Does Bovine Raw Milk Represent a Potential Risk for Vancomycin-Resistant Enterococci (VRE) Transmission to Humans?
Abstract
1. Introduction
2. Results
2.1. Bulk Milk
van Gene Distribution
2.2. Individual Milk
2.2.1. Enterococcus Species Distribution
2.2.2. AMR Profiles of Enterococcus spp. Strains
2.2.3. WGS of VRE Strains
2.3. Statistical Analysis Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Van Gene Screening of Bulk Milk Samples
4.3. Isolation and Identification of Enterococcus Isolates from Individual Milk Samples
4.3.1. Antimicrobial Resistance Phenotyping and Van Gene Detection in Enterococcus Isolates
4.3.2. Whole Genome Sequencing (WGS) and Assembly
4.3.3. Detection of Antimicrobial Resistance Genes, Virulence Factors, and Multi-Locus Sequence Typing (MLST)
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef]
- Sirichoat, A.; Florez, A.B.; Vazquez, L.; Buppasiri, P.; Panya, M.; Lulitanond, V.; Mayo, B. Antibiotic Resistance-Susceptibility Profiles of Enterococcus faecalis and Streptococcus spp. From the Human Vagina, and Genome Analysis of the Genetic Basis of Intrinsic and Acquired Resistances. Front. Microbiol. 2020, 11, 1438. [Google Scholar] [CrossRef]
- Sadowy, E.; Luczkiewicz, A. Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin. BMC Microbiol. 2014, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Micallef, S.A.; Goldstein, R.E.; George, A.; Ewing, L.; Tall, B.D.; Boyer, M.S.; Joseph, S.W.; Sapkota, A.R. Diversity, distribution and antibiotic resistance of Enterococcus spp. recovered from tomatoes, leaves, water and soil on U.S. Mid-Atlantic farms. Food Microbiol. 2013, 36, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef]
- Said, M.S.; Tirthani, E.; Lesho, E. Enterococcus Infections; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Brinkwirth, S.; Ayobami, O.; Eckmanns, T.; Markwart, R. Hospital-acquired infections caused by enterococci: A systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020. Eurosurveillanca 2021, 26, 2001628. [Google Scholar] [CrossRef] [PubMed]
- Suppli, M.; Aabenhus, R.; Harboe, Z.B.; Andersen, L.P.; Tvede, M.; Jensen, J.U. Mortality in enterococcal bloodstream infections increases with inappropriate antimicrobial therapy. Clin. Microbiol. Infect. 2011, 17, 1078–1083. [Google Scholar] [CrossRef]
- EUCAST. Expected Resistant Phenotypes, Version 1.2 January 2023. Available online: https://www.eucast.org/expert_rules_and_expected_phenotypes/expected_phenotypes (accessed on 10 June 2025).
- ECDC. Surveillance Atlas of Infectious Diseases. Available online: https://www.ecdc.europa.eu/en/surveillance-atlas-infectious-diseases (accessed on 10 June 2025).
- ECDC. Antimicrobial Resistance in the EU/EEA (EARS-Net)-Annual Epidemiological Report 2023. Available online: https://www.eucast.org/ (accessed on 10 May 2025).
- ECDC. Antimicrobial Resistance Surveillance in Europe 2023, 2021 Data. Available online: https://www.eucast.org/ (accessed on 10 June 2025).
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: https://www.who.int/ (accessed on 10 June 2025).
- Li, G.; Walker, M.J.; De Oliveira, D.M.P. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2023, 11, 24. [Google Scholar] [CrossRef]
- Noble, W.C.; Virani, Z.; Cree, R.G. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 1992, 72, 195–198. [Google Scholar] [CrossRef]
- Acar, J.; Casewell, M.; Freeman, J.; Friis, C.; Goossens, H. Avoparcin and virginiamycin as animal growth promoters: A plea for science in decision-making. Clin. Microbiol. Infect. 2000, 6, 477–482. [Google Scholar] [CrossRef]
- Collignon, P.J. Vancomycin-resistant enterococci and use of avoparcin in animal feed: Is there a link? Med. J. Aust. 1999, 171, 144–146. [Google Scholar] [CrossRef]
- Cebeci, T. Species prevalence, virulence genes, and antibiotic resistance of enterococci from food-producing animals at a slaughterhouse in Turkey. Sci. Rep. 2024, 14, 13191. [Google Scholar] [CrossRef]
- Milk and Milk Product Statistics. Available online: https://ec.europa.eu/eurostat (accessed on 22 July 2025).
- Giacometti, F.; Bonilauri, P.; Piva, S.; Scavia, G.; Amatiste, S.; Bianchi, D.; Losio, M.; Bilei, S.; Cascone, G.; Comin, D. Paediatric HUS cases related to the consumption of raw milk sold by vending machines in Italy: Quantitative risk assessment based on Escherichia coli O157 official controls over 7 years. Zoonoses Public Health 2017, 64, 505–516. [Google Scholar] [CrossRef]
- Guh, A.; Phan, Q.; Randall, N.; Purviance, K.; Milardo, E.; Kinney, S.; Mshar, P.; Kasacek, W.; Cartter, M. Outbreak of Escherichia coli O157 associated with raw milk, Connecticut, 2008. Clin. Infect. Dis. 2010, 51, 1411–1417. [Google Scholar] [CrossRef]
- Jaakkonen, A.; Salmenlinna, S.; Rimhanen-Finne, R.; Lundström, H.; Heinikainen, S.; Hakkinen, M.; Hallanvuo, S. Severe outbreak of sorbitol-fermenting Escherichia coli O157 via unpasteurized milk and farm visits, Finland 2012. Zoonoses Public Health 2017, 64, 468–475. [Google Scholar] [CrossRef]
- Jung, W.K.; Lim, J.Y.; Kwon, N.H.; Kim, J.M.; Hong, S.K.; Koo, H.C.; Kim, S.H.; Park, Y.H. Vancomycin-resistant enterococci from animal sources in Korea. Int. J. Food Microbiol. 2007, 113, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.J.; Cho, S.S.; Kim, B.S. Isolation, Identification and Characterization of Ynncomycin-Resistant Enterococci from Raw Milk. J. Microbiol. 2002, 40, 170–172. [Google Scholar]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; García-Solache, M. Ready-to-eat dairy products as a source of multidrug-resistant Enterococcus strains: Phenotypic and genotypic characteristics. J. Dairy Sci. 2020, 103, 4068–4077. [Google Scholar] [CrossRef]
- Moraes, P.M.; Perin, L.M.; Todorov, S.D.; Silva Jr, A.; Franco, B.D.G.d.M.; Nero, L.A. Bacteriocinogenic and virulence potential of Enterococcus isolates obtained from raw milk and cheese. J. Appl. Microbiol. 2012, 113, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Paschoalini, B.R.; Nunez, K.V.M.; Maffei, J.T.; Langoni, H.; Guimaraes, F.F.; Gebara, C.; Freitas, N.E.; Dos Santos, M.V.; Fidelis, C.E.; Kappes, R.; et al. The Emergence of Antimicrobial Resistance and Virulence Characteristics in Enterococcus Species Isolated from Bovine Milk. Antibiotics 2023, 12, 1243. [Google Scholar] [CrossRef]
- Gołaś-Prądzyńska, M.; Łuszczyńska, M.; Rola, J.G. Dairy Products: A potential source of Multidrug-Resistant Enterococcus faecalis and Enterococcus faecium Strains. Foods 2022, 11, 4116. [Google Scholar] [CrossRef]
- Adkins, P.R.F.; Middleton, J.R.; Fox, L.K.; Pighetti, G.; Petersson-Wolfe, C.; Council, N.M. Laboratory Handbook on Bovine Mastitis; National Mastitis Council: New Prague, MN, USA, 2017. [Google Scholar]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Guimarães, J.T.; Cruz, A.G.; Sant’Ana, A.S. Hazards of a ‘healthy’trend? An appraisal of the risks of raw milk consumption and the potential of novel treatment technologies to serve as alternatives to pasteurization. Trends Food Sci. Technol. 2018, 82, 148–166. [Google Scholar] [CrossRef]
- García-Solache, M.; Rice, L.B. The Enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019, 32. [Google Scholar] [CrossRef]
- Robredo, B.; Singh, K.V.; Baquero, F.; Murray, B.E.; Torres, C. Vancomycin-resistant enterococci isolated from animals and food. Int. J. Food Microbiol. 2000, 54, 197–204. [Google Scholar] [CrossRef]
- Messi, P.; Guerrieri, E.; de Niederhausern, S.; Sabia, C.; Bondi, M. Vancomycin-resistant enterococci (VRE) in meat and environmental samples. Int. J. Food Microbiol. 2006, 107, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Kanki, M.; Kawai, T.; Taguchi, M.; Asao, T.; Kumeda, Y. Isolation of VanA-type vancomycin-resistant Enterococcus strains from domestic poultry products with enrichment by incubation in buffered peptone water at 42 °C. Appl. Environ. Microbiol. 2010, 76, 5317–5320. [Google Scholar] [CrossRef]
- Aslam, M.; Diarra, M.S.; Checkley, S.; Bohaychuk, V.; Masson, L. Characterization of antimicrobial resistance and virulence genes in Enterococcus spp. isolated from retail meats in Alberta, Canada. Int. J. Food Microbiol. 2012, 156, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Klibi, N.; Said, L.B.; Jouini, A.; Slama, K.B.; Lopez, M.; Sallem, R.B.; Boudabous, A.; Torres, C. Species distribution, antibiotic resistance and virulence traits in enterococci from meat in Tunisia. Meat Sci. 2013, 93, 675–680. [Google Scholar] [CrossRef]
- Pesavento, G.; Calonico, C.; Ducci, B.; Magnanini, A.; Lo Nostro, A. Prevalence and antibiotic resistance of Enterococcus spp. isolated from retail cheese, ready-to-eat salads, ham, and raw meat. Food Microbiol. 2014, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zarfel, G.; Galler, H.; Luxner, J.; Petternel, C.; Reinthaler, F.F.; Haas, D.; Kittinger, C.; Grisold, A.J.; Pless, P.; Feierl, G. Multiresistant bacteria isolated from chicken meat in Austria. Int. J. Environ. Res. Public Health 2014, 11, 12582–12593. [Google Scholar] [CrossRef]
- Bortolaia, V.; Espinosa-Gongora, C.; Guardabassi, L. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clin. Microbiol. Infect. 2016, 22, 130–140. [Google Scholar] [CrossRef]
- Rizzotti, L.; Rossi, F.; Torriani, S. Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain. Food Microbiol. 2016, 60, 160–164. [Google Scholar] [CrossRef]
- Madanipour, E.; Mehrabi, M.R.; Mirzaee, M. The antibiotic susceptibility pattern and prevalence of vanA, vanB, and vanC genes among Enterococcus faecalis strains isolated from consumed meat. Infect. Epidemiol. Microbiol. 2017, 3, 117–121. [Google Scholar]
- Tyson, G.H.; Nyirabahizi, E.; Crarey, E.; Kabera, C.; Lam, C.; Rice-Trujillo, C.; McDermott, P.F.; Tate, H. Prevalence and antimicrobial resistance of enterococci isolated from retail meats in the United States, 2002 to 2014. Appl. Environ. Microbiol. 2018, 84, e01902–e01917. [Google Scholar] [CrossRef]
- SWAB. NethMap 2019: Consumption of Antimicrobial Agents and Antimicrobial Resistance Among Medically Important Bacteria in the Netherlands/MARAN 2019: Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2018. Available online: https://edepot.wur.nl/ (accessed on 10 June 2025).
- Sabença, C.; de Sousa, T.; Oliveira, S.; Viala, D.; Theron, L.; Chambon, C.; Hébraud, M.; Beyrouthy, R.; Bonnet, R.; Caniça, M. Next-generation sequencing and MALDI mass spectrometry in the study of multiresistant processed meat vancomycin-resistant enterococci (VRE). Biology 2020, 9, 89. [Google Scholar] [CrossRef]
- Caddey, B.; Shaukat, W.; Tang, K.L.; Barkema, H.W. Vancomycin-resistant Enterococcus prevalence and its association along the food chain: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2025, 80, 908–918. [Google Scholar] [CrossRef]
- de Lurdes Enes Dapkevicius, M.; Sgardioli, B.; Câmara, S.P.; Poeta, P.; Malcata, F.X. Current trends of enterococci in dairy products: A comprehensive review of their multiple roles. Foods 2021, 10, 821. [Google Scholar] [CrossRef]
- Heller, L.C.; Edelblute, C.M. Long-term metabolic persistence of gram-positive bacteria on health care-relevant plastic. Am. J. Infect. Control 2018, 46, 50–53. [Google Scholar] [CrossRef]
- Grund, A.; Rautenschlein, S.; Jung, A. Tenacity of Enterococcus cecorum at different environmental conditions. J. Appl. Microbiol. 2021, 130, 1494–1507. [Google Scholar] [CrossRef]
- Geraldes, C.; Tavares, L.; Gil, S.; Oliveira, M. Enterococcus virulence and resistant traits associated with its permanence in the hospital environment. Antibiotics 2022, 11, 857. [Google Scholar] [CrossRef]
- Cetinkaya, Y.; Falk, P.; Mayhall, C.G. Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 2000, 13, 686–707. [Google Scholar] [CrossRef] [PubMed]
- Mazuski, J.E. Vancomycin-resistant Enterococcus: Risk factors, surveillance, infections, and treatment. Surg. Infect. 2008, 9, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Pappas, G.; Liberopoulos, E.; Tsianos, E.; Elisaf, M. Enterococcus casseliflavus bacteremia. Case report and literature review. J. Infect. 2004, 48, 206–208. [Google Scholar] [CrossRef]
- Gikas, A.; Christidou, A.; Scoulica, E.; Nikolaidis, P.; Skoutelis, A.; Levidiotou, S.; Kartali, S.; Maltezos, E.; Metalidis, S.; Kioumis, J.; et al. Epidemiology and molecular analysis of intestinal colonization by vancomycin-resistant enterococci in Greek hospitals. J. Clin. Microbiol. 2005, 43, 5796–5799. [Google Scholar] [CrossRef]
- Contreras, G.A.; DiazGranados, C.A.; Cortes, L.; Reyes, J.; Vanegas, S.; Panesso, D.; Rincon, S.; Diaz, L.; Prada, G.; Murray, B.E.; et al. Nosocomial outbreak of Enteroccocus gallinarum: Untaming of rare species of enterococci. J. Hosp. Infect. 2008, 70, 346–352. [Google Scholar] [CrossRef]
- Koganemaru, H.; Hitomi, S. Bacteremia caused by VanC-type enterococci in a university hospital in Japan: A 6-year survey. J. Infect. Chemother. 2008, 14, 413–417. [Google Scholar] [CrossRef]
- Sutter, S.T.; Frei, R.; Dangel, M.; Gratwohl, A.; Bonten, M.; Widmer, A. Not all patients with vancomycin-resistant enterococci need to be isolated. Clin. Infect. Dis. 2010, 51, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.K.; Lai, C.C.; Wang, J.Y.; Lin, S.H.; Liao, C.H.; Huang, Y.T.; Wang, C.Y.; Lin, H.I.; Hsueh, P.R. Bacteremia caused by non-faecalis and non-faecium Enterococcus species at a Medical center in Taiwan, 2000 to 2008. J. Infect. 2010, 61, 34–43. [Google Scholar] [CrossRef]
- Hillier, R.J.; Arjmand, P.; Rebick, G.; Ostrowski, M.; Muni, R.H. Post-traumatic vancomycin-resistant enterococcal endophthalmitis. J. Ophthalmic Inflamm. Infect. 2013, 3, 42. [Google Scholar] [CrossRef]
- Berenger, B.M.; Kulkarni, S.; Hinz, B.J.; MD, S.E.F. Exogenous endophthalmitis caused by Enterococcus casseliflavus: A case report and discussion regarding treatment of intraocular infection with vancomycin-resistant enterococci. Can. J. Infect. Dis. Med. Microbiol. 2015, 26, 330–332. [Google Scholar] [CrossRef]
- Nguyen, J.; Hartnett, M.E. Successful management of post-traumatic vancomycin-resistant enterococcus endophthalmitis. Am. J. Ophthalmol. Case Rep. 2017, 5, 117–118. [Google Scholar] [CrossRef]
- Zhao, B.; Ye, M.S.; Zheng, R. Enterococcus gallinarum meningitis: A case report and literature review. BMC Infect. Dis. 2018, 18, 231. [Google Scholar] [CrossRef]
- Okumura, N.; Watanabe, T.; Teranishi, S.; Suzuki, D.; Hashimoto, T.; Takahashi, K.; Hara, T. Successful treatment of aortic valve endocarditis caused by Enterococcus casseliflavus: A case report. BMC Infect. Dis. 2021, 21, 447. [Google Scholar] [CrossRef]
- Şahin, M.H.; Temtek, U. Enterococcus gallinarum group meningitis after transanal migration of the ventriculoperitoneal shunt: A pediatric case report. Childs Nerv. Syst. 2023, 39, 1093–1096. [Google Scholar] [CrossRef]
- Xu, S.; Huang, B.; Cao, Y.; Zhong, Z.; Yin, J. Polycystic intrahepatic infection caused by Enterococcus casseliflavus: A case report and literature review. BMC Nephrol. 2024, 25, 88. [Google Scholar] [CrossRef]
- Courvalin, P. Vancomycin resistance in gram-positive cocci. Clin. Infect. Dis. 2006, 42 (Suppl. S1), S25–S34. [Google Scholar] [CrossRef] [PubMed]
- Morandi, S.; Brasca, M.; Andrighetto, C.; Lombardi, A.; Lodi, R. Technological and molecular characterisation of enterococci isolated from north–west Italian dairy products. Int. Dairy J. 2006, 16, 867–875. [Google Scholar] [CrossRef]
- Hammad, A.M.; Hassan, H.A.; Shimamoto, T. Prevalence, antibiotic resistance and virulence of Enterococcus spp. in Egyptian fresh raw milk cheese. Food Control 2015, 50, 815–820. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Lopreiato, V.; Piccioli-Cappelli, F.; Trevisi, E.; Brasca, M. Biodiversity and antibiotic resistance profile provide new evidence for a different origin of enterococci in bovine raw milk and feces. Food Microbiol. 2024, 120, 104492. [Google Scholar] [CrossRef] [PubMed]
- Klaas, I.C.; Zadoks, R.N. An update on environmental mastitis: Challenging perceptions. Transbound. Emerg. Dis. 2018, 65 (Suppl. S1), 166–185. [Google Scholar] [CrossRef] [PubMed]
- Turco, E.; Bartoletti, M.; Dahl, A.; Cervera, C.; Pericàs, J. How do I manage a patient with enterococcal bacteraemia. Clin. Microbiol. Infect. 2021, 27, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Contreras, G.A.; Murray, B.E. Management of multidrug-resistant enterococcal infections. Clin. Microbiol. Infect. 2010, 16, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Mengeloğlu, F.Z.; Çakır, D.; Terzi, H.A. Comparison of resistance in isolates of Enterococcus faecalis and Enterococcus faecium. J. Microbiol. Infect. Dis. 2011, 1, 10–13. [Google Scholar] [CrossRef]
- Jabbari Shiadeh, S.M.; Pormohammad, A.; Hashemi, A.; Lak, P. Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: A systematic review and meta-analysis. Infect. Drug Resist 2019, 12, 2713–2725. [Google Scholar] [CrossRef]
- Dadashi, M.; Sharifian, P.; Bostanshirin, N.; Hajikhani, B.; Bostanghadiri, N.; Khosravi-Dehaghi, N.; van Belkum, A.; Darban-Sarokhalil, D. The Global prevalence of daptomycin, tigecycline, and linezolid-resistant Enterococcus faecalis and Enterococcus faecium strains from human clinical samples: A systematic review and meta-analysis. Front. Med. 2021, 8, 720647. [Google Scholar] [CrossRef]
- Rathnayake, I.U.; Hargreaves, M.; Huygens, F. Antibiotic resistance and virulence traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. Syst. Appl. Microbiol. 2012, 35, 326–333. [Google Scholar] [CrossRef]
- Jia, W.; Li, G.; Wang, W. Prevalence and antimicrobial resistance of Enterococcus species: A hospital-based study in China. Int. J. Environ. Res. Public Health 2014, 11, 3424–3442. [Google Scholar] [CrossRef]
- Georges, M.; Odoyo, E.; Matano, D.; Tiria, F.; Kyany’a, C.; Mbwika, D.; Mutai, W.C.; Musila, L. Determination of Enterococcus faecalis and Enterococcus faecium antimicrobial resistance and virulence factors and their association with clinical and demographic factors in Kenya. J. Pathog. 2022, 2022, 3129439. [Google Scholar] [CrossRef]
- Leedom, J.M. Milk of nonhuman origin and infectious diseases in humans. Clin. Infect. Dis. 2006, 43, 610–615. [Google Scholar] [CrossRef]
- Ashraf, A.; Imran, M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim. Health Res. Rev. 2020, 21, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Maréchal, L.; Loir, L. Mastitis impact on technological properties of milk and quality of milk products—A review. Dairy Sci. Technol. 2011, 91, 247–282. [Google Scholar] [CrossRef]
- Guzmán-Luna, P.; Nag, R.; Martínez, I.; Mauricio-Iglesias, M.; Hospido, A.; Cummins, E. Quantifying current and future raw milk losses due to bovine mastitis on European dairy farms under climate change scenarios. Sci. Total Environ. 2022, 833, 155149. [Google Scholar] [CrossRef]
- Asfaw, M.; Negash, A. Review on impact of bovine mastitis in dairy production. Adv. Biol. Res. 2017, 11, 126–131. [Google Scholar]
- Pal, M.; Regasa, A.; Gizaw, F. Etiology, pathogenesis, risk factors, diagnosis and management of bovine mastitis: A comprehensive review. Int. J. Anim. Vet. Sci. 2019, 6, 40–55. [Google Scholar]
- EFSA. Scientific Opinion on the Public Health Risks Related to the Consumption of Raw Drinking Milk. Available online: https://www.efsa.europa.eu/ (accessed on 10 June 2025).
- Kang, H.J.; Yoon, S.; Kim, K.; Lee, Y.J. Characteristics of high-level aminoglycoside-resistant Enterococcus faecalis isolated from bulk tank milk in Korea. Animals 2021, 11, 1724. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Lee, Y.J. Molecular characteristics of Enterococcus faecalis and Enterococcus faecium from bulk tank milk in Korea. Animals 2021, 11, 661. [Google Scholar] [CrossRef] [PubMed]
- Hammad; Aly, S.S.; Hassan, H.A.; Abbas, N.H.; Eltahan, A.; Khalifa, E.; Shimamoto, T. Occurrence, phenotypic and molecular characteristics of vancomycin-resistant enterococci isolated from retail raw milk in Egypt. Foodborne Pathog. Dis. 2022, 19, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Kim, K.; Lee, Y.J. Dissemination and characteristics of high-level erythromycin-resistant Enterococcus faecalis from bulk tank milk of dairy companies in Korea. Can. J. Vet. Res. 2023, 87, 51–58. [Google Scholar]
- Schlegelova, J.; Babak, V.; Klimova, E.; Lukasova, J.; Navratilova, P.; Sustackova, A.; Sediva, I.; Rysanek, D. Prevalence of and resistance to anti-microbial drugs in selected microbial species isolated from bulk milk samples. J. Vet. Med. B Infect. Dis. Vet. Public Health 2002, 49, 216–225. [Google Scholar] [CrossRef]
- Kim, H.J.; Youn, H.Y.; Kang, H.J.; Moon, J.S.; Jang, Y.S.; Song, K.Y.; Seo, K.H. Prevalence and virulence characteristics of Enterococcus faecalis and Enterococcus faecium in bovine mastitis milk compared to bovine normal raw milk in South Korea. Animals 2022, 12, 1407. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, G.N.; Guimarães, F.; Fornazari, F.; Joaquim, S.F.; Guerra, S.T.; de França, D.A.; Possebon, F.S.; Pantoja, J.C.d.F.; Lucheis, S.B.; Rall, V.L.M. Antimicrobial susceptibility profile of Enterococcus species isolated from cows with clinical mastitis and from bulk milk tanks in Brazil. Afr. J. Microbiol. Res. 2023, 17, 29–34. [Google Scholar] [CrossRef]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Clinical & Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; CLSI Report VET01 ED5:2023; Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Clinical & Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; CLSI Report M100 ED30:2020; Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- EUCAST. Clinical Breakpoints (v 15.0). Available online: https://www.eucast.org/ (accessed on 10 June 2025).
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Arkin, A.P.; Cottingham, R.W.; Henry, C.S.; Harris, N.L.; Stevens, R.L.; Maslov, S.; Dehal, P.; Ware, D.; Perez, F.; Canon, S.; et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 2018, 36, 566–569. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C. Open-access bacterial population genomics: BIGSdb software, the PubMLST. org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
Species | N. of Isolates | S | MDR | ≥5 R |
---|---|---|---|---|
E. faecium | 104 | - | 76 | 26 |
E. faecalis | 34 | - | 23 | 6 |
E. hirae | 9 | 1 | 1 | - |
E. cecorum | 6 | 4 | - | - |
E. saccharolitycus | 4 | - | 1 | - |
E. canintestini | 3 | - | 3 | - |
E. casseliflavus | 2 | - | 2 | - |
E. gallinarum | 1 | - | - | - |
Total | 163 | 5 | 106 | 33 |
E. gallinarum | |
VAGs | Function |
ebpA, ebpB, ebpC, srtC, efaA, pavA, slrA | Adherence |
cpsA/uppS, cpsB/cdsA, cpsI, cpsJ | Antiphagocytosis |
bopD | Biofilm formation |
cylR2, cesC | Toxin |
htrA/degP | Chemotaxis and motility, invasion |
cheY | Regulation |
bscN | Secretion system |
lgt | Surface protein anchoring |
E. casseliflavus | |
VAGs | Function |
ebpA, ebpC, srtC, efaA, pavA, slrA | Adherence |
cpsA/uppS, cpsB/cdsA, cpsI, cpsJ, uge | Antiphagocytosis |
bopD | Biofilm formation |
ctpV | Copper uptake |
capO, capP, capD, cps4I, cpsY, epsE, | Immune evasion |
htrA/degP | Chemotaxis and motility, invasion |
cheY | Regulation |
gspE, bscN | Secretion system |
lgt | Surface protein anchoring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massella, E.; Russo, S.; Filippi, A.; Garbarino, C.A.; Ricchi, M.; Bassi, P.; Toschi, E.; Torreggiani, C.; Pupillo, G.; Rugna, G.; et al. Does Bovine Raw Milk Represent a Potential Risk for Vancomycin-Resistant Enterococci (VRE) Transmission to Humans? Antibiotics 2025, 14, 814. https://doi.org/10.3390/antibiotics14080814
Massella E, Russo S, Filippi A, Garbarino CA, Ricchi M, Bassi P, Toschi E, Torreggiani C, Pupillo G, Rugna G, et al. Does Bovine Raw Milk Represent a Potential Risk for Vancomycin-Resistant Enterococci (VRE) Transmission to Humans? Antibiotics. 2025; 14(8):814. https://doi.org/10.3390/antibiotics14080814
Chicago/Turabian StyleMassella, Elisa, Simone Russo, Anita Filippi, Chiara Anna Garbarino, Matteo Ricchi, Patrizia Bassi, Elena Toschi, Camilla Torreggiani, Giovanni Pupillo, Gianluca Rugna, and et al. 2025. "Does Bovine Raw Milk Represent a Potential Risk for Vancomycin-Resistant Enterococci (VRE) Transmission to Humans?" Antibiotics 14, no. 8: 814. https://doi.org/10.3390/antibiotics14080814
APA StyleMassella, E., Russo, S., Filippi, A., Garbarino, C. A., Ricchi, M., Bassi, P., Toschi, E., Torreggiani, C., Pupillo, G., Rugna, G., Carta, V., Bertasio, C., Di Cesare, A., Sbaffi, T., Borgomaneiro, G., & Luppi, A. (2025). Does Bovine Raw Milk Represent a Potential Risk for Vancomycin-Resistant Enterococci (VRE) Transmission to Humans? Antibiotics, 14(8), 814. https://doi.org/10.3390/antibiotics14080814