215 (100%) |
Ceftazidime | 79/102 (77%) | 105/105 (100%) | 70/70 (100%) | 53/53 (100%) | 136/136 (100%) | 161/161 (100%) | 390/413 (94.4%) | 214/214 (100%) |
Cefepime | 87/102 (85%) | 103/105 (98%) | 69/70 (99%) | 53/53 (100%) | 133/136 (98%) | 162/162 (100%) | 392/413 (94.9%) | 215/215 (100%) |
Aztreonam | 17/101 (17%) | 26/105 (25%) | 21/70 (30%) | 28/53 (53%) | 34/135 (25%) | 90/161 (56%) | 98/411 (23.8%) | 118/214 (55.1%) |
Gentamicin | 80/100 (80%) | 99/103 (96%) | 58/64 (91%) | 49/49 (100%) | 114/121 (94%) | 147/147 (100%) | 351/388 (90.5%) | 196/196 (100%) |
Tobramycin | 98/102 (96%) | 103/105 (98%) | 69/70 (99%) | 51/51 (100%) | 92/95 (97%) | 111/113 (98%) | 362/372 (97.3%) | 162/164 (98.8%) |
Amikacin | 38/45 (84%) | 87/95 (92%) | 66/68 (97%) | 52/52 (100%) | 116/136 (85%) | 159/162 (98%) | 307/344 (89.2%) | 211/214 (98.6%) |
Ciprofloxacin | 90/98 (92%) | 104/105 (99%) | 67/70 (96%) | 52/52 (100%) | 110/125 (88%) | 157/157 (100%) | 371/398 (93.2%) | 209/209 (100%) |
Levofloxacin | 87/94 (93%) | 104/105 (99%) | 67/70 (96%) | 53/53 (100%) | 120/136 (88%) | 161/162 (99%) | 378/405 (93.3%) | 214/215 (99.5%) |
Colistin | 3/102 (3%) | 2/105 (2%) | 2/70 (3%) | 0/53 (0%) | 1/136 (1%) | 7/162 (4%) | 8/413 (1.9%) | 7/215 (3.3%) |
Ceftazidime/Avibactam | - | 2/2 (100%) | 28/28 (100%) | 32/32 (100%) | 122/122 (100%) | 14/147 (100%) | 152/152 (100%) | 179/179 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koumaki, V.; Voudanta, E.; Michelaki, A.; Orfanidou, M.; Vagiakou, E.; Vrioni, G.; Tsakris, A. Epidemiological Trends of Carbapenemase-Producing Pseudomonas aeruginosa in a Tertiary Care Hospital in Athens, Greece, During 2020–2023. Antibiotics 2025, 14, 898. https://doi.org/10.3390/antibiotics14090898
Koumaki V, Voudanta E, Michelaki A, Orfanidou M, Vagiakou E, Vrioni G, Tsakris A. Epidemiological Trends of Carbapenemase-Producing Pseudomonas aeruginosa in a Tertiary Care Hospital in Athens, Greece, During 2020–2023. Antibiotics. 2025; 14(9):898. https://doi.org/10.3390/antibiotics14090898
Chicago/Turabian StyleKoumaki, Vasiliki, Eleni Voudanta, Aikaterini Michelaki, Maria Orfanidou, Eleni Vagiakou, Georgia Vrioni, and Athanasios Tsakris. 2025. "Epidemiological Trends of Carbapenemase-Producing Pseudomonas aeruginosa in a Tertiary Care Hospital in Athens, Greece, During 2020–2023" Antibiotics 14, no. 9: 898. https://doi.org/10.3390/antibiotics14090898
APA StyleKoumaki, V., Voudanta, E., Michelaki, A., Orfanidou, M., Vagiakou, E., Vrioni, G., & Tsakris, A. (2025). Epidemiological Trends of Carbapenemase-Producing Pseudomonas aeruginosa in a Tertiary Care Hospital in Athens, Greece, During 2020–2023. Antibiotics, 14(9), 898. https://doi.org/10.3390/antibiotics14090898