Rapid Emergence of Cefiderocol Resistance Associated with Mutation of EnvZ Gene in a VIM-Producing ST307 Klebsiella pneumoniae Strain
Abstract
1. Introduction
2. Results
2.1. Phenotypic Analysis
2.2. Genomic Characterization of the Isolates
2.3. Analysis of Iron Uptake and Transport Genes
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Antimicrobial Susceptibility Testing
4.2. Whole-Genome Sequencing and Bioinformatic Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | cefiderocol |
CRE | carbapenem-resistant Enterobacterales |
MBL | metallo-β-lactamase |
VAP | ventilator-associated pneumonias |
TDM | therapeutic drug monitoring |
MIC | minimum inhibitory concentration |
References
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, 00047-19. [Google Scholar] [CrossRef] [PubMed]
- Van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 1, 31. [Google Scholar] [CrossRef] [PubMed]
- Villa, L.; Feudi, C.; Fortini, D.; Brisse, S.; Passet, V.; Bonura, C.; Endimiani, A.; Mammina, C.; Ocampo, A.M.; Jimenez, J.N.; et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb. Genom. 2017, 26, 3. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Noreddin, A.; Lynch Iii, J.P.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Rinaldi, M.; Laici, C.; Siniscalchi, A.; Ambretti, S.; Giannella, M.; Viale, P.; Pea, F. Highly adsorptive removal of cefiderocol during continuous venovenous hemodiafiltration equipped with oXiris filter in an orthotopic liver transplant recipient having septic shock caused by VIM-producing Klebsiella pneumoniae. J Antimicrob. Chemother. 2025, 80, 1153–1155. [Google Scholar] [CrossRef] [PubMed]
- Simner, P.J.; Beisken, S.; Bergman, Y.; Ante, M.; Posch, A.E.; Tamma, P.D. Defining Baseline Mechanisms of Cefiderocol Resistance in the Enterobacterales. Microb. Drug Resist. 2022, 28, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Gerken, H.; Vuong, P.; Soparkar, K.; Misra, R. Roles of the EnvZ/OmpR Two-Component System and Porins in Iron Acquisition in Escherichia coli. mBio 2020, 11, 01192-20. [Google Scholar] [CrossRef] [PubMed]
- Kriz, R.; Spettel, K.; Pichler, A.; Schefberger, K.; Sanz-Codina, M.; Lötsch, F.; Harrison, N.; Willinger, B.; Zeitlinger, M.; Burgmann, H.; et al. In vitro resistance development gives insights into molecular resistance mechanisms against cefiderocol. J. Antibiot. 2024, 77, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.; Bianco, G.; Boattini, M.; Nordmann, P. High-level cefiderocol and ceftazidime/avibactam resistance in KPC-producing Klebsiella pneumoniae associated with mutations in KPC and the sensor histidine kinase EnvZ. J. Antimicrob. Chemother. 2025, 80, 1155–1157. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, L.; Lv, J.; Wen, Y.; Gao, Q.; Qian, F.; Tian, X.; Zhu, J.; Zhu, Z.; Chen, L.; et al. Effects of different carbapenemase and siderophore production on cefiderocol susceptibility in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2024, 68, 0101924. [Google Scholar] [CrossRef] [PubMed]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, 102. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar] [PubMed]
- Mölder, F.; Jablonski, K.P.; Letcher, B.; Hall, M.B.; Tomkins-Tinch, C.H.; Sochat, V.; Forster, J.; Lee, S.; Twardziok, S.O.; Kanitz, A.; et al. Sustainable data analysis with Snakemake. F1000Research 2021, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Mikheenko, A.; Saveliev, V.; Hirsch, P.; Gurevich, A. WebQUAST: Online evaluation of genome assemblies. Nucleic Acids Res. 2023, 51, W601–W606. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Wick, R.R.; Gorrie, C.; Jenney, A.; Follador, R.; Thomson, N.R.; Holt, K.E. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb. Genom. 2016, 2, 000102. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
MIC Value (mg/L) | |||
---|---|---|---|
Antimicrobial | RS | BA1 | BA2 |
Amikacin | ≤8 | ≤8 | ≤8 |
Ampicillin | >8 | >8 | >8 |
Amoxicillin/clavulanic acid | >32 | >32 | >32 |
Ceftazidime + avibactam | >8 | >8 | >8 |
Ceftazidime | >32 | >32 | >32 |
Ceftolozane + Tazobactam | >4 | >4 | >4 |
Ciprofloxacin | >1 | >1 | >1 |
Cefotaxime | >32 | >32 | >32 |
Ertapenem | >1 | >1 | >1 |
Gentamicin | ≤2 | ≤2 | ≤2 |
Meropenem | 32 | 32 | 32 |
Meropenem + Vaborbactam | >16 | >16 | >16 |
Sulfamethoxazole/trimethoprim | >4/76 | >4/76 | >4/76 |
Piperacillin + Tazobactam | >16 | >16 | >16 |
Aztreonam | >32 | >32 | >32 |
Cefepime | >16 | >16 | >16 |
Eravacycline | >0.5 | >0.5 | >0.5 |
Imipenem | >8 | >8 | >8 |
Imipenem/relebactam | >8/4 | >8/4 | >8/4 |
Tigecycline | 1 | 1 | 1 |
Tobramycin | >4 | >4 | >4 |
Cefiderocol | 2 | 2 | 8 |
Iron Uptake and Transport Genes | Antibiotic Resistance Genes | ||||
---|---|---|---|---|---|
Mutations | Gene | Genes | Gene Function | ST | Isolates |
aac(6′)-Ib4 | Aminoglycoside resistance | ST307 | RS, BA1 | ||
aadA1 | |||||
aph(3″)-Ib | |||||
aph(6)-Id | |||||
blaCTX-M-15 | Beta-lactam resistance | ||||
blaOXA-1 | |||||
blaSHV-12 | |||||
blaTEM-206 | |||||
blaVIM-1 | |||||
emrD | Efflux | ||||
mph(A) | Macrolide | ||||
catB2 | Phenicol | ||||
catB3 | |||||
oqxB19 | Phenicol/Quinolone | ||||
parC_S80I | Quinolone | ||||
gyrA_S83I | |||||
qnrB1 | |||||
qnrS1 | |||||
sul1 | Sulfonamide | ||||
sul2 | |||||
tet(A) | Tetracycline | ||||
dfrA14 | Trimethoprim | ||||
Ala231Val | envZ | aac(6′)-Ib4 | Aminoglycoside resistance | ST307 | BA2 |
aadA1 | |||||
aph(3″)-Ib | |||||
aph(6)-Id | |||||
blaCTX-M-15 | Beta-lactam resistance | ||||
blaOXA-1 | |||||
blaSHV-12 | |||||
blaTEM-206 | |||||
blaVIM-1 | |||||
emrD | Efflux | ||||
mph(A) | Macrolide | ||||
catB2 | Phenicol | ||||
catB3 | |||||
oqxB19 | Phenicol/Quinolone | ||||
parC_S80I | Quinolone | ||||
gyrA_S83I | |||||
qnrB1 | |||||
qnrS1 | |||||
sul1 | Sulfonamide | ||||
sul2 | |||||
tet(A) | Tetracycline | ||||
dfrA14 | Trimethoprim |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambretti, S.; Secci, B.; Cetatean, R.; Gatti, M.; Viale, P.; Pea, F.; Foschi, C. Rapid Emergence of Cefiderocol Resistance Associated with Mutation of EnvZ Gene in a VIM-Producing ST307 Klebsiella pneumoniae Strain. Antibiotics 2025, 14, 893. https://doi.org/10.3390/antibiotics14090893
Ambretti S, Secci B, Cetatean R, Gatti M, Viale P, Pea F, Foschi C. Rapid Emergence of Cefiderocol Resistance Associated with Mutation of EnvZ Gene in a VIM-Producing ST307 Klebsiella pneumoniae Strain. Antibiotics. 2025; 14(9):893. https://doi.org/10.3390/antibiotics14090893
Chicago/Turabian StyleAmbretti, Simone, Benedetta Secci, Raul Cetatean, Milo Gatti, Pierluigi Viale, Federico Pea, and Claudio Foschi. 2025. "Rapid Emergence of Cefiderocol Resistance Associated with Mutation of EnvZ Gene in a VIM-Producing ST307 Klebsiella pneumoniae Strain" Antibiotics 14, no. 9: 893. https://doi.org/10.3390/antibiotics14090893
APA StyleAmbretti, S., Secci, B., Cetatean, R., Gatti, M., Viale, P., Pea, F., & Foschi, C. (2025). Rapid Emergence of Cefiderocol Resistance Associated with Mutation of EnvZ Gene in a VIM-Producing ST307 Klebsiella pneumoniae Strain. Antibiotics, 14(9), 893. https://doi.org/10.3390/antibiotics14090893