Honey Compounds Exhibit Antibacterial Effects Against Aggregatibacter actinomycetemcomitans JP2
Abstract
1. Introduction
2. Results
2.1. Antibacterial Activity
2.2. Physicochemical Analysis
2.3. Antioxidant, Hydrogen Peroxide Activity, and Vitamin C Content
2.3.1. Antioxidant Compounds
2.3.2. Antioxidant Activity and Mineral Content
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain
4.2. Tested Products
4.3. Antibacterial Activity
4.4. Physicochemical Analysis
4.5. Antioxidant Properties
4.5.1. Total Phenolic Content (TPC)
4.5.2. Total Flavonoid Content (TFC)
4.5.3. DPPH Radical Scavenging Assay (RSA)
4.5.4. Hydrogen Peroxide Activity
4.5.5. Vitamin C Analysis
4.5.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAS | Atomic Absorption Spectrometry |
AMR | Antimicrobial Resistance |
AMX | Amoxicillin |
BHI | Brain Heart Infusion |
CAMHB-LHB | Cation-Adjusted Mueller–Hinton Broth Supplemented with Lysed Horse Blood |
CCUG | Culture Collection University Of Gothenburg |
CEQ | Catechin Equivalents |
CFU | Colony Forming Unit |
CHX | Chlorhexidine |
CLSI | Clinical and Laboratory Standard Institute |
DL | Detection Limit |
DPPH | 2,2-Diphenyl-1-Picrylhydrazyl |
FC | Folin–Ciocalteu’s |
GAE | Gallic Acid Equivalents |
HACEK | Haemophilus Actinobacillus actinomycetemcomitans (Aggregatibacter actinomycetemcomitans), Cardiobacterium hominis, Capnocytophaga spp. Eikenella corrodens and Kingella kingae. |
HRP | Horseradish Peroxidase |
HTM | Haemophilus Test Medium |
IZ | Inhibition Zone |
JC | Jasmine Cooperative |
K | Potassium |
LtxA | leukotoxin |
MBC | Minimum Bactericidal Concentration |
Mg | Magnesium |
MGHF | Medical-Grade Honey-based Formulation |
MH | Mueller–Hinton |
MIC | Minimum Inhibitory Concentration |
ND | Not Determined |
RJ | Royal Jelly |
RP-HPLC | Reversed-Phase High-Performance Liquid Chromatography |
RSA | Radical-Scavenging Activity |
RSD | Relative Standard Deviation |
RT | Room Temperature |
TFC | Total Flavonoid Content |
TPC | Total Phenolic Content |
TTC | Triphenyl Tetrazolium Chloride |
Zn | zinc |
References
- Pink, C.; Holtfreter, B.; Völzke, H.; Nauck, M.; Dörr, M.; Kocher, T. Periodontitis and systemic inflammation as independent and interacting risk factors for mortality: Evidence from a prospective cohort study. BMC Med. 2023, 21, 430. [Google Scholar] [CrossRef]
- Demirel, K.J.; Neves Guimaraes, A.; Demirel, I. The Role of Caspase-1 and Caspase-4 in Modulating Gingival Epithelial Cell Responses to Aggregatibacter actinomycetemcomitans Infection. Pathogens 2025, 14, 295. [Google Scholar] [CrossRef]
- Curtis, M.A.; Diaz, P.I.; Van Dyke, T.E. The role of the microbiota in periodontal disease. Periodontol 2000 2020, 83, 14–25. [Google Scholar] [CrossRef]
- Revest, M.; Egmann, G.; Cattoir, V.; Tattevin, P. HACEK endocarditis: State-of-the-art. Expert Rev. Anti-Infect. Ther. 2016, 14, 523–530. [Google Scholar] [CrossRef]
- Belibasakis, G.N.; Maula, T.; Bao, K.; Lindholm, M.; Bostanci, N.; Oscarsson, J.; Ihalin, R.; Johansson, A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019, 8, 222. [Google Scholar] [CrossRef]
- Looh, S.C.; Soo, Z.M.P.; Wong, J.J.; Yam, H.C.; Chow, S.K.; Hwang, J.S. Aggregatibacter actinomycetemcomitans as the Aetiological Cause of Rheumatoid Arthritis: What Are the Unsolved Puzzles? Toxins 2022, 14, 50. [Google Scholar] [CrossRef]
- Huang, Y.; Ni, S. Aggregatibacter Actinomycetemcomitans with Periodontitis and Rheumatoid Arthritis. Int. Dent. J. 2024, 74, 58–65. [Google Scholar] [CrossRef]
- Bale, B.F.; Doneen, A.L.; Vigerust, D.J. High-risk periodontal pathogens contribute to the pathogenesis of atherosclerosis. Postgrad. Med. J. 2017, 93, 215–220. [Google Scholar] [CrossRef]
- Martínez, M.; Postolache, T.T.; García-Bueno, B.; Leza, J.C.; Figuero, E.; Lowry, C.A.; Malan-Müller, S. The Role of the Oral Microbiota Related to Periodontal Diseases in Anxiety, Mood and Trauma- and Stress-Related Disorders. Front. Psychiatry 2021, 12, 814177. [Google Scholar] [CrossRef]
- Brígido, J.A.; da Silveira, V.R.; Rego, R.O.; Nogueira, N.A. Serotypes of Aggregatibacter actinomycetemcomitans in relation to periodontal status and geographic origin of individuals-a review of the literature. Med. Oral Patol. Oral Y Cir. Bucal 2014, 19, e184–e191. [Google Scholar] [CrossRef]
- Mehta, J.; Eaton, C.; AlAmri, M.; Lin, G.H.; Nibali, L. The association between Aggregatibacter actinomycetemcomitans JP2 clone and periodontitis: A systematic review and meta-analysis. J. Periodontal Res. 2023, 58, 465–482. [Google Scholar] [CrossRef]
- Höglund Åberg, C.; Haubek, D.; Kwamin, F.; Johansson, A.; Claesson, R. Leukotoxic activity of Aggregatibacter actinomycetemcomitans and periodontal attachment loss. PLoS ONE 2014, 9, e104095. [Google Scholar] [CrossRef]
- Haubek, D.; Ennibi, O.K.; Poulsen, K.; Poulsen, S.; Benzarti, N.; Kilian, M. Early-onset periodontitis in Morocco is associated with the highly leukotoxic clone of Actinobacillus actinomycetemcomitans. J. Dent. Res. 2001, 80, 1580–1583. [Google Scholar] [CrossRef]
- Nygren, P.; Balashova, N.; Brown, A.C.; Kieba, I.; Dhingra, A.; Boesze-Battaglia, K.; Lally, E.T. Aggregatibacter actinomycetemcomitans leukotoxin causes activation of lymphocyte function-associated antigen 1. Cell Microbiol. 2019, 21, e12967. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef]
- Herrera, D.; van Winkelhoff, A.J.; Matesanz, P.; Lauwens, K.; Teughels, W. Europe’s contribution to the evaluation of the use of systemic antimicrobials in the treatment of periodontitis. Periodontol 2000 2023. [Google Scholar] [CrossRef] [PubMed]
- Ajulo, S.; Awosile, B. Global antimicrobial resistance and use surveillance system (GLASS 2022): Investigating the relationship between antimicrobial resistance and antimicrobial consumption data across the participating countries. PLoS ONE 2024, 19, e0297921. [Google Scholar] [CrossRef]
- Ramanathan, S.; Yan, C.H.; Hubbard, C.; Calip, G.S.; Sharp, L.K.; Evans, C.T.; Rowan, S.; McGregor, J.C.; Gross, A.E.; Hershow, R.C.; et al. Changes in antibiotic prescribing by dentists in the United States, 2012–2019. Infect. Control Hosp. Epidemiol. 2023, 44, 1725–1730. [Google Scholar] [CrossRef]
- Akrivopoulou, C.; Green, I.M.; Donos, N.; Nair, S.P.; Ready, D. Aggregatibacter actinomycetemcomitans serotype prevalence and antibiotic resistance in a UK population with periodontitis. J. Glob. Antimicrob. Resist. 2017, 10, 54–58. [Google Scholar] [CrossRef]
- Karygianni, L.; Al-Ahmad, A.; Argyropoulou, A.; Hellwig, E.; Anderson, A.C.; Skaltsounis, A.L. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Front. Microbiol. 2015, 6, 1529. [Google Scholar] [CrossRef]
- Otręba, M.; Marek, Ł.; Tyczyńska, N.; Stojko, J.; Rzepecka-Stojko, A. Bee Venom, Honey, and Royal Jelly in the Treatment of Bacterial Infections of the Oral Cavity: A Review. Life 2021, 11, 1311. [Google Scholar] [CrossRef]
- Deglovic, J.; Majtanova, N.; Majtan, J. Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods 2022, 11, 2670. [Google Scholar] [CrossRef]
- Romário-Silva, D.; Franchin, M.; Bueno-Silva, B.; Saliba, A.; Sardi, J.O.; Alves-Ferreira, T.; Lazarini, J.G.; Cunha, G.A.; de Alencar, S.M.; Rosalen, P.L. Brazilian Organic Honeydew Reduces In Vitro and In Vivo Periodontal Disease-Related Subgingival Biofilm. Foods 2025, 14, 997. [Google Scholar] [CrossRef]
- Voidarou, C.; Antoniadou, M.; Rozos, G.; Alexopoulos, A.; Giorgi, E.; Tzora, A.; Skoufos, I.; Varzakas, T.; Bezirtzoglou, E. An in vitro study of different types of greek honey as potential natural antimicrobials against dental caries and other oral pathogenic microorganisms. Case study simulation of oral cavity conditions. Appl. Sci. 2021, 11, 6318. [Google Scholar] [CrossRef]
- Aparna, S.; Srirangarajan, S.; Malgi, V.; Setlur, K.P.; Shashidhar, R.; Setty, S.; Thakur, S. A comparative evaluation of the antibacterial efficacy of honey in vitro and antiplaque efficacy in a 4-day plaque regrowth model in vivo: Preliminary results. J. Periodontol. 2012, 83, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Hbibi, A.; Sikkou, K.; Khedid, K.; El Hamzaoui, S.; Bouziane, A.; Benazza, D. Antimicrobial activity of honey in periodontal disease: A systematic review. J. Antimicrob. Chemother. 2020, 75, 807–826. [Google Scholar] [CrossRef]
- Papadopoulou, C.; Karamani, I.; Gkourtsogianni, S.; Seremidi, K.; Kloukos, D. A systematic review on the effectiveness of organic unprocessed products in controlling gingivitis in patients undergoing orthodontic treatment with fixed appliances. Clin. Exp. Dent. Res. 2021, 7, 664–671. [Google Scholar] [CrossRef]
- Pleeging, C.C.; de Rooster, H.; Van Wijk, B.; Wagener, F.A.; Cremers, N.A. Intra-socket application of medical-grade honey after tooth extraction attenuates inflammation and promotes healing in cats. J. Feline Med. Surg. 2022, 24, e618–e627. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.A.; Park, M.H.; Song, Y.; Na, H.S.; Chung, J. Role of Aggregatibacter actinomycetemcomitans-induced autophagy in inflammatory response. J. Periodontol. 2020, 91, 1682–1693. [Google Scholar] [CrossRef]
- Ennibi, O.K.; Claesson, R.; Akkaoui, S.; Reddahi, S.; Kwamin, F.; Haubek, D.; Johansson, A. High salivary levels of JP2 genotype of Aggregatibacter actinomycetemcomitans is associated with clinical attachment loss in Moroccan adolescents. Clin. Exp. Dent. Res. 2019, 5, 44–51. [Google Scholar] [CrossRef]
- Araújo, L.L.; Lourenço, T.G.B.; Colombo, A.P.V. Periodontal disease severity is associated to pathogenic consortia comprising putative and candidate periodontal pathogens. J. Appl. Oral Sci. 2023, 31, e20220359. [Google Scholar] [CrossRef] [PubMed]
- Hbibi, A.; Bouziane, A.; Lyoussi, B.; Zouhdi, M.; Benazza, D. Aggregatibacter actinomycetemcomitans: From Basic to Advanced Research. Adv. Exp. Med. Biol. 2022, 1373, 45–67. [Google Scholar] [CrossRef]
- Schmidlin, P.R.; English, H.; Duncan, W.; Belibasakis, G.N.; Thurnheer, T. Antibacterial potential of Manuka honey against three oral bacteria in vitro. Swiss Dent. J. 2014, 124, 922–924. [Google Scholar] [CrossRef]
- Luca, L.; Pauliuc, D.; Ursachi, F.; Oroian, M. Physicochemical parameters, microbiological quality, and antibacterial activity of honey from the Bucovina region of Romania. Sci. Rep. 2025, 15, 4358. [Google Scholar] [CrossRef]
- Eloi de Sousa Guimarães, N.; Larissa Salles Oliveira, M.; Nathan Fernandes Dos Santos, D.; Gonçalves de Araújo, R.; Vieira da Cunha, A.C.; de Oliveira da Silva, J.; Fernandes, F.H.A. Chemical characterisation, thermal analysis, and antibacterial activity of honeys from Caatinga stingless bees of Melipona spp. Nat. Prod. Res. 2024, 1–5. [Google Scholar] [CrossRef]
- Ahmed, M.; Amirat, M. FTIR, (1)H, and (13)C NMR Characterization and Antibacterial Activity of the Combination of Euphorbia Honey and Potato Starch. Comb. Chem. High Throughput Screen. 2024, 27, 1913–1918. [Google Scholar] [CrossRef]
- Valgas, C.; Souza, S.M.d.; Smânia, E.F.; Smânia, A., Jr. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef]
- Ait Abderrahim, L.; Taïbi, K.; Ait Abderrahim, N.; Boussaid, M.; Rios-Navarro, C.; Ruiz-Saurí, A. Euphorbia honey and garlic: Biological activity and burn wound recovery. Burns 2019, 45, 1695–1706. [Google Scholar] [CrossRef] [PubMed]
- Boutoub, O.; El-Guendouz, S.; Estevinho, L.M.; Paula, V.B.; Aazza, S.; El Ghadraoui, L.; Rodrigues, B.; Raposo, S.; Carlier, J.; Costa, M.C.; et al. Antioxidant activity and enzyme inhibitory potential of Euphorbia resinifera and E. officinarum honeys from Morocco and plant aqueous extracts. Environ. Sci. Pollut. Res. Int. 2021, 28, 503–517. [Google Scholar] [CrossRef]
- Boutoub, O.; El-Guendouz, S.; Manhita, A.; Dias, C.B.; Estevinho, L.M.; Paula, V.B.; Carlier, J.; Costa, M.C.; Rodrigues, B.; Raposo, S.; et al. Comparative Study of the Antioxidant and Enzyme Inhibitory Activities of Two Types of Moroccan Euphorbia Entire Honey and Their Phenolic Extracts. Foods 2021, 10, 1909. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and health: A review of recent clinical research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar] [CrossRef]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiol. 2018, 4, 655–664. [Google Scholar] [CrossRef]
- Lu, J.; Carter, D.A.; Turnbull, L.; Rosendale, D.; Hedderley, D.; Stephens, J.; Gannabathula, S.; Steinhorn, G.; Schlothauer, R.C.; Whitchurch, C.B.; et al. The effect of New Zealand kanuka, manuka and clover honeys on bacterial growth dynamics and cellular morphology varies according to the species. PLoS ONE 2013, 8, e55898. [Google Scholar] [CrossRef] [PubMed]
- Bobis, O.; Moise, A.R.; Ballesteros, I.; Reyes, E.S.; Durán, S.S.; Sánchez-Sánchez, J.; Cruz-Quintana, S.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Eucalyptus honey: Quality parameters, chemical composition and health-promoting properties. Food Chem. 2020, 325, 126870. [Google Scholar] [CrossRef]
- Ciprandi, G.; Tosca, M.A. Non-pharmacological remedies for post-viral acute cough. Monaldi. Arch. Chest Dis. 2021, 92, 1. [Google Scholar] [CrossRef] [PubMed]
- Charalambous, A.; Lambrinou, E.; Katodritis, N.; Vomvas, D.; Raftopoulos, V.; Georgiou, M.; Paikousis, L.; Charalambous, M. The effectiveness of thyme honey for the management of treatment-induced xerostomia in head and neck cancer patients: A feasibility randomized control trial. Eur. J. Oncol. Nurs. 2017, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Khosla, A.; Gupta, S.J.; Jain, A.; Shetty, D.C.; Sharma, N. Evaluation and comparison of the antimicrobial activity of royal jelly —A holistic healer against periodontopathic bacteria: An in vitro study. J. Indian Soc. Periodontol. 2020, 24, 221–226. [Google Scholar] [CrossRef]
- Romário-Silva, D.; Alencar, S.M.; Bueno-Silva, B.; Sardi, J.C.O.; Franchin, M.; Carvalho, R.D.P.; Ferreira, T.; Rosalen, P.L. Antimicrobial Activity of Honey against Oral Microorganisms: Current Reality, Methodological Challenges and Solutions. Microorganisms 2022, 10, 2325. [Google Scholar] [CrossRef]
- Majkut, M.; Kwiecińska-Piróg, J.; Wszelaczyńska, E.; Pobereżny, J.; Gospodarek-Komkowska, E.; Wojtacki, K.; Barczak, T. Antimicrobial activity of heat-treated Polish honeys. Food Chem. 2021, 343, 128561. [Google Scholar] [CrossRef]
- Villacrés-Granda, I.; Proaño, A.; Coello, D.; Debut, A.; Vizuete, K.; Ballesteros, I.; Granda-Albuja, G.; Rosero-Mayanquer, H.; Battino, M.; Giampieri, F.; et al. Effect of thermal liquefaction on quality, chemical composition and antibiofilm activity against multiresistant human pathogens of crystallized eucalyptus honey. Food Chem. 2021, 365, 130519. [Google Scholar] [CrossRef]
- Pleeging, C.C.F.; Coenye, T.; Mossialos, D.; de Rooster, H.; Chrysostomou, D.; Wagener, F.; Cremers, N.A.J. Synergistic Antimicrobial Activity of Supplemented Medical-Grade Honey against Pseudomonas aeruginosa Biofilm Formation and Eradication. Antibiotics 2020, 9, 866. [Google Scholar] [CrossRef]
- Zeidan, N.K.; Enany, N.M.; Mohamed, G.G.; Marzouk, E.S. The antibacterial effect of silver, zinc-oxide and combination of silver/zinc oxide nanoparticles coating of orthodontic brackets (an in vitro study). BMC Oral Health 2022, 22, 230. [Google Scholar] [CrossRef]
- Brudzynski, K. Unexpected Value of Honey Color for Prediction of a Non-Enzymatic H2O2 Production and Honey Antibacterial Activity: A Perspective. Metabolites 2023, 13, 526. [Google Scholar] [CrossRef]
- Poli, J.P.; Guinoiseau, E.; Luciani, A.; Yang, Y.; Battesti, M.J.; Paolini, J.; Costa, J.; Quilichini, Y.; Berti, L.; Lorenzi, V. Key role of hydrogen peroxide in antimicrobial activity of spring, Honeydew maquis and chestnut grove Corsican honeys on Pseudomonas aeruginosa DNA. Lett. Appl. Microbiol. 2018, 66, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Masoura, M.; Passaretti, P.; Overton, T.W.; Lund, P.A.; Gkatzionis, K. Use of a model to understand the synergies underlying the antibacterial mechanism of H2O2-producing honeys. Sci. Rep. 2020, 10, 17692. [Google Scholar] [CrossRef]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Sci. Rep. 2018, 8, 9061. [Google Scholar] [CrossRef]
- CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI Guideline M45; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Zhang, J.L.; Yao, J.; Zhuge, J.N.; Zhang, Y.J. Antibacterial activity of erythritol on periodontal pathogen. Shanghai Kou Qiang Yi Xue 2019, 28, 362–367. [Google Scholar]
- Satthanakul, P.; Taweechaisupapong, S.; Paphangkorakit, J.; Pesee, M.; Timabut, P.; Khunkitti, W. Antimicrobial effect of lemongrass oil against oral malodour micro-organisms and the pilot study of safety and efficacy of lemongrass mouthrinse on oral malodour. J. Appl. Microbiol. 2015, 118, 11–17. [Google Scholar] [CrossRef]
- Azizan, N.; Mohd Said, S.; Zainal Abidin, Z.; Jantan, I. Composition and Antibacterial Activity of the Essential Oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack against Pathogenic Oral Bacteria. Molecules 2017, 22, 2135. [Google Scholar] [CrossRef]
- Codex, A.; Intergovernmental, T.F.O. Codex. In Proceedings of the Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission Twenty-Fourth Session, Geneva, Switzerland, 2–7 July 2001. [Google Scholar]
- Habluetzel, A.; Schmid, C.; Carvalho, T.S.; Lussi, A.; Eick, S. Impact of honey on dental erosion and adhesion of early bacterial colonizers. Sci. Rep. 2018, 8, 10936. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Wachol, A.; Korytkowska-Wałach, A.; Chmiela, B.; Wachol, K.; Łopaciński, M.; Wyszyńska, M.; Al-Dulaimi, Y.; Skucha-Nowak, M. Yttrium Trifluoride as a Marker of Infiltration Rate of Decalcified Root Cementum: An In Vitro Study. Polymers 2022, 14, 780. [Google Scholar] [CrossRef]
- Alsina, M.; Olle, E.; Frias, J. Improved, low-cost selective culture medium for Actinobacillus actinomycetemcomitans. J. Clin. Microbiol. 2001, 39, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Akkaoui, S.; Johansson, A.; Yagoubi, M.; Haubek, D.; El Hamidi, A.; Rida, S.; Claesson, R.; Ennibi, O. Chemical Composition, Antimicrobial activity, in Vitro Cytotoxicity and Leukotoxin Neutralization of Essential Oil from Origanum vulgare against Aggregatibacter actinomycetemcomitans. Pathogens 2020, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Levison, M.E. Pharmacodynamics of antimicrobial drugs. Infect. Dis. Clin. N. Am. 2004, 18, 451–465. [Google Scholar] [CrossRef]
- Bogdanov, S.; Lüllmann, C.; Martin, P.; Von der Ohe, W.; Russmann, H.; Volwohl, G.; Persano, L.; Sabatini, A.; Marcazzan, G.; Piro, R. Honey Quality. Methods of Análisis and Internacional Regulatory Standards: Review of the Work of the International Honey Comission; Swiss Bee Research Centre, FAM: Liebefeld, Switzerland, 2000. [Google Scholar]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Maffei Facino, R. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Samples | IZ (mm) | MIC (mg/mL) | MBC (mg/mL) |
---|---|---|---|
H0 | 21 ± 2.26 a, b | 40.70 ± 6.4 a, b, c, d | 40.70 ± 6.4 a, b, c, d, e, f |
H1 | 28.3 ± 3.78 | 71.25 ± 3.37 a, g, h, i | 71.25 ± 3.37 a, b, c, d, e, f |
H2 | 22.3 ± 2.08 c | 54.6 ± 8.93 j, k, l, m | 54.6 ± 8.93 c |
H3 | 25 ± 7.81 | 102.5 ± 4.33 b, g, j, n, o | 109.6 ± 4 a, b |
H4 | 37 ± 2.64 a, c | 100.75 ± 13.42 c, h, k, m, p | 100.75 ± 13.42 a, c |
H5 | 28.3 ± 8.02 | 71.05 ± 4.24 d, n, p, q | 70.56 ± 4.24 a, d, e, f |
H6 | 30.6 ± 2.08 | 79.05 ± 11.68 e, l, o, r | 78.79 ± 11.68 a, c, d, e |
H7 | 27.3 ± 3.05 | 104.3 ± 7.45 f, i, q, r | 106.3 ±7.4 a, b |
CHX | 34.6 ± 2.51 b | ND | ND |
Samples | pH | MIC pH (*) | Free Acidity (mLEq/Kg) | Moisture (%) | Ash (%) | Electrical Conductivity (µs/cm) |
---|---|---|---|---|---|---|
H0 | 4.06 ± 0.06 | 6.29 ± 0.07 | 23 ± 0.06 | 18.97 ± 0.02 | 0.321 ± 0.001 | 237.00 ± 6.55 |
H1 | 4.20 ± 0.005 | 5.51 ± 0.03 | 15 ± 0.04 | 20.59 ± 0.01 | 0.333 ± 0.001 | 368.67 ± 0.57 |
H2 | 3.92 ± 0.02 | 5.14 ± 0.03 | 14.8 ± 0.02 | 19.23 ± 0.02 | 0.310 ± 0.001 | 500.00 ± 1 |
H3 | 3.76 ± 0.01 | 7.21 ± 0.08 | 12 ± 0.01 | 21.06 ± 0.04 | 0.298 ± 0.002 | 132.87 ± 0.96 |
H4 | 4.16 ± 0.01 | 7.63 ± 0.07 | 15 ± 0.02 | 19.45 ± 0.04 | 0.329 ± 0.002 | 306.67 ± 1.15 |
H5 | 3.78 ± 0.01 | 5.12 ± 0.02 | 20 ± 0.05 | 20.41 ± 0.01 | 0.188 ± 0.001 | 263.33 ± 1.15 |
H6 | 3.86 ± 0.01 | 5.60 ± 0.03 | 21 ± 0.05 | 18.83 ± 0.04 | 0.192 ± 0.002 | 334.33 ± 32.65 |
H7 | 3.74 ± 0.01 | 7.38 ± 0.05 | 15 ± 0.02 | 19.88 ± 0.01 | 0.143 ± 0.001 | 134.17 ± 1.04 |
Mg (mg/kg) | RSD (%) | K (mg/kg) | RSD (%) | Zn (mg/kg) | RSD (%) | |
---|---|---|---|---|---|---|
H0 | 5.445 | 1.4 | 131.3115 | 0.6 | 0.105 | 10.2 |
H1 | 4.056 | 0.5 | 211.935 | 1.6 | <DL * | _ |
H2 | 7.533 | 0.9 | 102.585 | 0.3 | 0.0285 | 18 |
H3 | 2.8995 | 1.1 | 42.462 | 0.1 | <DL * | _ |
H4 | 6.2745 | 0.5 | 179.505 | 0.7 | <DL * | _ |
H5 | 3.804 | 1.8 | 109.1325 | 0.3 | <DL * | _ |
H6 | 2.5785 | 2.1 | 143.7375 | 0.4 | <DL * | _ |
H7 | 5.4465 | 1.5 | 114.4605 | 0.1 | <DL * | _ |
H2O2 (µM) | TPC (GAE) mg/kg | TFC (CEQ) mg/kg | DPPH (RSA%) | Vitamin C mg/kg | Color Absorbance (Abs560) | USDA Standard Designation | |
---|---|---|---|---|---|---|---|
H0 | 546.56 ± 0.159 | 434.30 ± 0.152 | 114.01 ± 0.031 | 22.0 ± 0.041 | 2.67 ± 0.17 | 4.54 | Dark Amber |
H1 | 62.33 ± 0.003 | 51.49 ± 0.002 | 4.42 ± 0.001 | 70.0 ± 0.003 | 7.01 ± 0.61 | 0.165 | Extra Light Amber |
H2 | 407.93 ± 0.007 | 36.28 ± 0.005 | 42.33 ± 0.013 | 54.0 ± 0.079 | 13.44 ± 0.87 | 0.081 | White |
H3 | 6.73 ± 0.001 | 1.20 ± 0.0005 | 5.49 ± 0.001 | 24.0 ± 0.0005 | 6.38 ± 0.72 | 0.094 | White |
H4 | 84.96 ± 0.00 | 122.95 ± 0.326 | 20.07 ± 0.003 | 78.0 ± 0.004 | 1.59 ± 0.11 | 0.352 | Light Amber |
H5 | 94.30 ± 0.002 | 73.10 ± 0.003 | 11.72 ± 0.002 | 39.0 ± 0.0008 | 4.95 ± 0.31 | 0.164 | Extra Light Amber |
H6 | 75.11 ± 0.002 | 104.91 ± 0.004 | 14.61 ± 0.006 | 57.0 ± 0.011 | 2.85 ± 0.13 | 0.257 | Light Amber |
H7 | 20.26 ± 0.001 | 37.25 ± 0.001 | 8.45 ± 0.001 | 39.0 ± 0.014 | 4.15 ± 0.21 | 0.123 | Extra Light Amber |
Mg | K | H2O2 | TPC | TFC | DPPH | Vitamin C | |
---|---|---|---|---|---|---|---|
MIC | −0.26 (0.527) c | −0.1459 (0.73) c | −0.86 (0.006) a | −0.62 (0.10) | −0.75 (0.033) b | 0.1825 (0.6653) c | −0.3126 (0.451) c |
Coding | Product | Botanical Origin | Geographic Origin | Harvest Season |
---|---|---|---|---|
H0 | L-Mesitran® (Medical-Grade Honey-based Formulation) | UD | The Netherlands/UD * | UD |
H1 | Mānuka Health | Manuka | New Zealand | UD |
H2 | Honix® (Royal jelly) | UD | UD | UD |
H3 | Monofloral Honey (JC) | Rosemary | Midelt/Morocco | 02/2021 |
H4 | Multifloral Honey (JC) | Bupleurum, cedar and euphorbia | Timhdit + Tiznit/Morocco | 09/2021 |
H5 | Multifloral Honey (JC) | Multifloral | Had Kourt/Morocco | 07/2021 |
H6 | Monofloral Honey (JC) | Thyme | Timhdit/Morocco | 08/2020 |
H7 | Monofloral Honey (JC) | Eucalyptus | Guersiv/Morocco | 05/2021 |
USDA Color Standard Designation | Color Range Pfund Scale (mm) | Sample Result Range |
---|---|---|
Water White | ≤8 | 0–0.094 |
Extra White | >8 and ≤17 | 0.094–0.189 |
White | >17 and ≤34 | 0.189–0.378 |
Extra Light Amber | >34 and ≤50 | 0.378–0.595 |
Light Amber | >50 and ≤85 | 0.595–1.389 |
Amber | >85 and ≤114 | 1.389–3.008 |
Dark Amber | >114 | >3.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hbibi, A.; Ezzahi, A.; Ozturk, F.; Cremers, N.A.J.; Kasouati, J.; Moussaif, A.; Johansson, A.; Zouhdi, M.; Touré, B.; Maroui, I. Honey Compounds Exhibit Antibacterial Effects Against Aggregatibacter actinomycetemcomitans JP2. Antibiotics 2025, 14, 887. https://doi.org/10.3390/antibiotics14090887
Hbibi A, Ezzahi A, Ozturk F, Cremers NAJ, Kasouati J, Moussaif A, Johansson A, Zouhdi M, Touré B, Maroui I. Honey Compounds Exhibit Antibacterial Effects Against Aggregatibacter actinomycetemcomitans JP2. Antibiotics. 2025; 14(9):887. https://doi.org/10.3390/antibiotics14090887
Chicago/Turabian StyleHbibi, Abdelhadi, Amine Ezzahi, Ferhat Ozturk, Niels A. J. Cremers, Jalal Kasouati, Ahmed Moussaif, Anders Johansson, Mimoun Zouhdi, Babacar Touré, and Itto Maroui. 2025. "Honey Compounds Exhibit Antibacterial Effects Against Aggregatibacter actinomycetemcomitans JP2" Antibiotics 14, no. 9: 887. https://doi.org/10.3390/antibiotics14090887
APA StyleHbibi, A., Ezzahi, A., Ozturk, F., Cremers, N. A. J., Kasouati, J., Moussaif, A., Johansson, A., Zouhdi, M., Touré, B., & Maroui, I. (2025). Honey Compounds Exhibit Antibacterial Effects Against Aggregatibacter actinomycetemcomitans JP2. Antibiotics, 14(9), 887. https://doi.org/10.3390/antibiotics14090887