The Analysis of Missed Antibiotic De-Escalation Opportunities in Gram-Negative Bloodstream Infections †
Abstract
1. Introduction
2. Results
2.1. The Comparison of ADE (n = 43) vs. No-ADE (n = 230) Episodes
2.2. The Comparison of ADE (n = 43) vs. ADE Missed Opportunities (n = 110)
3. Discussion
4. Materials and Methods
4.1. Study Design and Study Population
4.2. Microbiological Studies
4.3. Definitions
4.4. Outcome and Variables
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for the management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Huttner, B.; Pulcini, C.; Schouten, J. De-constructing de-escalation. Clin. Microbiol. Infect. 2016, 22, 958–959. [Google Scholar] [CrossRef]
- Reese, M.; Bookstaver, P.B.; Kohn, J.; Troficanto, C.; Yongue, E.; Winders, H.R.; Al-Hasan, M.N. Missed Opportunities for Early De-Escalation of Antipseudomonal Beta-Lactam Antimicrobial Therapy in Enterobacterales Bloodstream Infection. Antibiotics 2024, 31, 1031. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, W.; Yang, H.; Ma, C.; Sui, S. De-escalation of empiric antibiotics in patients with severe sepsis or septic shock: A meta-analysis. Heart Lung 2016, 45, 454–459. [Google Scholar] [CrossRef]
- Song, J.U.; Lee, J. The impact of antimicrobial de-escalation therapy in culture-negative pneumonia: A systematic review and meta-analysis. Korean J. Intern. Med. 2023, 38, 704–713. [Google Scholar] [CrossRef]
- Paul, M.; Dickstein, Y.; Raz-Pasteur, A. Antibiotic de-escalation for bloodstream infections and pneumonia: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2016, 22, 960–967. [Google Scholar] [CrossRef]
- van Heijl, I.; Schweitzer, V.A.; Boel, C.H.E.; Oosterheert, J.J.; Huijts, S.M.; Dorigo-Zetsma, W.; van der Linden, P.D.; Bonten, M.J.M.; van Werkhoven, C.H. Confounding by indication of the safety of de-escalation in community-acquired pneumonia: A simulation study embedded in a prospective cohort. PLoS ONE 2019, 14, e0218062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palacios-Baena, Z.R.; Delgado-Valverde, M.; Valiente Méndez, A.; Almirante, B.; Gómez-Zorrilla, S.; Borrell, N.; Corzo, J.E.; Gurguí, M.; De la Calle, C.; García-Álvarez, L.; et al. REIPI/GEIRAS-SEIMC Bacteraemia-MIC Group. Impact of De-escalation on Prognosis of Patients With Bacteraemia due to Enterobacteriaceae: A Post Hoc Analysis From a Multicenter Prospective Cohort. Clin. Infect. Dis. 2019, 69, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Pizarraya, A.; Leone, M.; Garnacho-Montero, J.; Martin, C.; Martin-Loeches, I. Collaborative approach of individual participant data of prospective studies of de-escalation in non-immunosuppressed critically ill patients with sepsis. Expert Rev. Clin. Pharmacol. 2017, 10, 457–465. [Google Scholar] [CrossRef]
- Shime, N.; Kosaka, T.; Fujita, N. De-escalation of antimicrobial therapy for bacteraemia due to difficult-to-treat Gram-negative bacilli. Infection 2013, 41, 203–210. [Google Scholar] [CrossRef]
- Zhu, M.; Pickens, C.I.; Markov, N.S.; Pawlowski, A.; Kang, M.; Rasmussen, L.V.; Walter, J.M.; Nadig, N.R.; Singer, B.D.; Wunderink, R.G.; et al. Antibiotic de-escalation patterns and outcomes in critically ill patients with suspected pneumonia as informed by bronchoalveolar lavage results. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ngiam, J.N.; Ling, V.; Koh, M.C.Y.; Farveen, M.N.F.R.; Choong, S.H.C.; Poon, L.M.M.; Koh, L.P.; Smitasin, N.; Lum, L.H. Reducing inappropriate antibiotic use in febrile neutropenia in hematology patients through the implementation of an antibiotic de-escalation protocol. Infect. Control. Hosp. Epidemiol. 2025, 16, 1–6. [Google Scholar] [CrossRef]
- Mathieu, C.; Pastene, B.; Cassir, N.; Martin-Loeches, I.; Leone, M. Efficacy and safety of antimicrobial de-escalation as a clinical strategy. Expert. Rev. Anti. Infect. Ther. 2019, 17, 79–88. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Escoresca-Ortega, A.; Fernández-Delgado, E. Antibiotic de-escalation in the ICU: How is it best done? Curr. Opin. Infect. Dis. 2015, 28, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.; Zahar, J.R.; Lesprit, P.; Ruppe, E.; Leone, M.; Chastre, J.; Lucet, J.C.; Paugam-Burtz, C.; Brun-Buisson, C.; Timsit, J.F.; et al. Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin. Microbiol. Infect. 2015, 21, e1–e10, Erratum in Clin. Microbiol. Infect. 2015, 21, e81. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Sun, A.Y.-E.; Narain, K.; Chang, W.-C.; Yang, C.; Chen, P.-H.; Jhou, H.-J.; Dai, M.-S.; Rastogi, N.; Lee, C.-H. Efficacy and safety of early antibiotic de-escalation in febrile neutropenia for patients with hematologic malignancy: A systematic review and meta-analysis. Antimicrob. Agents Chemother. 2025, 69, e0159724. [Google Scholar] [CrossRef]
- Tabah, A.; Bassetti, M.; Kollef, M.H.; Zahar, J.R.; Paiva, J.A.; Timsit, J.F.; Roberts, J.A.; Schouten, J.; Giamarellou, H.; Rello, J.; et al. Antimicrobial de-escalation in critically ill patients: A position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensive Care Med. 2020, 46, 245–265. [Google Scholar] [CrossRef]
- Schnell, D.; Montlahuc, C.; Bruneel, F.; Resche-Rigon, M.; Kouatchet, A.; Zahar, J.R.; Darmon, M.; Pene, F.; Lemiale, V.; Rabbat, A.; et al. De-escalation of antimicrobial therapy in critically ill haematology patients: A prospective cohort study. Intensive Care Med. 2019, 45, 743–745. [Google Scholar] [CrossRef]
- Lee, C.C.; Wang, J.L.; Lee, C.H.; Hung, Y.P.; Hong, M.Y.; Tang, H.J.; Ko, W.C. Clinical benefits of antimicrobial de-escalation in adults with community-onset monomicrobial Escherichia coli, Klebsiella species and Proteus mirabilis bacteraemia. Int. J. Antimicrob. Agents. 2017, 50, 371–376. [Google Scholar] [CrossRef]
- Ohji, G.; Doi, A.; Yamamoto, S.; Iwata, K. Is de-escalation of antimicrobials effective? A systematic review and meta-analysis. Int. J. Infect. Dis. 2016, 49, 71–79. [Google Scholar] [CrossRef]
- Lee, C.C.; Lee, N.Y.; Chen, P.L.; Hong, M.Y.; Chan, T.Y.; Chi, C.H.; Ko, W.C. Impact of antimicrobial strategies on clinical outcomes of adults with septic shock and community-onset Enterobacteriaceae bacteraemia: De-escalation is beneficial. Diagn. Microbiol. Infect. Dis. 2015, 82, 158–164. [Google Scholar] [CrossRef]
- Routsi, C.; Gkoufa, A.; Arvaniti, K.; Kokkoris, S.; Tourtoglou, A.; Theodorou, V.; Vemvetsou, A.; Kassianidis, G.; Amerikanou, A.; Paramythiotou, E.; et al. De-escalation of antimicrobial therapy in ICU settings with high prevalence of multidrug-resistant bacteria: A multicentre prospective observational cohort study in patients with sepsis or septic shock. J. Antimicrob. Chemother. 2020, 75, 3665–3674. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. MERINOTrial Investigators the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN) Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With Ecoli or Klebsiella pneumoniae Bloodstream Infection Ceftriaxone Resistance: ARandomized Clinical Trial. J. Am. Med. Assoc. 2018, 320, 984–994. [Google Scholar]
- Tabah, A.; Cotta, M.O.; Garnacho-Montero, J.; Schouten, J.; Roberts, J.A.; Lipman, J.; Tacey, M.; Timsit, J.F.; Leone, M.; Zahar, J.R.; et al. A Systematic Review of the Definitions, Determinants, and Clinical Outcomes of Antimicrobial De-escalation in the Intensive Care Unit. Clin. Infect. Dis. 2016, 62, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Schuts, E.C.; Hulscher, M.E.J.L.; Mouton, J.W.; Verduin, C.M.; Stuart, J.W.T.C.; Overdiek, H.W.P.M.; van der Linden, P.D.; Natsch, S.; Hertogh, C.M.P.M.; Wolfs, T.F.W.; et al. Current evidence on hospital antimicrobial stewardship objectives: A systematic review and meta-analysis. Lancet Infect. Dis. 2016, 16, 847–856, Erratum in: Lancet Infect. Dis. 2016, 16, 768. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Maeda, M.; Yokoe, T.; Hashiguchi, M.; Togashi, M.; Ishino, K. Impact of the multidisciplinary antimicrobial stewardship team intervention focusing on carbapenem de-escalation: A single-centre and interrupted time series analysis. Int. J. Clin. Pract. 2021, 75, e13693. [Google Scholar] [CrossRef] [PubMed]
- Trupka, T.; Fisher, K.; Micek, S.T.; Juang, P.; Kollef, M.H. Enhanced antimicrobial de-escalation for pneumonia in mechanically ventilated patients: A cross-over study. Crit. Care. 2017, 21, 180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kapmaz, M.; Keske, Ş.; Tekin, S.; Dogan, O.; Dikenelli, B.E.; Atac, N.; Vatansever, C.; Albayrak, O.; Akbulut, Z.; Madran, B.; et al. Antibiotic de-escalation opportunities and predictors of fatality in Gram-negative bloodstream infections in Turkey. In Proceedings of the 29th European Congress of Clinical Microbiology and Infectious Diseases, Amsterdam, The Netherlands, 13–16 April 2019; p. 94. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing E (2016) Recommendations for MIC Determination of Colistin (polymyxin E) as Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. Available online: https://www.researchgate.net/publication/322835171_mcr-1_Carbapenemase-Producing_Klebsiella_pneumoniae_in_Hospitalized_Patients_Portugal_September_2016-February_2017/fulltext/5ac1256aa6fdcccda65de596/mcr-1-Carbapenemase-Producing-Klebsiella-pneumoniae-in-Hospitalized-Patients-Portugal-September-2016-February-2017.pdf (accessed on 13 April 2020).
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. DiagnMicrobiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
De-escalation Performed (ADE) n = 43 Episodes (%) | No De-Escalation Performed (No ADE) n = 230 Episodes (%) | ADE Missed Opportunity n = 101 Episodes (%) | p ADE vs. No-ADE | p ADE vs. ADE Missed Opportunity | |
---|---|---|---|---|---|
Older age, >65 years | 23 (53.4) | 133 (57.8) | 54 (53.4) | 0.598 | 0.998 |
Mean age | 63.1 (sd: 18) | 65.3 (sd: 17) | 64.2 (sd: 17.8) | 0.456 | 0.629 |
Gender, male | 17 (59) | 124 (54) | 55 (54.4) | 0.103 | 0.123 |
Days from admission to isolation | 5.7 (sd: 17) | 14.3 (sd: 31) | 14.6 (sd: 42.5) | 0.089 | 0.903 |
Length of stay | 31.3 (sd: 117) | 32.9 (sd: 39) | 32.9 (46.7) | 0.865 | 0.545 |
Body mass index | 27.6 (sd: 6.6) | 25.4 (sd: 5.7) | 25.4 (sd: 5.7) | 0.027 | 0.024 |
Days between the isolation of bacteria (day 0) and ADE (mean) | 5.1 | ||||
Days to initiate appropriate therapy after bacteremia onset | 0.39 (sd: 0.1) | 0.88 (sd: 1.6) | 0.29 (sd: 0.1) | 0.059 | 0.275 |
Duration of antibiotics therapy | 10.6 (sd: 3.5) | 13.3 (sd: 6.9) | 14.61 | 0.014 | 0.999 |
Comorbidities | 34 (79) | 216 (94) | 98 | 0.001 | <0.001 |
Diabetes mellitus | 9 (21) | 60 (26) | 28 (27.7) | 0.475 | 0.393 |
Chronic obstructive pulmonary disease | 2 (4.6) | 10 (4.3) | 6 (5.9) | 0.929 | 0.757 |
Chronic renal disease | 5 (11.6) | 46 (20) | 18 (17.8) | 0.196 | 0.353 |
Hematologic malignancy | 4 (9.3) | 47 (20.4) | 25 (24.7) | 0.086 | 0.034 |
Neutropenia | 3 (7) | 43 (18.7) | 24 (23.7) | 0.060 | 0.018 |
Solid organ tumor | 17 (39.5) | 104 (45.2) | 41 (40.5) | 0.491 | 0.906 |
Solid organ transplantation | 2 (4.6) | 5 (2.1) | 2 (2) | 0.346 | 0.372 |
Bone marrow transplantation (autologous and allogeneic) | 0 (0) | 7 (3) | 4 (4) | 0.384 | 0.353 |
Healthcare-associated infection | 15 (34.9) | 144 (62.6) | 54 (53.5) | 0.001 | 0.041 |
Secondary bacteremia | 40 (93) | 197 (85.6) | 84 (83.1) | 0.190 | 0.118 |
Abdominal | 9 (21) | 36 (15.6) | 14 (13.8) | 0.392 | 0.289 |
Pulmonary | 1 (2.3) | 29 (12.6) | 10 (9.9) | 0.048 | 0.117 |
Urinary | 19 (44.1) | 55 (23.9) | 29 (28.7) | 0.006 | 0.071 |
Catheter-related | 4 (9.3) | 36 (15.6) | 14 (13.8) | 0.280 | 0.449 |
Wound | 0 (0) | 8 (3.4) | 3 (2.9) | 0.214 | 0.253 |
History of hospital stay in previous 3 months | 19 (44.1) | 148 (64.3) | 66 (65.3) | 0.013 | 0.018 |
Mechanical ventilation | 0 (0) | 28 (12.1) | 7 (6.9) | 0.016 | 0.077 |
Major surgical intervention | 14 (32.5) | 88 (38.2) | 38 (37.6) | 0.478 | 0.562 |
Transfer to Intensive Care Unit | 4 (9.3) | 86 (37.3) | 35 (34.6) | <0.001 | 0.002 |
Polymicrobial bacteremia | 2 (4.6) | 11 (4.7) | 3 (2.9) | 0.970 | 0.614 |
Simultaneous infections other than bacteremia | 3 (6.9) | 44 (19.1) | 11 (10.9) | 0.053 | 0.468 |
Laboratory | |||||
Procalcitonin maximum (mg/dl) | 15 (sd: 23) | 16.6 (sd: 26.4) | 19 (sd: 27) | 0.710 | 0.413 |
CRP maximum (mg/dl) | 196 (sd: 96) | 197 (sd: 111) | 211 (sd: 111) | 0.988 | 0.458 |
Leucocyte maximum (/μL) | 11,759 (sd: 6585) | 13,104 (sd: 12,089) | 12,716 (sd: 12,556) | 0.478 | 0.683 |
Creatinine maximum (mg/dl) | 1.1 (sd: 0.7) | 1.47 (sd: 1.5) | 1.5 (1.6) | 0.149 | 0.153 |
Isolated bacteria | |||||
Escherichia coli (n = 82) | 31 (72) | 100 (43.4) | 51 (50.5) | 0.001 | 0.017 |
Klebsiella pneumoniae (n = 37) | 6 (14) | 58 (25.2) | 31 (30.7) | 0.110 | 0.035 |
Acinetobacter sp (n = 15) | 0 (0) | 15 (6.5) | 0 (0) | 0.085 | NA |
Pseudomonas aeruginosa (n = 11) | 1 (2.3) | 29 (12.6) | 5 (4.9) | 0.048 | 0.471 |
Empirical use of meropenem | 20 (46.5) | 127 (55.2) | 63 (62.3) | 0.293 | 0.078 |
Empirical use of ertapenem | 12 (28) | 17 (7.3) | 5 (4.9) | <0.001 | <0.001 |
Empirical use of 3rd gen cephalosporin | 1 (2.3) | 12 (5.2) | 4 (4) | 0.414 | 0.624 |
Empirical use of piperacillin–tazobactam | 10 (23.2) | 61 (26.5) | 28 (27.7) | 0.654 | 0.578 |
Presence of ESBL | 4 (9.3) | 75 (32.6) | 28 (27.7) | <0.001 | 0.015 |
Presence of carbapenemase | 0 (0) | 32 (13.9) | 0 (0) | 0.009 | -- |
Presence of colistin resistance | 2 (4.6) | 27 (11.7) | 0 (0) | 0.166 | -- |
MLST type for E.coli (ST131) | 5 (11.6) | 20 (8.7) | 13 (12.8) | 0.541 | 0.836 |
Fatality | 4 (9.3) | 60 (26) | 26 (25.7) | 0.017 | 0.026 |
Univariate Analysis | Multivariate Analysis | |||||
OR | CI | p | OR | CI | p | |
Body mass index | 1.05 | 1.01–1.11 | 0.031 | 1.05 | 0.99–1.11 | 0.104 |
Healthcare-associated infection | 0.32 | 0.16–0.63 | 0.001 | 0.58 | 0.25–1.32 | 0.193 |
Escherichia coli | 3.36 | 1.64–6.87 | 0.001 | 3.78 | 1.64–8.75 | 0.002 |
Empirical use of ertapenem | 4.85 | 2.11–11.11 | <0.001 | 3.83 | 1.4–10.5 | 0.009 |
ESBL | 0.21 | 0.07–0.62 | 0.004 | 0.15 | 0.05–0.49 | 0.002 |
Fatality | 0.29 | 0.1–0.85 | 0.024 | 0.36 | 0.11–1.13 | 0.08 |
Univariate Analysis | Multivariate Analysis | |||||
OR | CI | p | OR | CI | p | |
Escherichia coli | 0.4 | 0.18–0.85 | 0.018 | 0.24 | 0.09–0.61 | 0.003 |
Hematological malignancy | 3.2 | 1.05–9.87 | 0.042 | 4.4 | 1.24–15.9 | 0.022 |
Empirical use of ertapenem | 0.13 | 0.04–0.41 | <0.001 | 0.17 | 0.05–0.67 | 0.011 |
ESBL | 3.7 | 1.22–11.43 | 0.021 | 6.2 | 1.76–22.2 | 0.005 |
Hospital-acquired infection | 2.1 | 1.0–4.5 | 0.043 | 0.87 | 0.34–2.21 | 0.776 |
Fatality | 3.4 | 1.1–10.4 | 0.033 | 2.45 | 0.7–8.6 | 0.161 |
Prior hospitalization | 2.4 | 1.15–4.93 | 0.019 | 1.98 | 0.85–4.64 | 0.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapmaz, M.; Keske, Ş.; Tekin, S.; Doğan, Ö.; İrkören, P.; Ataç, N.; Vatansever, C.; Albayrak, Ö.; Genç, Z.; Madran, B.; et al. The Analysis of Missed Antibiotic De-Escalation Opportunities in Gram-Negative Bloodstream Infections. Antibiotics 2025, 14, 800. https://doi.org/10.3390/antibiotics14080800
Kapmaz M, Keske Ş, Tekin S, Doğan Ö, İrkören P, Ataç N, Vatansever C, Albayrak Ö, Genç Z, Madran B, et al. The Analysis of Missed Antibiotic De-Escalation Opportunities in Gram-Negative Bloodstream Infections. Antibiotics. 2025; 14(8):800. https://doi.org/10.3390/antibiotics14080800
Chicago/Turabian StyleKapmaz, Mahir, Şiran Keske, Süda Tekin, Özlem Doğan, Pelin İrkören, Nazlı Ataç, Cansel Vatansever, Özgür Albayrak, Zeliha Genç, Bahar Madran, and et al. 2025. "The Analysis of Missed Antibiotic De-Escalation Opportunities in Gram-Negative Bloodstream Infections" Antibiotics 14, no. 8: 800. https://doi.org/10.3390/antibiotics14080800
APA StyleKapmaz, M., Keske, Ş., Tekin, S., Doğan, Ö., İrkören, P., Ataç, N., Vatansever, C., Albayrak, Ö., Genç, Z., Madran, B., Dönmez, H. E., Özer, B., Aksu, E. D., Başkurt, D., Berkkan, M., Güldan, M., Bakır, V. O., Gönen, M., Can, F., & Ergönül, Ö. (2025). The Analysis of Missed Antibiotic De-Escalation Opportunities in Gram-Negative Bloodstream Infections. Antibiotics, 14(8), 800. https://doi.org/10.3390/antibiotics14080800