Clonal Diversity of Extraintestinal Pathogenic Escherichia coli Strains Isolated from Canine Urinary Tract Infections in Brazil
Abstract
1. Introduction
2. Results
2.1. Diverse AMR Profiles, Phylogroups, and Sequence Types in Canine UTI Strains
2.2. AMR and Biocide Resistance Determinants
2.3. ExPEC-Related Virulence Factors
2.4. Plasmid-Mediated Dissemination of AMR and Virulence Genes
3. Discussion
4. Materials and Methods
4.1. Sample Collection, Bacterial Isolation, and Antimicrobial Susceptibility Testing
4.2. E. coli Phylotyping
4.3. Whole-Genome Sequencing and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster-Nyarko, E.; Pallen, M.J. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol. Rev. 2022, 46, fuac008. [Google Scholar] [CrossRef]
- Geurtsen, J.; de Been, M.; Weerdenburg, E.; Zomer, A.; McNally, A.; Poolman, J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol. Rev. 2022, 46, fuac031. [Google Scholar] [CrossRef]
- Massella, E.; Giacometti, F.; Bonilauri, P.; Reid, C.J.; Djordjevic, S.P.; Merialdi, G.; Bacci, C.; Fiorentini, L.; Massi, P.; Bardasi, L.; et al. Antimicrobial resistance profile and ExPEC virulence potential in commensal Escherichia coli of multiple sources. Antibiotics 2021, 10, 351. [Google Scholar] [CrossRef]
- Rezatofighi, S.E.; Mirzarazi, M.; Salehi, M. Virulence genes and phylogenetic groups of uropathogenic Escherichia coli isolates from patients with urinary tract infection and uninfected control subjects: A case-control study. BMC Infect. Dis. 2021, 21, 361. [Google Scholar] [CrossRef]
- Ramírez-Castillo, F.Y.; Moreno-Flores, A.C.; Avelar-González, F.J.; Márquez-Díaz, F.; Harel, J.; Guerrero-Barrera, A.L. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: Cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Whelan, S.; Lucey, B.; Finn, K. Uropathogenic Escherichia coli (UPEC)-associated urinary tract infections: The molecular basis for challenges to effective treatment. Microorganisms 2023, 11, 2169. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Fan, Y.H.; Zhang, Y.Z.; Bregente, C.J.B.; Lin, W.H.; Chen, C.A.; Lin, T.P.; Kao, C.Y. Characterization of uropathogenic Escherichia coli phylogroups associated with antimicrobial resistance, virulence factor distribution, and virulence-related phenotypes. Infect. Genet. Evol. 2023, 114, 105493. [Google Scholar] [CrossRef]
- Kidsley, A.K.; O’Dea, M.; Saputra, S.; Jordan, D.; Johnson, J.R.; Gordon, D.M.; Turni, C.; Djordjevic, S.P.; Abraham, S.; Trott, D.J. Genomic analysis of phylogenetic group B2 extraintestinal pathogenic E. coli causing infections in dogs in Australia. Vet. Microbiol. 2020, 248, 108783. [Google Scholar] [CrossRef] [PubMed]
- Sroithongkham, P.; Nittayasut, N.; Yindee, J.; Nimsamer, P.; Payungporn, S.; Pinpimai, K.; Ponglowhapan, S.; Chanchaithong, P. Multidrug-resistant Escherichia coli causing canine pyometra and urinary tract infections are genetically related but distinct from those causing prostatic abscesses. Sci. Rep. 2024, 14, 11848. [Google Scholar] [CrossRef]
- Cozma, A.P.; Rimbu, C.M.; Zendri, F.; Maciuca, I.E.; Timofte, D. Clonal dissemination of extended-spectrum cephalosporin-resistant Enterobacterales between dogs and humans in households and animal shelters of Romania. Antibiotics 2022, 11, 1242. [Google Scholar] [CrossRef]
- Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 2012, 13, 601–612. [Google Scholar] [CrossRef]
- Clermont, O.; Dixit, O.V.A.; Vangchhia, B.; Condamine, B.; Dion, S.; Bridier-Nahmias, A.; Denamur, E.; Gordon, D. Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high virulence and antibiotic resistance potential. Environ. Microbiol. 2019, 21, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Elankumaran, P.; Cummins, M.L.; Browning, G.F.; Marenda, M.S.; Reid, C.J.; Djordjevic, S.P. Genomic and temporal trends in canine ExPEC reflect those of human ExPEC. Microbiol. Spectr. 2022, 10, e01291-22. [Google Scholar] [CrossRef] [PubMed]
- Nittayasut, N.; Yindee, J.; Boonkham, P.; Yata, T.; Suanpairintr, N.; Chanchaithong, P. Multiple and high-risk clones of extended-spectrum cephalosporin-resistant and blaNDM-5-harbouring uropathogenic Escherichia coli from cats and dogs in Thailand. Antibiotics 2021, 10, 1374. [Google Scholar] [CrossRef] [PubMed]
- Kidsley, A.K.; White, R.T.; Beatson, S.A.; Saputra, S.; Schembri, M.A.; Gordon, D.; Johnson, J.R.; O’Dea, M.; Mollinger, J.L.; Abraham, S.; et al. Companion animals are spillover hosts of the multidrug-resistant human extraintestinal Escherichia coli pandemic clones ST131 and ST1193. Front. Microbiol. 2020, 11, 1968. [Google Scholar] [CrossRef]
- Weese, J.S.; Blondeau, J.; Boothe, D.; Guardabassi, L.G.; Gumley, N.; Papich, M.; Jessen, L.R.; Lappin, M.; Rankin, S.; Westropp, J.L.; et al. International Society for Companion Animal Infectious Diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats. Vet. J. 2019, 247, 8–25. [Google Scholar] [CrossRef]
- Peirano, G.; Pitout, J.D.D. Extended-spectrum β-lactamase-producing Enterobacteriaceae: Update on molecular epidemiology and treatment options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum β-lactamase-producing Escherichia coli in dogs and cats–a scoping review and meta-analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef]
- Chen, B.; Han, J.; Dai, H.; Jia, P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? Environ. Pollut. 2021, 283, 117074. [Google Scholar] [CrossRef]
- Jousserand, N.; Auvray, F.; Chagneau, C.; Cavalié, L.; Maurey, C.; Drut, A.; Lavoué, R.; Oswald, E. Zoonotic potential of uropathogenic Escherichia coli lineages from companion animals. Vet. Res. 2025, 56, 69. [Google Scholar] [CrossRef]
- Handal, N.; Kaspersen, H.; Mo, S.S.; Cabanel, N.; Jørgensen, S.B.; Fortineau, N.; Oueslati, S.; Naas, T.; Glaser, P.; Sunde, M. A comparative study of the molecular characteristics of human uropathogenic Escherichia coli collected from two hospitals in Norway and France in 2019. J. Antimicrob. Chemother. 2025, 80, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.M.; Sellera, F.P.; Furlan, J.P.R.; Aravena-Ramírez, V.; Fuentes-Castillo, D.; Fuga, B.; Dos Santos Fróes, A.J.; de Sousa, A.L.; Garino Junior, F.; Lincopan, N. Gut colonization of semi-aquatic turtles inhabiting the Brazilian Amazon by international clones of CTX-M-8-producing Escherichia coli. Vet. Microbiol. 2025, 301, 110344. [Google Scholar] [CrossRef]
- Silva, M.M.; Sellera, F.P.; Fernandes, M.R.; Moura, Q.; Garino, F.; Azevedo, S.S.; Lincopan, N. Genomic features of a highly virulent, ceftiofur-resistant, CTX-M-8-producing Escherichia coli ST224 causing fatal infection in a domestic cat. J. Glob. Antimicrob. Resist. 2018, 15, 252–253. [Google Scholar] [CrossRef]
- Jaidane, N.; Naas, T.; Boughattas, S.; Fraysseix, L.D.; Tilouche, L.; Souguir, M.; François, P.; Chermiti, W.; Trabelsi, A.; Madec, J.Y.; et al. Occurrence of mcr-1.1-producing Escherichia coli in clinical settings in Tunisia. J. Glob. Antimicrob. Resist. 2025, 44, 149–151. [Google Scholar] [CrossRef]
- Fuga, B.; Sellera, F.P.; Cerdeira, L.; Esposito, F.; Cardoso, B.; Fontana, H.; Moura, Q.; Cardenas-Arias, A.; Sano, E.; Ribas, R.M.; et al. WHO critical priority Escherichia coli as One Health challenge for a post-pandemic scenario: Genomic surveillance and analysis of current trends in Brazil. Microbiol. Spectr. 2022, 10, e0125621. [Google Scholar] [CrossRef]
- Wyrsch, E.R.; Bushell, R.N.; Marenda, M.S.; Browning, G.F.; Djordjevic, S.P. Global phylogeny and F virulence plasmid carriage in pandemic Escherichia coli ST1193. Microbiol. Spectr. 2022, 10, e02554-22. [Google Scholar] [CrossRef] [PubMed]
- Dantas, K.; Melocco, G.; Esposito, F.; Fontana, H.; Cardoso, B.; Lincopan, N. Emergent Escherichia coli of the highly virulent B2-ST1193 clone producing KPC-2 carbapenemase in ready-to-eat vegetables. J. Glob. Antimicrob. Resist. 2025, 41, 105–110. [Google Scholar] [CrossRef]
- Dyer, N.P.; Päuker, B.; Baxter, L.; Gupta, A.; Bunk, B.; Overmann, J.; Diricks, M.; Dreyer, V.; Niemann, S.; Holt, K.E.; et al. EnteroBase in 2025: Exploring the genomic epidemiology of bacterial pathogens. Nucleic Acids Res. 2025, 53, D757–D762. [Google Scholar] [CrossRef]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef]
- Scheutz, F.; Nielsen, C.H.; von Mentzer, A. Construction of the ETECFinder database for the characterization of enterotoxigenic Escherichia coli (ETEC) and revision of the VirulenceFinder web tool at the CGE website. J. Clin. Microbiol. 2024, 62, e00570-23. [Google Scholar] [CrossRef] [PubMed]
- Braz, V.S.; Melchior, K.; Moreira, C.G. Escherichia coli as a multifaceted pathogenic and versatile bacterium. Front. Cell. Infect. Microbiol. 2020, 10, 548492. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Zhu, Y.; Wang, T.; Lu, Y.; Wang, X.; Peng, Z.; Sun, M.; Chen, H.; Zheng, J.; et al. Population structure and antibiotic resistance of swine extraintestinal pathogenic Escherichia coli from China. Nat. Commun. 2024, 15, 5811. [Google Scholar] [CrossRef]
- Santos, A.C.M.; Santos, F.F.; Silva, R.M.; Gomes, T.A.T. Diversity of hybrid- and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Front. Cell. Infect. Microbiol. 2020, 10, 339. [Google Scholar] [CrossRef]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef] [PubMed]
- BrCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 13.0; Brazilian Committee on Antimicrobial Susceptibility Testing: Rio de Janeiro, Brazil, 2023.
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. Supplement VET01S, 6th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023; ISBN 978-1-68440-167-3. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Lesiani, B.R.; Abror, Y.K.; Merdekawati, F.; Djuminar, A. Analysis of Purity and Concentration Escherichia coli DNA by Boiling Method Isolation with Addition of Proteinase-K and RNase. Indones. J. Med. Lab. Sci. Technol. 2023, 5, 160–171. [Google Scholar] [CrossRef]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef]
Strain | AMR Profile 1 | PG 2 | ST 3 | CH Type | Serotype 4 | Resistome 5 | Virulome | Plasmid Replicon | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCR | WGS | ARG | Mutation | BRG | |||||||||
GyrA | ParC | ParE | |||||||||||
VPTEC10 | AMP, CFE, CIP, ENR, STP | B1 | B1 | 224 | 4–54 | O8:H32 | blaTEM-1A, aadA12, lnu(A) | S83L, D87N | S80I | S458A | sitABCD, formA | csgA, faeA, faeB, faeC, faeE, faeF, faeI, fdeC, gad, hlyE, hlyF, iss, lpfA, nlpI, ompT, sitA, terC, traJ, traT, yehABCD | IncFIB(AP001918), IncFIB(pB171), IncFII, IncI1-Iα |
VPTEC11 | AMP, CFE, CVN, CRO, CPM, ATM | B2 | G | 12,960 | 45–222 | O149:H34 | blaCTX-M-55, ΔblaTEM-1, fosA3 | na | na | na | sitABCD | aslA, anr, astA, cea, chuA, cma, csgA, etsC, fdeC, gad, hlyF, iroN, iss, iucC, iutA, lpfA, nlpI, ompT, sitA, terC, traJ, traT, tsh, yehABCD | IncFIB(AP001918), IncFIC(FII), IncFII(pHN7A8), IncN |
VPTEC38 | AMP, CFE, CIP, ENR | B2 | B2 | 1193 | 14–64 | O75:H5 | blaCMY-2 | S83L, D87N | S80I | L416F | sitABCD | aslA, chuA, cib, csgA, fdeC, fyuA, gad, iha, irp2, iucC, iutA, kpsE, nlpI, ompT, sat, sitA, terC, usp, yfcV, yehABCD | IncI1-ST12, ColpEC648 |
VPTEC43 | TRI | B2 | B2 | 73 | 24–30 | ONT:H1 | dfrA8 | na | na | na | sitABCD | aslA, chuA, clbB, csgA, fdeC, focCsfaE, focG, focI, fyuA, gad, hha, iroN, irp2, iss, iucC, iutA, kpsE, kpsMII, nlpI, ompT, papA_F7-2, papC, pic, sat, terC, traJ, usp, vat, yehABCD | IncFIB(AP001918), IncFII(29), IncX3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sartori, L.; Furlan, J.P.R.; Sellera, F.P.; Barbosa, F.B.; Chikhani, Y.C.d.S.A.; Gandolfi, G.; Knöbl, T. Clonal Diversity of Extraintestinal Pathogenic Escherichia coli Strains Isolated from Canine Urinary Tract Infections in Brazil. Antibiotics 2025, 14, 819. https://doi.org/10.3390/antibiotics14080819
Sartori L, Furlan JPR, Sellera FP, Barbosa FB, Chikhani YCdSA, Gandolfi G, Knöbl T. Clonal Diversity of Extraintestinal Pathogenic Escherichia coli Strains Isolated from Canine Urinary Tract Infections in Brazil. Antibiotics. 2025; 14(8):819. https://doi.org/10.3390/antibiotics14080819
Chicago/Turabian StyleSartori, Luciana, João Pedro Rueda Furlan, Fábio Parra Sellera, Fernanda Borges Barbosa, Yohanna Carvalho dos Santos Aoun Chikhani, Gabriel Gandolfi, and Terezinha Knöbl. 2025. "Clonal Diversity of Extraintestinal Pathogenic Escherichia coli Strains Isolated from Canine Urinary Tract Infections in Brazil" Antibiotics 14, no. 8: 819. https://doi.org/10.3390/antibiotics14080819
APA StyleSartori, L., Furlan, J. P. R., Sellera, F. P., Barbosa, F. B., Chikhani, Y. C. d. S. A., Gandolfi, G., & Knöbl, T. (2025). Clonal Diversity of Extraintestinal Pathogenic Escherichia coli Strains Isolated from Canine Urinary Tract Infections in Brazil. Antibiotics, 14(8), 819. https://doi.org/10.3390/antibiotics14080819