The Changing Landscape of Antibiotic Treatment: Reevaluating Treatment Length in the Age of New Agents
Abstract
1. Introduction
2. Pharmacokinetic and Pharmacodynamic Considerations
Antimicrobial Class | Example Agents | Key PK/PD Characteristics | Potential Impact on Therapy Duration | Additional Notes |
---|---|---|---|---|
Lipoglycopeptides [57] | Dalbavancin, Oritavancin | Long half-life (>7 days), sustained drug exposure, high tissue penetration | Enables single-dose or infrequent dosing, reducing treatment duration | Useful in outpatient settings (e.g., OPAT) |
Novel Cephalosporins [58] | Ceftolozane-Tazobactam, Ceftazidime-Avibactam, Cefiderocol, Cefepime-enmetazobactam, Ceftobiprole | Enhanced activity against MDR organisms, high tissue concentrations, stability against beta-lactamases | May allow shorter therapy durations for MDR infections, particularly in pneumonia and complicated UTI | Cefiderocol has activity against carbapenem-resistant Gram-negative bacteria |
Long-Acting Aminoglycosides [59] | Liposomal Amikacin, Plazomicin | Improved intracellular penetration, prolonged drug release, and concentration-dependent killing | Higher AUC/MIC ratios enable reduced dosing frequency | Suitable for nosocomial pneumonia and ventilator-associated pneumonia |
Beta-Lactam/Beta-Lactamase Inhibitors [60,61] | Meropenem-Vaborbactam, Imipenem-Relebactam | Broad-spectrum activity, effective against carbapenem-resistant pathogens | Potential to shorten therapy for multidrug-resistant infections | Enhanced stability against serine beta-lactamases |
Fluoroquinolones [62] | Delafloxacin | Dual activity against Gram-positive and Gram-negative bacteria, high intracellular penetration | Potentially shorter therapy in pneumonia and SSTIs | Lower risk of resistance development compared to other fluoroquinolones |
Pharmacodynamic Index | Definition | Importance of Novel Agents | Clinical Implications |
---|---|---|---|
T > MIC (Time above MIC) | Duration drug concentration remains above MIC | Essential for time-dependent antibiotics (e.g., beta-lactams, lipoglycopeptides) | Higher values correlate with improved bacterial eradication |
AUC/MIC (Area under the Curve to MIC Ratio) | Total drug exposure relative to MIC | Critical for concentration-dependent antibiotics (e.g., aminoglycosides, fluoroquinolones) | Optimizing this ratio allows for extended dosing intervals |
Post-Antibiotic Effect (PAE) | Suppression of bacterial growth post-exposure | Longer PAE allows for extended dosing intervals and shorter courses | Important for aminoglycosides and fluoroquinolones, reducing toxicity risks |
Cmax/MIC (Peak Concentration to MIC Ratio) | The ratio of maximum serum concentration to MIC | The key for concentration-dependent antibiotics (e.g., aminoglycosides) | Higher peaks enhance bacterial killing and reduce resistance development |
3. Key Points
3.1. Novel Antimicrobials
- The pharmacokinetics and pharmacodynamics of new antimicrobials often differ significantly from traditional agents. For example, some exhibit prolonged post-antibiotic effects, allowing for less frequent dosing and potentially shorter treatment durations.
- Long-acting formulations, such as lipoglycopeptides and long-acting liposomal aminoglycosides, provide sustained drug concentrations, potentially enabling shorter treatment courses for certain infections.
3.2. Pharmacodynamic Indices
- Optimizing antimicrobial therapy requires a thorough understanding of pharmacodynamic indices, such as the ratio of the area under the concentration-time curve to the minimum inhibitory concentration (AUC/MIC) and the time above the MIC.
- These indices can guide the selection of appropriate dosing regimens and inform decisions regarding treatment duration.
3.3. Clinical Implications
4. Key Points
4.1. Infection-Specific Considerations
- The optimal duration of antimicrobial therapy differs according to the type and severity of infection, the pathogen involved, and the patient’s underlying health status.
- For certain infections, such as uncomplicated urinary tract infections and some skin and soft tissue infections, shorter treatment courses are non-inferior to longer courses.
4.2. Antimicrobial Stewardship
- Shortening antimicrobial therapy duration is a key component of antimicrobial stewardship programs, which aim to optimize antimicrobial use and minimize the development of resistance.
- De-escalation strategies, such as transitioning from intravenous to oral therapy and shortening treatment duration based on clinical response, can help reduce unnecessary antimicrobial exposure.
4.3. Long-Acting Antimicrobials
- The use of long-acting antimicrobials may allow for outpatient parenteral antimicrobial therapy (OPAT) in patients who would otherwise require prolonged hospitalization.
- This approach can improve patient quality of life, reduce healthcare costs, and minimize the risk of hospital-acquired infections.
5. Challenges and Future Directions
6. Key Points
6.1. Clinical Trials
- Well-designed clinical trials are needed to evaluate the safety and efficacy of shortened antimicrobial therapy durations with novel agents.
- These trials should incorporate pharmacokinetic and pharmacodynamic data, as well as clinical outcomes, to inform optimal treatment strategies.
6.2. Personalized Medicine
- The future of antimicrobial therapy lies in personalized medicine, where treatment decisions are tailored to the individual patient.
- This approach requires the integration of clinical, microbiological, and pharmacokinetic data to optimize treatment duration and minimize the risk of adverse events.
6.3. Antimicrobial Resistance
- Careful monitoring of antimicrobial resistance patterns is crucial to ensure that shortened treatment courses do not contribute to the emergence of resistance.
- Antimicrobial stewardship programs play a vital role in preventing the spread of resistance.
6.4. Leveraging Artificial Intelligence to Optimize and Abbreviate Antimicrobial Therapy
7. Key Points
7.1. Data-Driven Personalization
- AI enables personalized treatment by analyzing vast EHR data and tailoring antibiotic durations to individual patient profiles.
- Machine learning algorithms predict treatment response, identifying patients suitable for shorter antibiotic courses.
- AI refines antibiotic dosing through PK/PD analysis, ensuring optimal drug exposure and minimizing toxicity.
- AI aids in interpreting complex microbiological data, facilitating rapid pathogen identification and resistance detection.
7.2. Real-Time Monitoring
- AI monitors treatment response via wearable sensors and devices, enabling timely intervention and preventing complications.
- AI optimizes antibiotic use in stewardship programs, promoting de-escalation and duration reduction.
7.3. Data Quality and Validation
- High-quality data and rigorous clinical trial validation are essential for safe and effective AI implementation.
- The use of AI requires the integration of many medical data sources and the use of a multidisciplinary team.
- AI is the future of medicine, and its use will increase, especially in the field of infectious disease.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Al Musawa, M.; Bleick, C.R.; Herbin, S.R. Aztreonam–avibactam: The dynamic duo against multidrug-resistant gram-negative pathogens. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2024, 44, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Pea, F. Pharmacokinetic/pharmacodynamic issues for optimizing treatment with beta-lactams of Gram-negative infections in critically ill orthotopic liver transplant recipients: A comprehensive review. Front. Antibiot. 2024, 3, 1426753. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Tenorio, C.; Bou, G.; Oliver, A. The Challenge of Treating Infections Caused by Metallo-β-Lactamase–Producing Gram-Negative Bacteria: A Narrative Review. Drugs 2024, 84, 1519–1539. [Google Scholar] [CrossRef] [PubMed]
- Heimann, D.; Kohnhäuser, D.; Kohnhäuser, A.J. Antibacterials with Novel Chemical Scaffolds in Clinical Development. Drugs 2025, 85, 293–323. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Tan, W.C.; Cooper, B.S. Antibiotic duration for common bacterial infections—A systematic review. JAC-Antimicrob. Resist. 2024, 7, dlae215. [Google Scholar] [CrossRef] [PubMed]
- Shim, H. Three Innovations of Next-Generation Antibiotics: Evolvability, Specificity, and Non-Immunogenicity. Antibiotics 2023, 12, 204. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Russo, A.; Pompeo, M.E. Retrospective case–control analysis of patients with staphylococcal infections receiving daptomycin or glycopeptide therapy. Int. J. Antimicrob. Agents 2012, 39, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, G.; Falcone, M. The future approach for the management of acute bacterial skin and skin structure infections. Curr. Opin. Infect. Dis. 2025, 38, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, B.; Rice, L.B. Duration of Antibiotic Therapy: Shorter Is Better. Ann. Intern. Med. 2019, 171, 210–211. [Google Scholar] [CrossRef] [PubMed]
- Campos, T.V.d.O.; de Andrade, M.A.P.; Perucci, M.d.O.e.B. The duration of antibiotic therapy for fracture related infection does not affect recurrence but leads to increased adverse effects: A comparison among 6, 12 and 24 weeks of treatment. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 3995–4000. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, V.M.; Flanders, S.A.; Snyder, A. Excess Antibiotic Treatment Duration and Adverse Events in Patients Hospitalized With Pneumonia. Ann. Intern. Med. 2019, 171, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Rossolini, G.M.; Pea, F. The role of dalbavancin in the treatment of acute bacterial skin and skin structure infections (ABSSSIs). Expert Rev. Anti-Infect. Ther. 2020, 18, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Aldieri, C.; Cattelan, A. Efficacy and safety of dalbavancin in the treatment of acute bacterial skin and skin structure infections (ABSSSIs) and other infections in a real-life setting: Data from an Italian observational multicentric study (DALBITA study). Expert. Rev. Anti-Infect. Ther. 2020, 18, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Stroffolini, G.; De Nicolò, A.; Gaviraghi, A. Clinical Effectiveness and Pharmacokinetics of Dalbavancin in Treatment-Experienced Patients with Skin, Osteoarticular, or Vascular Infections. Pharmaceutics 2022, 14, 1882. [Google Scholar] [CrossRef] [PubMed]
- Watkins, R.R.; Lemonovich, T.L.; Vila, A.J. Cefepime-Taniborbactam—A Novel Combination Therapy for Multidrug-Resistant Pathogens. J. Infect. Dis. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Fouad, A.; Bobenchik, A.M.; Chamberland, R. Activity of novel ceftibuten-avibactam, ceftazidime-avibactam, and comparators against a challenge set of Enterobacterales from outpatient centers and nursing homes across the United States (2022–2024). Antimicrob. Agents Chemother. 2025, 69, e0186724. [Google Scholar] [CrossRef] [PubMed]
- Baklouti, S.; Mané, C.; Bennis, Y. Ceftobiprole in Critically Ill Patients: Proposal for New Dosage Regimens. Ther. Drug Monit. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Lee, T.C.; Prosty, C.J.; Fralick, M. Seven vs Fourteen Days of Antibiotics for Gram-Negative Bloodstream Infection. JAMA Netw. Open 2025, 8, e251421. [Google Scholar] [CrossRef] [PubMed]
- Daneman, N.; Rishu, A.; Pinto, R. Antibiotic Treatment for 7 versus 14 Days in Patients with Bloodstream Infections. N. Engl. J. Med. 2025, 392, 1065–1078. [Google Scholar] [CrossRef] [PubMed]
- Gajdos, L.; Buetti, N.; Tabah, A. Shortening antibiotic therapy duration for hospital-acquired bloodstream infections in critically ill patients: A causal inference model from the international EUROBACT-2 database. Intensiv. Care Med. 2025, 51, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of cefiderocol- vs colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int. J. Antimicrob. Agents 2023, 62, 106825. [Google Scholar] [CrossRef] [PubMed]
- de Pablo-Miró, M.; Pujol-Ruiz, S.; Iftimie, S. Comparative Analysis of Dalbavancin versus Other Antimicrobial Options for Gram-Positive Cocci Infections: Effectiveness, Hospital Stay and Mortality. Antibiotics 2021, 10, 1296. [Google Scholar] [CrossRef] [PubMed]
- Papavramidis, T.; Gentile, I.; Cattelan, A.M. REDS study: Retrospective effectiveness study of dalbavancin and other standard of care of the same IV antibiotic class in patients with ABSSSI. Int. J. Antimicrob. Agents 2023, 61, 106746. [Google Scholar] [CrossRef] [PubMed]
- Serapide, F.; Guastalegname, M.; Gullì, S.P. Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence. Antibiotics 2024, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K.; Hussein, S.; Qurbani, K. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Antimicrobial Stewardship Programmes in Health-Care Facilities in Low- and Middle-Income Countries. A Practical Toolkit; World Health Organization: Geneva, Switzerland, 2019; Licence: CC BY-NC-SA 3.0 IGO.
- Bassetti, M.; Russo, A.; Carnelutti, A. Antimicrobial resistance and treatment: An unmet clinical safety need. Expert Opin. Drug Saf. 2018, 17, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Yamin, D.; Uskoković, V.; Wakil, A. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics 2023, 13, 3246. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, M.S.; Nazari, M.; Hatamkhani, S. Enhancing antibiotic therapy through comprehensive pharmacokinetic/pharmacodynamic principles. Front. Cell. Infect. Microbiol. 2025, 15, 1521091. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.R. Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. Clin. Microbiol. Infect. 2001, 7, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Pontali, E.; Baiardi, G.; Del Puente, F. Long-Acting Antibiotics: New Opportunities Beyond Acute Bacterial Skin and Skin Structure Infections (ABSSSIs)! Antibiotics 2025, 14, 164. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Alffenaar, J.W.C.; Bassetti, M. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper#. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef] [PubMed]
- Durante-Mangoni, E.; Gambardella, M.; Iula, V.D. Current trends in the real-life use of dalbavancin: Report of a study panel. Int. J. Antimicrob. Agents 2020, 56, 106107. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.S.; Frei, C.R.; Lewis, J.S. The contribution of pharmacokinetic–pharmacodynamic modelling with Monte Carlo simulation to the development of susceptibility breakpoints for Neisseria meningitidis. Clin. Microbiol. Infect. 2007, 13, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Póvoa, P.; Moniz, P.; Pereira, J.G. Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms 2021, 9, 1401. [Google Scholar] [CrossRef] [PubMed]
- Levison, M.E.; Levison, J.H. Pharmacokinetics and Pharmacodynamics of Antibacterial Agents. Infect. Dis. Clin. N. Am. 2009, 23, 791–815. [Google Scholar] [CrossRef] [PubMed]
- Scaglione, F.; Mouton, J.W.; Mattina, R. Pharmacodynamics of Levofloxacin and Ciprofloxacin in a Murine Pneumonia Model: Peak Concentration/MIC versus Area under the Curve/MIC Ratios. Antimicrob. Agents Chemother. 2003, 47, 2749–2755. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.H. Application of fluoroquinolone pharmacodynamics. J. Antimicrob. Chemother. 2000, 46, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Reza, N.; Gerada, A.; Stott, K.E. Challenges for global antibiotic regimen planning and establishing antimicrobial resistance targets: Implications for the WHO Essential Medicines List and AWaRe antibiotic book dosing. Clin. Microbiol. Rev. 2024, 37, e0013923. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, A.; Chaudhari, B.B.; Chaudhari, P. In vitro antibacterial activity and in vivo pharmacokinetics of intravenously administered Amikacin-loaded Liposomes for the management of bacterial septicaemia. Colloids Surf. B Biointerfaces 2022, 220, 112892. [Google Scholar] [CrossRef] [PubMed]
- Bissantz, C.; Zampaloni, C.; David-Pierson, P. Translational PK/PD for the Development of Novel Antibiotics—A Drug Developer’s Perspective. Antibiotics 2024, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Odenholt, I.; Isaksson, B.; Nilsson, L. Postantibiotic and bactericidal effect of imipenem againstPseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 1989, 8, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Larosa, B.; Vena, A. Novel agents in development for the treatment of resistant Gram-negative infections. Expert. Rev. Anti Infect. Ther. 2024, 22, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Tilanus, A.; Drusano, G. Optimizing the Use of Beta-Lactam Antibiotics in Clinical Practice: A Test of Time. Open Forum Infect. Dis. 2023, 10, ofad305. [Google Scholar] [CrossRef] [PubMed]
- Roger, C. Understanding antimicrobial pharmacokinetics in critically ill patients to optimize antimicrobial therapy: A narrative review. J. Intensive Med. 2024, 4, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Kufel, W.D.; Abouelhassan, Y.; Steele, J.M. Plasma and cerebrospinal fluid concentrations of cefiderocol during successful treatment of carbapenem-resistant Acinetobacter baumannii meningitis. J. Antimicrob. Chemother. 2022, 77, 2737–2741. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Böhmdorfer, M.; Jäger, W. Insights into interspecies protein binding variability using clindamycin as an example. J. Antimicrob. Chemother. 2025, 80, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Röck, K.; Sahre, M. Effect of Protein Binding on the Pharmacological Activity of Highly Bound Antibiotics. Antimicrob. Agents Chemother. 2008, 52, 3994–4000. [Google Scholar] [CrossRef] [PubMed]
- Celestin, M.N.; Musteata, F.M. Impact of Changes in Free Concentrations and Drug-Protein Binding on Drug Dosing Regimens in Special Populations and Disease States. J. Pharm. Sci. 2021, 110, 3331–3344. [Google Scholar] [CrossRef] [PubMed]
- Ulldemolins, M.; Roberts, J.A.; Rello, J. The Effects of Hypoalbuminaemia on Optimizing Antibacterial Dosing in Critically Ill Patients. Clin. Pharmacokinet. 2011, 50, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Motta, S.S.; Cluzel, P.; Aldana, M. Adaptive Resistance in Bacteria Requires Epigenetic Inheritance, Genetic Noise, and Cost of Efflux Pumps. PLoS ONE 2015, 10, e0118464. [Google Scholar] [CrossRef] [PubMed]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D. Antibiotic Resistance in Bacteria-A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- CReygaert, W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, J.; Zhang, X. The Potential Impact of Antibiotic Exposure on the Microbiome and Human Health. Microorganisms 2025, 13, 602. [Google Scholar] [CrossRef] [PubMed]
- Mougiou, D.; Gioula, G.; Skoura, L. Insights into the Interaction Between Clostridioides difficile and the Gut Microbiome. J. Pers. Med. 2025, 15, 94. [Google Scholar] [CrossRef] [PubMed]
- Lathakumari, R.H.; Vajravelu, L.K.; Satheesan, A. Antibiotics and the gut microbiome: Understanding the impact on human health. Med. Microecol. 2024, 20, 100106. [Google Scholar] [CrossRef]
- Dorr, M.B.; Jabes, D.; Cavaleri, M. Human pharmacokinetics and rationale for once-weekly dosing of dalbavancin, a semi-synthetic glycopeptide. J. Antimicrob. Chemother. 2005, 55, ii25–ii30. [Google Scholar] [CrossRef] [PubMed]
- Corcione, S.; Lupia, T.; De Rosa, F.G. Novel Cephalosporins in Septic Subjects and Severe Infections: Present Findings and Future Perspective. Front. Med. 2021, 8, 617378. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Liang, B.; Zhang, G. Efficacy and Safety of Plazomicin in the Treatment of Enterobacterales Infections: A Meta-analysis of Randomized Controlled Trials. Open Forum Infect. Dis. 2022, 9, ofac429. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Giacobbe, D.R.; Vena, A. Meropenem–Vaborbactam for Treatment of Carbapenem-Resistant Enterobacterales: A Narrative Review of Clinical Practice Evidence. Infect. Dis. Ther. 2025, 14, 973–989. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Galani, I.; Daikos, G.L. Breaking Through Resistance: A Comparative Review of New Beta-Lactamase Inhibitors (Avibactam, Vaborbactam, Relebactam) Against Multidrug-Resistant Superbugs. Antibiotics 2025, 14, 528. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.X.; Huang, Y.H.; Kafauit, F. Pharmacokinetics and pharmacodynamics of intravenous delafloxacin in healthy subjects: Model-based dose optimization. Antimicrob. Agents Chemother. 2024, 68, e0042824. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, F.; Gaffin, N.; Davar, K. How to change the course: Practical aspects of implementing shorter is better. Clin. Microbiol. Infect. 2023, 29, 1402–1406. [Google Scholar] [CrossRef] [PubMed]
- Lutters, M.; Vogt-Ferrier, N.B. Antibiotic duration for treating uncomplicated, symptomatic lower urinary tract infections in elderly women. Cochrane Database Syst. Rev. 2008, 3, CD001535. [Google Scholar] [CrossRef] [PubMed]
- Milo, G.; Katchman, E.; Paul, M. Duration of antibacterial treatment for uncomplicated urinary tract infection in women. Cochrane Database Syst. Rev. 2005, 175, CD004682. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.; Gariani, K.; Richard, J.C. Moderate to Severe Soft Tissue Diabetic Foot Infections. Ann. Surg. 2022, 276, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Cranendonk, D.R.; Opmeer, B.C.; van Agtmael, M.A. Antibiotic treatment for 6 days versus 12 days in patients with severe cellulitis: A multicentre randomized, double-blind, placebo-controlled, non-inferiority trial. Clin. Microbiol. Infect. 2020, 26, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.J.; Fang, E.; Corey, G.R. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2014, 14, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Prokocimer, P.; De Anda, C.; Fang, E. Tedizolid Phosphate vs Linezolid for Treatment of Acute Bacterial Skin and Skin Structure Infections. JAMA 2013, 309, 559. [Google Scholar] [CrossRef] [PubMed]
- Hepburn, M.J.; Dooley, D.P.; Skidmore, P.J. Comparison of Short-Course (5 Days) and Standard (10 Days) Treatment for Uncomplicated Cellulitis. Arch. Intern. Med. 2004, 164, 1669. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.; Montero-Mateos, E.; Praena-Segovia, J. Seven-versus 14-day course of antibiotics for the treatment of bloodstream infections by Enterobacterales: A randomized, controlled trial. Clin. Microbiol. Infect. 2022, 28, 550–557. [Google Scholar] [CrossRef] [PubMed]
- von Dach, E.; Albrich, W.C.; Brunel, A.S. Effect of C-Reactive Protein–Guided Antibiotic Treatment Duration, 7-Day Treatment, or 14-Day Treatment on 30-Day Clinical Failure Rate in Patients With Uncomplicated Gram-Negative Bacteremia. JAMA 2020, 323, 2160. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Franceschini, E.; Koppel, F. Seven Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative Bacteremia: A Noninferiority Randomized Controlled Trial. Clin. Infect. Dis. 2019, 69, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Tansarli, G.S.; Andreatos, N.; Pliakos, E.E. A Systematic Review and Meta-analysis of Antibiotic Treatment Duration for Bacteremia Due to Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e02495-18. [Google Scholar] [CrossRef] [PubMed]
- Tansarli, G.S.; Mylonakis, E. Systematic Review and Meta-analysis of the Efficacy of Short-Course Antibiotic Treatments for Community-Acquired Pneumonia in Adults. Antimicrob. Agents Chemother. 2018, 62, e00635-18. [Google Scholar] [CrossRef] [PubMed]
- Pugh, R.; Grant, C.; Cooke, R.P. Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst. Rev. 2015, 2015, CD007577. [Google Scholar] [CrossRef] [PubMed]
- Llor, C.; Frimodt-Møller, N.; Miravitlles, M. Optimising antibiotic exposure by customising the duration of treatment for respiratory tract infections based on patient needs in primary care. eClinicalMedicine 2024, 74, 102723. [Google Scholar] [CrossRef] [PubMed]
- Sivanandy, P.; Manirajan, P.; Qi, O.W. A systematic review of efficacy and safety of newer drugs approved from 2016 to 2023 for the treatment of complicated urinary tract infections. Ann. Med. 2024, 56, 2403724. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.; Carrol, E.D.; Porter, D. Delivery, setting and outcomes of paediatric Outpatient Parenteral Antimicrobial Therapy (OPAT): A scoping review. BMJ Open 2018, 8, e021603. [Google Scholar] [CrossRef] [PubMed]
- Skogen, V.; Helleren, R.; Jacobsen, M.G. Outpatient parenteral antimicrobial therapy (OPAT) using a continuous ambulatory delivery device (CADD) allowing treatment with multiple daily doses: A brief report of a Norwegian experience. JAC-Antimicrob. Resist. 2024, 6, dlae155. [Google Scholar] [CrossRef] [PubMed]
- Wolie, Z.T.; Roberts, J.A.; Gilchrist, M. Current practices and challenges of outpatient parenteral antimicrobial therapy: A narrative review. J. Antimicrob. Chemother. 2024, 79, 2083–2102. [Google Scholar] [CrossRef] [PubMed]
- Steuber, T.D.; Gipson, H.; Boyett, B. Head-to-head comparison of multi-dose oritavancin and dalbavancin for complicated infections: A propensity score-matched analysis. Int. J. Antimicrob. Agents 2024, 63, 107165. [Google Scholar] [CrossRef] [PubMed]
- Micheli, G.; Chiuchiarelli, M.; Taccari, F. The role of long-acting antibiotics in the clinical practice: A narrative review. Infez. Med. 2023, 31, 449–465. [Google Scholar] [CrossRef] [PubMed]
- Tinker, N.J.; Foster, R.A.; Webb, B.J. Interventions to optimize antimicrobial stewardship. Antimicrob. Steward. Healthc. Epidemiol. 2021, 1, e46. [Google Scholar] [CrossRef] [PubMed]
- Bork, J.T.; Heil, E.L.; Berry, S. Dalbavancin Use in Vulnerable Patients Receiving Outpatient Parenteral Antibiotic Therapy for Invasive Gram-Positive Infections. Infect. Dis. Ther. 2019, 8, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Imlay, H.; Laundy, N.C.; Forrest, G.N. Shorter antibiotic courses in the immunocompromised: The impossible dream? Clin. Microbiol. Infect. 2023, 29, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Leekha, S.; Terrell, C.L.; Edson, R.S. General Principles of Antimicrobial Therapy. Mayo Clin. Proc. 2011, 86, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Lee, H. Procalcitonin as a biomarker of infectious diseases. Korean J. Intern. Med. 2013, 28, 285. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Russo, A.; Righi, E. Role of procalcitonin in bacteremic patients and its potential use in predicting infection etiology. Expert. Rev. Anti Infect. Ther. 2019, 17, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Müeller, B. Procalcitonin in critically ill patients: Time to change guidelines and antibiotic use in practice. Lancet Infect. Dis. 2016, 16, 758–760. [Google Scholar] [CrossRef] [PubMed]
- De Waele, J.J.; Schouten, J.; Beovic, B. Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: No simple answers to simple questions—A viewpoint of experts. Intensive Care Med. 2020, 46, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, S.; Tschudin-Sutter, S.; Egli, A. Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur. J. Intern. Med. 2022, 99, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S.; Henderson, I.R.; Capon, R.J. Antibiotics in the clinical pipeline as of December 2022. J. Antibiot. 2023, 76, 431–473. [Google Scholar] [CrossRef] [PubMed]
- Butranova, O.I.; Ushkalova, E.A.; Zyryanov, S.K. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023, 11, 1633. [Google Scholar] [CrossRef] [PubMed]
- Ngcobo, N.N. Influence of Ageing on the Pharmacodynamics and Pharmacokinetics of Chronically Administered Medicines in Geriatric Patients: A Review. Clin. Pharmacokinet. 2025, 64, 335–367. [Google Scholar] [CrossRef] [PubMed]
- Moser, C.; Lerche, C.J.; Thomsen, K. Antibiotic therapy as personalized medicine–general considerations and complicating factors. APMIS 2019, 127, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Reszetnik, G.; Hammond, K.; Mahshid, S. Next-generation rapid phenotypic antimicrobial susceptibility testing. Nat. Commun. 2024, 15, 9719. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.J.; Andini, N.; Hsieh, K. Emerging Analytical Techniques for Rapid Pathogen Identification and Susceptibility Testing. Annu. Rev. Anal. Chem. 2019, 12, 41–67. [Google Scholar] [CrossRef] [PubMed]
- van Belkum, A.; Bachmann, T.T.; Lüdke, G. Developmental roadmap for antimicrobial susceptibility testing systems. Nat. Rev. Microbiol. 2019, 17, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Infectious Diseases Society of America (I.D.S.A.); Spellberg, B.; Blaser, M. Combating Antimicrobial Resistance: Policy Recommendations to Save Lives. Clin. Infect. Dis. 2011, 52 (Suppl. 5), S397–S428. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.X.; Chen, X.Y. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Cusumano, G.; Flores, G.A.; Venanzoni, R. The Impact of Antibiotic Therapy on Intestinal Microbiota: Dysbiosis, Antibiotic Resistance, and Restoration Strategies. Antibiotics 2025, 14, 371. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Falcone, M.; Fantoni, M. Risk factors and clinical outcomes of candidaemia in patients treated for Clostridium difficile infection. Clin. Microbiol. Infect. 2015, 21, 493.e1–493.e4. [Google Scholar] [CrossRef] [PubMed]
- Miethke, M.; Pieroni, M.; Weber, T. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef] [PubMed]
- Dutescu, I.A.; Hillier, S.A. Encouraging the Development of New Antibiotics: Are Financial Incentives the Right Way Forward? A Systematic Review and Case Study. Infect. Drug Resist. 2021, 14, 415–434. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Panteli, D.; van Kessel, R. Challenges and opportunities for incentivising antibiotic research and development in Europe. Lancet Reg. Health-Eur. 2023, 33, 100705. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, F.; Pinto, A.; Ricciardi, G.E. The Role of Artificial Intelligence and Machine Learning Models in Antimicrobial Stewardship in Public Health: A Narrative Review. Antibiotics 2025, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Bilal, H.; Khan, M.N.; Khan, S. The role of artificial intelligence and machine learning in predicting and combating antimicrobial resistance. Comput. Struct. Biotechnol. J. 2025, 27, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Visan, A.I.; Negut, I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life 2024, 14, 233. [Google Scholar] [CrossRef] [PubMed]
- Sjövall, F.; Lanckohr, C.; Bracht, H. What’s new in therapeutic drug monitoring of antimicrobials? Intensive Care Med. 2023, 49, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Maranchick, N.F.; Peloquin, C.A. Role of therapeutic drug monitoring in the treatment of multi-drug resistant tuberculosis. J. Clin. Tuberc. Other Mycobact. Dis. 2024, 36, 100444. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Norris, R.; Paterson, D.L. Therapeutic drug monitoring of antimicrobials. Br. J. Clin. Pharmacol. 2012, 73, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Russo, A.; Venditti, M. Optimizing antibiotic therapy of bacteremia and endocarditis due to staphylococci and enterococci: New insights and evidence from the literature. J. Infect. Chemother. 2015, 21, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolomeo, F.; Varisco, B.; Bartoletti, M. P11. Cefiderocol for Gram-negative infections: Comparing monotherapy and combination therapy in the multicenter CEFI-BAC study. JAC-Antimicrob. Resist. 2025, 7, dlaf046.011. [Google Scholar] [CrossRef]
- Hudu, S.A.; Alshrari, A.S.; Abu-Shoura, E.J.I. A Critical Review of the Prospect of Integrating Artificial Intelligence in Infectious Disease Diagnosis and Prognosis. Interdiscip. Perspect. Infect. Dis. 2025, 2025, 6816002. [Google Scholar] [CrossRef] [PubMed]
- Basubrin, O. Current Status and Future of Artificial Intelligence in Medicine. Cureus 2025, 17, e77561. [Google Scholar] [CrossRef] [PubMed]
- Ghayoor, A.; Kohan, H.G. Revolutionizing pharmacokinetics: The dawn of AI-powered analysis. J. Pharm. Pharm. Sci. 2024, 27, 12671. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Feldman, S.S. The Value of Electronic Health Records Since the Health Information Technology for Economic and Clinical Health Act: Systematic Review. JMIR Med. Inf. 2022, 10, e37283. [Google Scholar] [CrossRef] [PubMed]
- Serrano, D.R.; Luciano, F.C.; Anaya, B.J. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics 2024, 16, 1328. [Google Scholar] [CrossRef] [PubMed]
- Theodosiou, A.A.; Read, R.C. Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician. J. Infect. 2023, 87, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Njage, P.M.K.; Henri, C.; Leekitcharoenphon, P. Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next-Generation Sequencing Data. Risk Anal. 2019, 39, 1397–1413. [Google Scholar] [CrossRef] [PubMed]
- Sambarey, A.; Smith, K.; Chung, C. Integrative analysis of multimodal patient data identifies personalized predictors of tuberculosis treatment prognosis. iScience 2024, 27, 109025. [Google Scholar] [CrossRef] [PubMed]
- Branda, F.; Scarpa, F. Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare’s Future. Antibiotics 2024, 13, 502. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves Pereira, J.; Fernandes, J.; Mendes, T. Artificial Intelligence to Close the Gap between Pharmacokinetic/Pharmacodynamic Targets and Clinical Outcomes in Critically Ill Patients: A Narrative Review on Beta Lactams. Antibiotics 2024, 13, 853. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, P.; Ghorbani, A. Exploring the synergy of artificial intelligence in microbiology: Advancements, challenges, and future prospects. Comput. Struct. Biotechnol. Rep. 2024, 1, 100005. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Ahmed, S.; Aslam, M. Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation. Antibiotics 2023, 12, 523. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.A.; Gupta, M.K. Transforming Disease Surveillance through Artificial Intelligence. Indian J. Community Med. 2024, 49, 663–664. [Google Scholar] [CrossRef] [PubMed]
- Maleki Varnosfaderani, S.; Forouzanfar, M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering 2024, 11, 337. [Google Scholar] [CrossRef] [PubMed]
- Challener, D.W.; Fida, M.; Martin, P. Machine learning for adverse event prediction in outpatient parenteral antimicrobial therapy: A scoping review. J. Antimicrob. Chemother. 2024, 79, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Marra, A.R.; Langford, B.J.; Nori, P. Revolutionizing antimicrobial stewardship, infection prevention, and public health with artificial intelligence: The middle path. Antimicrob. Steward. Healthc. Epidemiol. 2023, 3, e219. [Google Scholar] [CrossRef] [PubMed]
- Harandi, H.; Shafaati, M.; Salehi, M. Artificial intelligence-driven approaches in antibiotic stewardship programs and optimizing prescription practices: A systematic review. Artif. Intell. Med. 2025, 162, 103089. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Bhattacharya, M.; Pal, S. From machine learning to deep learning: Advances of the recent data-driven paradigm shift in medicine and healthcare. Curr. Res. Biotechnol. 2024, 7, 100164. [Google Scholar] [CrossRef]
- Myllyaho, L.; Raatikainen, M.; Männistö, T. Systematic literature review of validation methods for AI systems. J. Syst. Softw. 2021, 181, 111050. [Google Scholar] [CrossRef]
- Carini, C.; Seyhan, A.A. Tribulations and future opportunities for artificial intelligence in precision medicine. J. Transl. Med. 2024, 22, 411. [Google Scholar] [CrossRef] [PubMed]
Infection Type | Traditional Duration | Evidence-Based Shortened Duration | Supporting Data |
---|---|---|---|
Uncomplicated UTI | 7–10 days | 3–5 days | Clinical trials suggest non-inferiority [65,66] |
Skin and Soft Tissue Infections | 10–14 days | 5–7 days | Rapid clinical response allows a shorter duration [67,68,69,70,71] |
Gram-Negative Bacteremia | 14 days | 7 days | Studies show equivalent efficacy [72,73,74,75] |
Hospital-Acquired Pneumonia (HAP) | 10–14 days | 7–8 days | Shorter courses reduce resistance [11,76] |
Intra-Abdominal Infections | 7–10 days | 4–6 days | De-escalation strategies allow early discontinuation [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] |
Strategy | Implementation | Expected Benefits | Key Considerations |
---|---|---|---|
De-escalation | The transition from broad to narrow-spectrum agents based on culture results | Reduces resistance, minimizes adverse effects | Requires rapid diagnostic testing |
Biomarker-Guided Therapy | Use of procalcitonin or CRP to tailor duration | Avoids unnecessarily prolonged therapy | Not always available in resource-limited settings |
Outpatient Parenteral Antimicrobial Therapy (OPAT) | Use of long-acting agents for outpatient management | Decreases hospital stay, improves patient convenience | Lipoglycopeptides are ideal for OPAT |
AI-Driven Decision Support | Machine learning models analysing EHRs to predict the optimal duration | Enhances precision in antibiotic selection and duration | Requires integration into clinical workflows |
Rapid Molecular Diagnostics | Faster pathogen identification and resistance profiling | Enables early de-escalation, preventing overtreatment | Adoption varies across healthcare settings |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serapide, F.; Rotundo, S.; Gallelli, L.; Palleria, C.; Colosimo, M.; Gullì, S.P.; Marcianò, G.; Russo, A. The Changing Landscape of Antibiotic Treatment: Reevaluating Treatment Length in the Age of New Agents. Antibiotics 2025, 14, 727. https://doi.org/10.3390/antibiotics14070727
Serapide F, Rotundo S, Gallelli L, Palleria C, Colosimo M, Gullì SP, Marcianò G, Russo A. The Changing Landscape of Antibiotic Treatment: Reevaluating Treatment Length in the Age of New Agents. Antibiotics. 2025; 14(7):727. https://doi.org/10.3390/antibiotics14070727
Chicago/Turabian StyleSerapide, Francesca, Salvatore Rotundo, Luca Gallelli, Caterina Palleria, Manuela Colosimo, Sara Palma Gullì, Gianmarco Marcianò, and Alessandro Russo. 2025. "The Changing Landscape of Antibiotic Treatment: Reevaluating Treatment Length in the Age of New Agents" Antibiotics 14, no. 7: 727. https://doi.org/10.3390/antibiotics14070727
APA StyleSerapide, F., Rotundo, S., Gallelli, L., Palleria, C., Colosimo, M., Gullì, S. P., Marcianò, G., & Russo, A. (2025). The Changing Landscape of Antibiotic Treatment: Reevaluating Treatment Length in the Age of New Agents. Antibiotics, 14(7), 727. https://doi.org/10.3390/antibiotics14070727