The Role of Surgical and Perioperative Factors in Shaping Gut Microbiome Recovery After Colorectal Surgery †
Abstract
1. Introduction
2. Results
2.1. Study Cohorts
2.2. Diversity and Community Composition Within Cohorts
2.3. Diversity and Community Composition Among Cohorts
2.4. Diversity and Community Composition of Right Versus Left Colon Resections
2.5. Diversity and Community Composition Between Diverticulitis and Cancer
2.6. Two Resectional Patients with Anastomotic Leaks
2.7. Evaluation of Short-Chain Fatty Acids and IgA
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Sample Collection
4.3. DNA Extraction and Sequencing
4.4. Bioinformatics
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Everhart, J.E.; Ruhl, C.E. Burden of Digestive Diseases in the United States Part II: Lower Gastrointestinal Diseases. Gastroenterology 2009, 136, 741–754. [Google Scholar] [CrossRef]
- Morris, A.M.; Regenbogen, S.E.; Hardiman, K.M.; Hendren, S. Sigmoid diverticulitis: A systematic review. JAMA 2014, 311, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Anaya, D.A.; Flum, D.R. Risk of emergency colectomy and colostomy in patients with diverticular disease. Arch. Surg. 2005, 140, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Kolfschoten, N.E.; Kievit, J.; Gooiker, G.A.; van Leersum, N.J.; Snijders, H.S.; Eddes, E.H.; Tollenaar, R.A.; Wouters, M.W.; Marang-van de Mheen, P.J. Focusing on desired outcomes of care after colon cancer resections; hospital variations in ‘textbook outcome’. Eur. J. Surg. Oncol. 2013, 39, 156–163. [Google Scholar] [CrossRef]
- Hyer, J.M.; Tsilimigras, D.I.; Diaz, A.; Mirdad, R.S.; Azap, R.A.; Cloyd, J.; Dillhoff, M.; Ejaz, A.; Tsung, A.; Pawlik, T.M. High Social Vulnerability and “Textbook Outcomes” after Cancer Operation. J. Am. Coll. Surg. 2021, 232, 351–359. [Google Scholar] [CrossRef]
- Abernethy, E.K.; Aly, E.H. Postoperative Ileus after Minimally Invasive Colorectal Surgery: A Summary of Current Strategies for Prevention and Management. Dig. Surg. 2024, 41, 79–91. [Google Scholar] [CrossRef]
- Barbieux, J.; Hamy, A.; Talbot, M.F.; Casa, C.; Mucci, S.; Lermite, E.; Venara, A. Does enhanced recovery reduce postoperative ileus after colorectal surgery? J. Visc. Surg. 2017, 154, 79–85. [Google Scholar] [CrossRef]
- Wick, E.C.; Hobson, D.B.; Bennett, J.L.; Demski, R.; Maragakis, L.; Gearhart, S.L.; Efron, J.; Berenholtz, S.M.; Makary, M.A. Implementation of a surgical comprehensive unit-based safety program to reduce surgical site infections. J. Am. Coll. Surg. 2012, 215, 193–200. [Google Scholar] [CrossRef]
- Young, H.; Knepper, B.; Moore, E.E.; Johnson, J.L.; Mehler, P.; Price, C.S. Surgical site infection after colon surgery: National healthcare safety network risk factors and modeled rates compared with published risk factors and rates. J. Am. Coll. Surg. 2012, 214, 852–859. [Google Scholar] [CrossRef]
- Kamboj, M.; Childers, T.; Sugalski, J.; Antonelli, D.; Bingener-Casey, J.; Cannon, J.; Cluff, K.; Davis, K.A.; Dellinger, E.P.; Dowdy, S.C.; et al. Risk of Surgical Site Infection (SSI) following Colorectal Resection Is Higher in Patients With Disseminated Cancer: An NCCN Member Cohort Study. Infect. Control Hosp. Epidemiol. 2018, 39, 555–562. [Google Scholar] [CrossRef]
- Woodfield, J.C.; Clifford, K.; Schmidt, B.; Turner, G.A.; Amer, M.A.; McCall, J.L. Strategies for Antibiotic Administration for Bowel Preparation Among Patients Undergoing Elective Colorectal Surgery: A Network Meta-analysis. JAMA Surg. 2022, 157, 34–41. [Google Scholar] [CrossRef]
- Snijders, H.S.; Wouters, M.W.J.M.; Van Leersum, N.J.; Kolfschoten, N.E.; Henneman, D.; De Vries, A.C.; Tollenaar, R.A.E.M.; Bonsing, B.A. Meta-analysis of the risk for anastomotic leakage, the postoperative mortality caused by leakage in relation to the overall postoperative mortality. Eur. J. Surg. Oncol. 2012, 38, 1013–1019. [Google Scholar] [CrossRef]
- Turrentine, F.E.; Denlinger, C.E.; Simpson, V.B.; Garwood, R.A.; Guerlain, S.; Agrawal, A.; Friel, C.M.; Lapar, D.J.; Stukenborg, G.J.; Jones, R.S. Morbidity, mortality, cost, and survival estimates of gastrointestinal anastomotic leaks. J. Am. Coll. Surg. 2015, 220, 195–206. [Google Scholar] [CrossRef]
- Mulders, R.J.; de Git, K.C.G.; Schéle, E.; Dickson, S.L.; Sanz, Y.; Adan, R.A.H. Microbiota in obesity: Interactions with enteroendocrine, immune and central nervous systems. Obes. Rev. 2018, 19, 435–451. [Google Scholar] [CrossRef] [PubMed]
- Leoni, G.; Neumann, P.A.; Sumagin, R.; Denning, T.L.; Nusrat, A. Wound repair: Role of immune-epithelial interactions. Mucosal Immunol. 2015, 8, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Leoni, G.; Quiros, M.; Wu, H.; Desai, C.; Nishio, H.; Jones, R.M.; Nusrat, A.; Neish, A.S. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat. Microbiol. 2016, 1, 15021. [Google Scholar] [CrossRef] [PubMed]
- Shogan, B.D.; Belogortseva, N.; Luong, P.M.; Zaborin, A.; Lax, S.; Bethel, C.; Ward, M.; Muldoon, J.P.; Singer, M.; An, G.; et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci. Transl. Med. 2015, 7, 286ra268. [Google Scholar] [CrossRef]
- Krezalek, M.A.; Hyoju, S.; Zaborin, A.; Okafor, E.; Chandrasekar, L.; Bindokas, V.; Guyton, K.; Montgomery, C.P.; Daum, R.S.; Zaborina, O.; et al. Can Methicillin-resistant Staphylococcus aureus Silently Travel from the Gut to the Wound and Cause Postoperative Infection? Modeling the “trojan Horse Hypothesis”. Ann. Surg. 2018, 267, 749–758. [Google Scholar] [CrossRef]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Aurelie, W.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in Gut Microbiota Control Metabolic Diet—Induced Obesity and Diabetes in Mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef]
- Nichols, R.L.; Broido, P.; Condon, R.E.; Gorbach, S.L.; Nyhus, L.M. Effect of preoperative neomycin erythromycin intestinal preparation on the incidence of infectious complications following colon surgery. Ann. Surg. 1973, 178, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Koskenvuo, L.; Lunkka, P.; Varpe, P.; Hyoty, M.; Satokari, R.; Haapamaki, C.; Lepisto, A.; Sallinen, V. Morbidity After Mechanical Bowel Preparation and Oral Antibiotics Prior to Rectal Resection: The MOBILE2 Randomized Clinical Trial. JAMA Surg. 2024, 159, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, J.E.; Mantyh, C.R.; Sun, Z.; Migaly, J. Combined mechanical and oral antibiotic bowel preparation reduces incisional surgical site infection and anastomotic leak rates after elective colorectal resection: An analysis of colectomy-targeted ACS NSQIP. Ann. Surg. 2015, 262, 331–337. [Google Scholar] [CrossRef]
- Midura, E.F.; Jung, A.D.; Hanseman, D.J.; Dhar, V.; Shah, S.A.; Rafferty, J.F.; Davis, B.R.; Paquette, I.M. Combination oral and mechanical bowel preparations decreases complications in both right and left colectomy. Surgery 2018, 163, 528–534. [Google Scholar] [CrossRef]
- McSorley, S.T.; Steele, C.W.; McMahon, A.J. Meta-analysis of oral antibiotics, in combination with preoperative intravenous antibiotics and mechanical bowel preparation the day before surgery, compared with intravenous antibiotics and mechanical bowel preparation alone to reduce surgical-site infec. BJS Open 2018, 2, 185–194. [Google Scholar] [CrossRef]
- Moghadamyeghaneh, Z.; Hanna, M.H.; Carmichael, J.C.; Mills, S.D.; Pigazzi, A.; Nguyen, N.T.; Stamos, M.J. Nationwide analysis of outcomes of bowel preparation in colon surgery. J. Am. Coll. Surg. 2015, 220, 912–920. [Google Scholar] [CrossRef]
- Ilhan, Z.E.; DiBaise, J.K.; Isern, N.G.; Hoyt, D.W.; Marcus, A.K.; Kang, D.-W.; Crowell, M.D.; Rittmann, B.E.; Krajmalnik-Brown, R. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017, 11, 2047–2058. [Google Scholar] [CrossRef]
- Zheng, L.; Kelly, C.J.; Battista, K.D.; Schaefer, R.; Lanis, J.M.; Alexeev, E.E.; Wang, R.X.; Onyiah, J.C.; Kominsky, D.J.; Colgan, S.P. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor-Dependent Repression of Claudin-2. J. Immunol. 2017, 199, 2976–2984. [Google Scholar] [CrossRef]
- Chen, G.; Ran, X.; Li, B.; Li, Y.; He, D.; Huang, B.; Fu, S.; Liu, J.; Wang, W. Sodium Butyrate Inhibits Inflammation and Maintains Epithelium Barrier Integrity in a TNBS-induced Inflammatory Bowel Disease Mice Model. EBioMedicine 2018, 30, 317–325. [Google Scholar] [CrossRef]
- Nalluri, H.; Kizy, S.; Ewing, K.; Luthra, G.; Leslie, D.B.; Bernlohr, D.A.; Sadowsky, M.J.; Ikramuddin, S.; Khoruts, A.; Staley, C.; et al. Peri-operative antibiotics acutely and significantly impact intestinal microbiota following bariatric surgery. Sci. Rep. 2020, 10, 20340. [Google Scholar] [CrossRef]
- Nalluri-Butz, H.; Bobel, M.C.; Nugent, J.; Boatman, S.; Emanuelson, R.; Melton-Meaux, G.; Madoff, R.D.; Jahansouz, C.; Staley, C.; Gaertner, W.B. A pilot study demonstrating the impact of surgical bowel preparation on intestinal microbiota composition following colon and rectal surgery. Sci. Rep. 2022, 12, 10559. [Google Scholar] [CrossRef] [PubMed]
- Boatman, S.; Kaiser, T.; Nalluri-Butz, H.; Khan, M.H.; Dietz, M.; Kohn, J.; Johnson, A.J.; Gaertner, W.B.; Staley, C.; Jahansouz, C. Diet-induced shifts in the gut microbiota influence anastomotic healing in a murine model of colonic surgery. Gut Microbes 2023, 15, 2283147. [Google Scholar] [CrossRef] [PubMed]
- Boatman, S.; Khan, M.H.; Ganesan, N.; Nalluri-Butz, H.; Kohn, J.; Troester, A.; Ziegert, Z.; Madoff, R.; Gaertner, W.B.; Jahansouz, C.; et al. Anastomotic leak occurs independently from microbiota shifts associated with surgical bowel preparation. Sci. Rep. 2024, 14, 21711. [Google Scholar] [CrossRef] [PubMed]
- Kunath, B.J.; De Rudder, C.; Laczny, C.C.; Letellier, E.; Wilmes, P. The oral-gut microbiome axis in health and disease. Nat. Rev. Microbiol. 2024, 22, 791–805. [Google Scholar] [CrossRef]
- Wang, S.; Rubio, L.; Duncan, S.; Donachie, G.; Holtrop, G.; Lo, G.; Farquharson, F.; Wagner, J.; Parkhill, J.; Louis, P.; et al. Pivotal Roles for pH, Lactate, and Lactate-Utilizing Bacteria in the Stability of a Human Colonic Microbial Ecosystem. mSystems 2020, 5, e00645-20. [Google Scholar] [CrossRef]
- Litvak, Y.; Byndloss, M.X.; Baumler, A.J. Colonocyte metabolism shapes the gut microbiota. Science 2018, 362, eaat9076. [Google Scholar] [CrossRef]
- Rivera-Chavez, F.; Zhang, L.F.; Faber, F.; Lopez, C.A.; Byndloss, M.X.; Olsan, E.E.; Xu, G.; Velazquez, E.M.; Lebrilla, C.B.; Winter, S.E.; et al. Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. Cell Host Microbe 2016, 19, 443–454. [Google Scholar] [CrossRef]
- Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017, 20, 145–155. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; Gonzalez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Mj, O.; Turner, G.A.; Sulit, A.; Frizelle, F.; Purcell, R. Distinct changes in the colonic microbiome associated with acute diverticulitis. Colorectal Dis. 2022, 24, 1591–1601. [Google Scholar] [CrossRef]
- Anthony, W.E.; Wang, B.; Sukhum, K.V.; D’Souza, A.W.; Hink, T.; Cass, C.; Seiler, S.; Reske, K.A.; Coon, C.; Dubberke, E.R.; et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 2022, 39, 110649. [Google Scholar] [CrossRef]
- Palleja, A.; Mikkelsen, K.H.; Forslund, S.K.; Kashani, A.; Allin, K.H.; Nielsen, T.; Hansen, T.H.; Liang, S.; Feng, Q.; Zhang, C.; et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 2018, 3, 1255–1265. [Google Scholar] [CrossRef]
- Ahn, J.; Sinha, R.; Pei, Z.; Dominianni, C.; Wu, J.; Shi, J.; Goedert, J.J.; Hayes, R.B.; Yang, L. Human gut microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 2013, 105, 1907–1911. [Google Scholar] [CrossRef] [PubMed]
- Zepeda-Rivera, M.; Minot, S.S.; Bouzek, H.; Wu, H.; Blanco-Miguez, A.; Manghi, P.; Jones, D.S.; LaCourse, K.D.; Wu, Y.; McMahon, E.F.; et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 2024, 628, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Conde-Perez, K.; Aja-Macaya, P.; Buetas, E.; Trigo-Tasende, N.; Nasser-Ali, M.; Rumbo-Feal, S.; Nion, P.; Arribas, E.M.; Estevez, L.S.; Otero-Alen, B.; et al. The multispecies microbial cluster of Fusobacterium, Parvimonas, Bacteroides and Faecalibacterium as a precision biomarker for colorectal cancer diagnosis. Mol. Oncol. 2024, 18, 1093–1122. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Rolling, T.; Djukovic, A.; Fei, T.; Mishra, V.; Liu, H.; Lindberg, C.; Dai, L.; Zhai, B.; Peled, J.U.; et al. Oral bacteria relative abundance in faeces increases due to gut microbiota depletion and is linked with patient outcomes. Nat. Microbiol. 2024, 9, 1555–1565. [Google Scholar] [CrossRef]
- Abbas, M.; Gaia, N.; Buchs, N.C.; Delaune, V.; Girard, M.; Andrey, D.O.; Meyer, J.; Schrenzel, J.; Ris, F.; Harbarth, S.; et al. Changes in the gut bacterial communities in colon cancer surgery patients: An observational study. Gut Pathog. 2022, 14, 2. [Google Scholar] [CrossRef]
- Sánchez-Alcoholado, L.; Ramos-Molina, B.; Otero, A.; Laborda-Illanes, A.; Ordóñez, R.; Medina, J.A.; Gómez-Millán, J.; Queipo-Ortuño, M.I. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers 2020, 12, 1406. [Google Scholar] [CrossRef]
- Thomas, A.M.; Manghi, P.; Asnicar, F.; Pasolli, E.; Armanini, F.; Zolfo, M.; Beghini, F.; Manara, S.; Karcher, N.; Pozzi, C.; et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 2019, 25, 667–678. [Google Scholar] [CrossRef]
- Wirbel, J.; Pyl, P.T.; Kartal, E.; Zych, K.; Kashani, A.; Milanese, A.; Fleck, J.S.; Voigt, A.Y.; Palleja, A.; Ponnudurai, R.; et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 2019, 25, 679–689. [Google Scholar] [CrossRef]
- Bullman, S.; Pedamallu, C.S.; Sicinska, E.; Clancy, T.E.; Zhang, X.; Cai, D.; Neuberg, D.; Huang, K.; Guevara, F.; Nelson, T.; et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017, 358, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.; Vazquez-Baeza, Y.; Birmingham, A.; et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 2017, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 2014, 10, e1003531. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am. J. Health Syst. Pharm. 2013, 70, 195–283. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef]
- Gohl, D.M.; Vangay, P.; Garbe, J.; MacLean, A.; Hauge, A.; Becker, A.; Gould, T.J.; Clayton, J.B.; Johnson, T.J.; Hunter, R.; et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 2016, 34, 942–949. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Staley, C.; Kaiser, T.; Vaugh, B.P.; Graiziger, C.T.; Hamilton, M.J.; Khoruts, A.; Sadowsky, M.J. Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome 2018, 6, 166. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.G.; Peplies, J.; Glockner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Huse, S.M.; Welch, D.M.; Morrison, H.G.; Sogin, M.L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 2010, 12, 1889–1898. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Westcott, S.L.; Schloss, P.D. OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units. mSphere 2017, 2, e00073-17. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.; Marsh, T.; Garrity, G.M.; et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009, 37, D141–D145. [Google Scholar] [CrossRef] [PubMed]
- Gihring, T.M.; Green, S.J.; Schadt, C.W. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ. Microbiol. 2012, 14, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Knights, D.; Kuczynski, J.; Charlson, E.S.; Zaneveld, J.; Mozer, M.C.; Collman, R.G.; Bushman, F.D.; Knight, R.; Kelley, S.T. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 2011, 8, 761–763. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1949; 117p. [Google Scholar]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325. [Google Scholar] [CrossRef]
- Anderson, M.J.; Willis, T.J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 2003, 84, 511–525. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
Colonoscopy (n = 30) | Resectional (n = 26) | Non-Resectional (n = 25) | p-Value | |
---|---|---|---|---|
Male sex, n (%) | 14 (47) | 18 (69) | 7 (28) | 0.011 |
Age (years) | 52.8 ± 15.4 | 57.2 ± 11.0 | 62.9 ± 12.2 | 0.017 |
BMI (kg/m2) | 26.5 ± 5.1 | 28.9 ± 5.5 | 29.2 ± 7.2 | 0.178 |
Albumin | 4.0 ± 0.4 | 3.9 ± 0.4 | 4.1 ± 0.5 | 0.164 |
Charlson comorbidity index | 1.9 ± 2.3 | 2.6 ± 2.6 | 2.7 ± 2.0 | 0.423 |
Smoking status, n (%) | 0.037 | |||
Active smoker | 1 (3) | 5 (19) | 5 (20) | - |
Former smoker | 7 (23) | 9 (35) | 11 (44) | - |
Non-smoker | 22 (73) | 12 (46) | 9 (36) | - |
Chronic narcotics, n (%) | 0 (0) | 1 (4) | 1 (4) | 0.390 |
History of diabetes mellitus, n (%) | 0 (0) | 5 (19) | 4 (16) | 0.011 |
Metformin | 0 (0) | 4 (15) | 3 (12) | - |
Preoperative bowel prep, n (%) | <0.0001 | |||
MiraLAX and Mag Citrate | 15 (50) | 25 (96) | 10 (40) | - |
GoLYTELY | 13 (43) | 1 (4) | 0 (0) | - |
MiraLAX and Gatorade | 2 (7) | 0 (0) | 14 (56) | |
Fleet enemas | 0 (0) | 0 (0) | 1 (4) | - |
Postoperative complications, n (%) | 0.124 | |||
None | 30 (100) | 20 (77) | 23 (92) | - |
Anastomotic leak/sepsis | - | 2 (8) | - | - |
Urinary tract infection | - | 2 (8) | 1 (4) | - |
Surgical site infection | - | - | - | - |
Deep organ space infection | - | 1 (4) | - | - |
Pneumonia | - | - | - | - |
Ileus requiring nasogastric tube | - | 1 (4) | - | - |
Anemia requiring transfusion | - | - | - | - |
Acute renal failure | - | 1 (4) | - | - |
Deep venous thrombosis | - | - | - | - |
30-day hospital readmission, n (%) | 1 (3) | 2 (8) | 1 (4) | 0.742 |
Group B (Resectional) n (%) | Group C (Non-Resectional) n (%) | |
---|---|---|
Preoperative enteral antibiotics | ||
Neomycin plus metronidazole | 26 (100) | 25 (100) |
Perioperative intravenous antibiotics | ||
Ciprofloxacin plus metronidazole | 10 (38) | 7 (28) |
Cefazolin plus metronidazole | 7 (27) | 8 (32) |
Cefotetan | 5 (19) | - |
Ertapenem | 4 (16) | 10 (40) |
Operative procedure | ||
Right colectomy | 7 (27) | - |
Left colectomy | 1 (4) | - |
Sigmoid colectomy | 9 (35) | - |
Sigmoid colectomy, diverting loop ileostomy | 1 (4) | - |
Low anterior resection | 5 (19) | - |
Ventral rectopexy | - | 13 (52) |
Transanal excision | - | 12 (48) |
History of colorectal cancer | 12 (46) | 12 (48) |
Pathology | ||
Adenocarcinoma | 11 (92) | 8 (67) |
Neuroendocrine tumor | 1 (8) | - |
Serrated adenoma with high-grade dysplasia | - | 2 (16) |
Tubulovillous adenoma with high-grade dysplasia | - | 2 (16) |
Pathologic Stage | ||
0 | - | 4 (33) |
I | 2 (17) | 4 (33) |
IIA | 4 (33) | - |
IIIA | 3 (25) | - |
IIIB | 3 (30) | - |
Not staged | - | 4 (33) |
Diverticulitis History | ||
Recurrent, uncomplicated | 5 (50) | - |
Complicated | 5 (50) | - |
Procedure | Time Point (n) | Acetate | Propionate | Isobutyrate | Butyrate | Isovalerate | Valerate | 2-Methylbutyrate |
---|---|---|---|---|---|---|---|---|
Colonoscopy | Baseline (22) | 23.19 (16.61) AB | 20.19 (10.81) B | 3.40 (2.22) AB | 17.52 (8.86) A | 2.32 (1.24) AB | 3.30 (1.59) A | 1.90 (1.15) A |
POD10 (16) | 23.37 (25.40) AB | 15.71 (10.25) AB | 3.29 (2.39) ABC | 15.26 (10.11) A | 2.05 (1.70) ABC | 2.04 (1.84) AB | 1.58 (1.41) AB | |
Resection | Baseline (16) | 26.41 (17.94) A | 25.68 (13.34) A | 3.54 (3.49) A | 18.89 (12.06) A | 3.40 (1.76) A | 3.70 (2.21) A | 2.18 (0.79) A |
POD10 (14) | 5.06 (4.90) B | 5.31 (4.81) B | 2.21 (4.23) B | 2.21 (4.23) B | 0.68 (1.17) C | 0.57 (0.79) C | 0.39 (0.69) C | |
Non-resection | Baseline (16) | 16.78 (13.96) AB | 15.65 (11.18) AB | 2.90 (2.89) BC | 12.06 (6.56) A | 1.66 (1.11) BC | 2.53 (1.85) BC | 1.16 (0.69) AB |
POD10 (19) | 17.83 (20.42) AB | 7.77 (8.57) B | 2.65 (2.98) BC | 9.35 (10.11) AB | 1.55 (1.68) BC | 0.71 (1.17) BC | 0.78 (1.33) BC | |
Blanks | (5) | 1.25 (0.12) | 0.04 (0.01) | 0.03 (0.01) | 0.01 (0.01) | 0.01 (0.01) | 0.01 (0.01) | 0.01 (0.01) |
p-value | 0.024 | <0.0001 | <0.001 | <0.001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohn, J.; Troester, A.; Ziegert, Z.; Frebault, J.; Boatman, S.; Martell, M.; Nalluri-Butz, H.; Bobel, M.C.; Goffredo, P.; Johnson, A.J.; et al. The Role of Surgical and Perioperative Factors in Shaping Gut Microbiome Recovery After Colorectal Surgery. Antibiotics 2025, 14, 881. https://doi.org/10.3390/antibiotics14090881
Kohn J, Troester A, Ziegert Z, Frebault J, Boatman S, Martell M, Nalluri-Butz H, Bobel MC, Goffredo P, Johnson AJ, et al. The Role of Surgical and Perioperative Factors in Shaping Gut Microbiome Recovery After Colorectal Surgery. Antibiotics. 2025; 14(9):881. https://doi.org/10.3390/antibiotics14090881
Chicago/Turabian StyleKohn, Julia, Alexander Troester, Zachary Ziegert, Julia Frebault, Sonja Boatman, Maria Martell, Harika Nalluri-Butz, Matthew C. Bobel, Paolo Goffredo, Abigail J. Johnson, and et al. 2025. "The Role of Surgical and Perioperative Factors in Shaping Gut Microbiome Recovery After Colorectal Surgery" Antibiotics 14, no. 9: 881. https://doi.org/10.3390/antibiotics14090881
APA StyleKohn, J., Troester, A., Ziegert, Z., Frebault, J., Boatman, S., Martell, M., Nalluri-Butz, H., Bobel, M. C., Goffredo, P., Johnson, A. J., Jahansouz, C., Staley, C., & Gaertner, W. B. (2025). The Role of Surgical and Perioperative Factors in Shaping Gut Microbiome Recovery After Colorectal Surgery. Antibiotics, 14(9), 881. https://doi.org/10.3390/antibiotics14090881