Ivermectin Identified Using a High-Throughput Screening System Exhibits Anti-Clonorchis sinensis Activity in Rats
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemical Reagents
4.2. Acquisition of C. sinensis Metacercariae and Juvenile Worms
4.3. Application of HTS to the Compound Library
4.4. Anti-CsNEJs Compound Screening
4.5. Assessing the Larvicidal Effect of IVM Against CsMC and CsNEJs In Vitro
4.6. IVM Efficacy Against C. sinensis in Rats
4.7. C. sinensis-Specific IgG Antibody Response
4.8. Evaluation of Liver Function
4.9. Quantification of Larval Survival and Worm Burden Reduction
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CsMC | C. sinensis metacercariae |
CsNEJs | Newly excysted juveniles of C. sinensis |
IVM | Ivermectin |
HTS | High-throughput screening |
wpi | Week post-infection |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
BSA | Bovine serum albumin |
CsESPs | C. sinensis excretory-secretory proteins |
PZQ | Praziquantel |
CCA | Cholangiocarcinoma |
NTS | Newly transformed schistosomula |
References
- Qian, M.B.; Zhou, X.N. Clonorchis sinensis. Trends Parasitol. 2021, 37, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Na, B.K.; Pak, J.H.; Hong, S.J. Clonorchis sinensis and clonorchiasis. Acta Trop. 2020, 203, 105309. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.B.; Dermauw, V.; Dahma, H.; Bui, D.T.; Le, T.T.H.; Phi, N.T.T.; Lempereur, L.; Losson, B.; Vandenberg, O.; Do, D.T.; et al. Prevalence and risk factors associated with Clonorchis sinensis infections in rural communities in northern Vietnam. PLoS Negl. Trop. Dis. 2020, 14, e0008483. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.I.; Shin, H.E.; Lee, S.E.; Cheun, H.I.; Ju, J.W.; Kim, J.Y.; Park, M.Y.; Cho, S.H. Prevalence of Clonorchis sinensis Infection among Residents along 5 Major Rivers in the Republic of Korea. Korean J. Parasitol. 2016, 54, 215–219. [Google Scholar] [CrossRef]
- Jung, S.M.; Kang, H.; Jung, B.K.; Ju, S.; Ju, J.W.; Lee, M.R.; Kim, J.H.; Kim, S.H. Age, period, and cohort effects of Clonorchis sinensis infection prevalence in the Republic of Korea: Insights and projections. PLoS Negl. Trop. Dis. 2024, 18, e0012574. [Google Scholar] [CrossRef]
- Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part B: Biological agents. Lancet Oncol. 2009, 10, 321–322.7. [Google Scholar] [CrossRef]
- Choi, D.; Lim, J.H.; Lee, K.T.; Lee, J.K.; Choi, S.H.; Heo, J.S.; Jang, K.-T.; Lee, N.Y.; Kim, S.; Hong, S.-T. Cholangiocarcinoma and Clonorchis sinensis infecton: A case-control study in Korea. J. Hepatol. 2006, 44, 1066–1073. [Google Scholar] [CrossRef]
- Qian, M.B.; Chen, Y.D.; Liang, S.; Yang, G.J.; Zhou, X.N. The global epidemiology of clonorchiasis and its relation with cholangiocarcinoma. Infect. Dis. Poverty 2012, 1, 4. [Google Scholar] [CrossRef]
- Kim, H.S.; Nam, H.W.; Ahn, H.J.; Kim, D.; Kim, Y.H. Relationship between Clonorchis sinensis Infection and Cholangiocarcinoma in Korea. Korean J. Parasitol. 2022, 60, 261–271. [Google Scholar] [CrossRef]
- Rim, H.J.; Lyu, K.S.; Lee, J.S.; Joo, K.H. Clinical evaluation of the therapeutic efficacy of praziquantel (Embay 8440) against Clonorchis sinensis infection in man. Ann. Trop. Med. Parasitol. 1981, 75, 27–33. [Google Scholar] [CrossRef]
- Qian, M.B.; Utzinger, J.; Keiser, J.; Zhou, X.N. Clonorchiasis. Lancet 2016, 387, 800–810. [Google Scholar] [CrossRef]
- World Health Organization. Investing to Overcome the Global Impact of Neglected Tropical Diseases; Third WHO Report on Neglected Tropical Diseases; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Olliaro, P.L.; Vaillant, M.T.; Belizario, V.J.; Lwambo, N.J.; Ouldabdallahi, M.; Pieri, O.S.; Amarillo, M.L.; Kaatano, G.M.; Diaw, M.; Domingues, A.C.; et al. A multicentre randomized controlled trial of the efficacy and safety of single dose praziquantel at 40 mg/kg vs. 60 mg/kg for treating intestinal schistosomiasis in the Philippines, Mauritania, Tanzania and Brazil. PLoS Negl. Trop. Dis. 2011, 5, e1165. [Google Scholar] [CrossRef]
- Doenhoff, M.J.; Cioli, D.; Utzinger, J. Praziquantel: Mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis. 2008, 21, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Botros, S.; Sayed, H.; Amer, N.; El-Ghannam, M.; Bennett, J.L.; Day, T.A. Current status of sensitivity to praziquantel in a focus of potential drug resistance in Egypt. Int. J. Parasitol. 2005, 35, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Pica-Mattoccia, L.; Cioli, D. Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in vitro praziquantel treatment. Int. J. Parasitol. 2004, 34, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-O.; Chu, K.B.; Yoon, K.-W.; Eom, G.-D.; Mao, J.; Lee, H.; No, J.H.; Song, J.H.; Hong, S.-J.; Kim, S.S.; et al. Efficacy assessment of miltefosine and curcumin against Clonorchis sinensis infection. Antimicrob Agents Chemother. 2024, 68, e0064224. [Google Scholar] [CrossRef]
- Ramirez, B.; Bickle, Q.; Yousif, F.; Fakorede, F.; Mouries, M.-A.; Nwaka, S. Schistosomes: Challenges in compound screening. Expert Opin. Drug Discov. 2007, 2, S53–S61. [Google Scholar] [CrossRef]
- Katiyar, J.C.; Gupta, S.; Sharma, S. Experimental models in drug development for helminthic diseases. Rev. Infect. Dis. 1989, 11, 638–654. [Google Scholar] [CrossRef]
- Kotze, A.C. Target-based and whole-worm screening approaches to anthelmintic discovery. Vet Parasitol. 2012, 186, 118–123. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Oliva, G.; Andricopulo, A.D. Target-based molecular modeling strategies for schistosomiasis drug discovery. Future Med. Chem. 2015, 7, 753–764. [Google Scholar] [CrossRef]
- Oliveira, G.; Pierce, R.J. How has the genomics era impacted schistosomiasis drug discovery? Future Med. Chem. 2015, 7, 685–687. [Google Scholar] [CrossRef]
- Mansour, N.R.; Paveley, R.; Gardner, J.M.; Bell, A.S.; Parkinson, T.; Bickle, Q. High Throughput Screening identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni. PLoS Negl. Trop. Dis. 2016, 10, e0004659. [Google Scholar] [CrossRef] [PubMed]
- Guidi, A.; Gimmelli, R.; Bresciani, A.; Ruberti, G. Luminescence-Based, Low- and Medium-Throughput Assays for Drug Screening in Schistosoma mansoni Larval Stage. Methods Mol. Biol. 2020, 2151, 219–227. [Google Scholar] [PubMed]
- Hemphill, A.; Stadelmann, B.; Scholl, S.; Müller, J.; Spiliotis, M.; Müller, N.; Gottstein, B.; Siles-Lucas, M. Echinococcus metacestodes as laboratory models for the screening of drugs against cestodes and trematodes. Parasitology 2010, 137, 569–587. [Google Scholar] [CrossRef] [PubMed]
- Peak, E.; Chalmers, I.W.; Hoffmann, K.F. Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect Schistosoma viability. PLoS Negl. Trop. Dis. 2010, 4, e759. [Google Scholar] [CrossRef]
- Abdulla, M.H.; Ruelas, D.S.; Wolff, B.; Snedecor, J.; Lim, K.C.; Xu, F.; Renslo, A.R.; Williams, J.; McKerrow, J.H.; Caffrey, C.R. Drug discovery for schistosomiasis: Hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl. Trop. Dis. 2009, 3, e478. [Google Scholar] [CrossRef]
- Elfawal, M.A.; Savinov, S.N.; Aroian, R.V. Drug Screening for Discovery of Broad-spectrum Agents for Soil-transmitted Nematodes. Sci. Rep. 2019, 9, 12347. [Google Scholar] [CrossRef]
- Knox, J.; Joly, N.; Linossi, E.M.; Carmona-Negrón, J.A.; Jura, N.; Pintard, L.; Zuercher, W.; Roy, P.J. A survey of the kinome pharmacopeiareveals multiple scaffolds and targets for the development of novel anthelmintics. Sci. Rep. 2021, 11, 9161. [Google Scholar] [CrossRef]
- Rim, H.J.; Jo, S.W.; Joo, K.H.; Kim, S.S. In Vitro Activities of Various Drugs Against Adult Worms of Clonorchis sinensis. Kisaengchunghak Chapchi 1980, 18, 185–191. [Google Scholar] [CrossRef]
- Dorman, S.E.; Nahid, P.; Kurbatova, E.V.; Phillips, P.P.J.; Bryant, K.; Dooley, K.E.; Engle, M.; Goldberg, S.V.; Phan, H.T.T.; Hakim, J.; et al. Four-Month Rifapentine Regimens with or without Moxifloxacin for Tuberculosis. AIDS Clinical Trials Group; Tuberculosis Trials Consortium. N. Engl. J. Med. 2021, 384, 1705–1718. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, S.; Alam, A. A Landscape on Lymphatic Filariasis with its Effects and Recent Advanced Treatments. Recent Adv. Antiinfect. Drug Discov. 2024, 19, 197–215. [Google Scholar] [CrossRef]
- Omura, S.; Crump, A. Ivermectin: Panacea for resource-poor communities? Trends Parasitol. 2014, 30, 445–455. [Google Scholar] [CrossRef]
- Fritz, L.C.; Wang, C.C.; Gorio, A. Avermectin B1a irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proc. Natl. Acad. Sci. USA 1979, 76, 2062–2066. [Google Scholar] [CrossRef]
- Smit, M.R.; Ochomo, E.O.; Aljayyoussi, G.; Kwambai, T.K.; Abong’o, B.O.; Chen, T.; Bousema, T.; Slater, H.C.; Water-house, D.; Bayoh, N.M.; et al. Safety and mosquitocidal efficacy of high-dose ivermectin when co-administered with dihydroartemisinin-piperaquine in Kenyan adults with uncomplicated malaria (IVERMAL): A randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 2018, 18, 615–626. [Google Scholar] [CrossRef]
- Foy, B.D.; Alout, H.; Seaman, J.A.; Rao, S.; Magalhaes, T.; Wade, M.; Parikh, S.; Soma, D.D.; Sagna, A.B.; Fournet, F.; et al. Efficacy and risk of harms of repeat ivermectin mass drug administrations for control of malaria (RIMDAMAL): A cluster-randomised trial. Lancet 2019, 393, 1517–1526. [Google Scholar] [CrossRef]
- Udensi, U.K.; Fagbenro-Beyioku, A.F. Effect of ivermectin on Trypanosoma brucei brucei in experimentally infected mice. J. Vector Borne Dis. 2012, 49, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Katz, N.; Araujo, N.; Coelho, P.M.Z.; Morel, C.M.; Linde-Arias, A.R.; Yamada, T.; Horimatsu, Y.; Suzuki, K.; Suna-zuka, T.; Omura, S. Ivermectin efficacy against Biomphalaria, intermediate host snail vectors of Schistosomiasis. J. Antibiot. 2017, 70, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Basyoni, M.M.; El-Sabaa, A.A.A. Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. Korean J. Parasitol. 2013, 51, 297–304. [Google Scholar] [CrossRef]
- Reis, T.A.R.; Oliveira-da-Silva, J.A.; Tavares, G.S.V.; Mendonça, D.V.C.; Freitas, C.S.; Costa, R.R.; Lage, D.P.; Martins, V.T.; Ma-chado, A.S.; Ramos, F.F.; et al. Ivermectin presents effective and selective antileishmanial activity in vitro and in vivo against Leishmania infantum and is therapeutic against visceral leishmaniasis. Exp. Parasitol. 2021, 221, 108059. [Google Scholar] [CrossRef]
- Courtney, C.H.; Shearer, J.K.; Plue, R.E. Efficacy and safety of clorsulon used concurrently with ivermectin for control of Fasciola hepatica in Florida beef cattle. Am. J. Vet. Res. 1985, 46, 1245–1246. [Google Scholar] [CrossRef]
- Martin, R.J.; Robertson, A.P.; Choudhary, S. Ivermectin: Anthelmintic, an insecticide, and much more. Trends Parasitol. 2021, 37, 48–64. [Google Scholar] [CrossRef]
- Feng, X.P.; Hayashi, J.; Beech, R.N.; Prichard, R.K. Study of the nematode putative GABA type-A receptor subunits: Evidence for modulation by ivermectin. J. Neurochem. 2002, 83, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Taman, A.; El-Beshbishi, S.; El-Tantawy, N.; El-Hawary, A.; Azab, M. Evaluation of the in vivo effect of ivermectin on Schistosoma mansoni in experimentally infected mice. J. Coast. Life Med. 2014, 2, 817–823. [Google Scholar]
- Ryan, K.T.; Wheeler, N.J.; Kamara, I.K. Phenotypic profiling of macrocyclic lactones on parasitic schistosoma flat worms. Antimicrob. Agents Chemother. 2023, 67, e0123022. [Google Scholar] [CrossRef]
- Mendonça-Silva, D.L.; Fittpaldi Pessôa, R.; Noël, F. Evidence for the presence of glutamatergic receptors in adult Schistosoma mansoni. Biochem. Pharmacol. 2002, 64, 1337–1344. [Google Scholar] [CrossRef]
- Solis-Soto, J.M.; de Jong-Brink, M. Immunocytochemical study on biologically active neurosubstances in daughter sporocysts and cercariae of Trichobilharziao cellata and Schistosoma mansoni. Parasitology 1994, 108, 301–311. [Google Scholar] [CrossRef]
- Vicente, B.; López-Abán, J.; Chaccour, J.; Hernández-Goenaga, J.; Nicolas, P.; Fernández-Soto, P.; Muro, A.; Chaccour, C. The effect of ivermectin alone and in combination with cobicistat or elacridar in experimental Schistosoma mansoni infection in mice. Sci. Rep. 2021, 11, 4476. [Google Scholar] [CrossRef]
- Agere, H.; Kela, S.L.; Istifanus, W.A. Chemotherapeutic trials of praziquantel and ivermectin on victims of urinary schistosomiasis in Taraba North Senatorial District; Nigeria. Sci-Afric J. Sci. Issues Res. Essays. 2014, 2, 156–159. [Google Scholar]
- Whitworth, J.A.G.; Morgan, D.; Maude, G.H.; McNicholas, A.M.; Taylor, D.W. A field study of the effect of ivermectin on intestinal helminths in man. Trans. R. Soc. Trop. Med. Hyg. 1991, 85, 232–234. [Google Scholar] [CrossRef]
- Romero-Neto, I.; de Almeida, T.M.; Zugman, T.; Piovan, L.; Molento, M.B. Ovicidal activity of diaryl dichalcogenidedes andivermectinon Fasciola hepatica: A novel candidate for a blending-based therapeutic strategy. Acta Trop. 2024, 258, 107363. [Google Scholar] [CrossRef]
- Panic, G.; Duthaler, U.; Speich, B.; Keiser, J. Repurposing drugs for the treatment and control of helminth infections. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 185–200. [Google Scholar] [CrossRef]
- Villamizar-Monsalve, M.A.; López-Abán, J.; Vicente, B.; Peláez, R.; Muro, A. Current drug strategies for the treatment and control of schistosomiasis. Expert Opin. Pharmacother. 2024, 25, 409–420. [Google Scholar] [CrossRef]
- Li, S.; Kang, H.W.; Choi, M.H.; Hong, S.T. Long-term storage of Clonorchis sinensis metacercariae in vitro. Parasitol. Res. 2006, 100, 25–29. [Google Scholar] [CrossRef]
- Kim, M.J.; Chu, K.B.; Yoon, K.W.; Kang, H.J.; Lee, D.H.; Moon, E.K.; Quan, F.S. Virus-like particles expressing microneme-associated antigen of Plasmodium berghei confer better protection than those expressing apical membrane antigen 1. Parasites Hosts Dis. 2024, 62, 193–204. [Google Scholar] [CrossRef]
- Kang, H.J.; Mao, J.; Kim, M.J.; Yoon, K.W.; Eom, G.D.; Chu, K.B.; Moon, E.K.; Quan, F.S. The detection of Toxoplasma gondii ME49 infections in BALB/c mice using various techniques. Parasites Hosts Dis. 2023, 61, 418–427. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-O.; Lee, H.; Chu, K.B.; Li, J.; Hong, S.-J.; Kim, S.S.; No, J.H.; Quan, F.-S. Ivermectin Identified Using a High-Throughput Screening System Exhibits Anti-Clonorchis sinensis Activity in Rats. Antibiotics 2025, 14, 837. https://doi.org/10.3390/antibiotics14080837
Lee S-O, Lee H, Chu KB, Li J, Hong S-J, Kim SS, No JH, Quan F-S. Ivermectin Identified Using a High-Throughput Screening System Exhibits Anti-Clonorchis sinensis Activity in Rats. Antibiotics. 2025; 14(8):837. https://doi.org/10.3390/antibiotics14080837
Chicago/Turabian StyleLee, Soon-Ok, Hyeryon Lee, Ki Back Chu, Jianhua Li, Sung-Jong Hong, Sung Soo Kim, Joo Hwan No, and Fu-Shi Quan. 2025. "Ivermectin Identified Using a High-Throughput Screening System Exhibits Anti-Clonorchis sinensis Activity in Rats" Antibiotics 14, no. 8: 837. https://doi.org/10.3390/antibiotics14080837
APA StyleLee, S.-O., Lee, H., Chu, K. B., Li, J., Hong, S.-J., Kim, S. S., No, J. H., & Quan, F.-S. (2025). Ivermectin Identified Using a High-Throughput Screening System Exhibits Anti-Clonorchis sinensis Activity in Rats. Antibiotics, 14(8), 837. https://doi.org/10.3390/antibiotics14080837