Antimicrobial and Antioxidant Activity of Essential Oils from Selected Pinus Species from Bosnia and Herzegovina
Abstract
1. Introduction
2. Chemical Composition of Essential Oils from Pinus Species
3. Antimicrobial Activity of Essential Oils of Pinus Species
4. Antioxidant Activity
5. Formulation Strategies
6. Toxicology Risk Assessment of Essential Oils
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parojčić, D.; Stupar, D. Istorijski osvrt na lekovito bilje i njegovu upotrebu u farmakologiji. Timočki Med. Glas. 2003, 28, 101–109. [Google Scholar]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- Weckesser, S.; Engel, K.; Simon-Haarhaus, B.; Wittmer, A.; Pelz, K.; Schempp, C.M.S. Screening of Plant Extract for Antimicrobial Activity against Bacteria and Yeast with Dermatological Relevance. Phytomedicine 2007, 14, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Mahmutović-Dizdarević, I.; Dizdar, M.; Salihović, M.; Jerković-Mujkić, A. Biljke: Izolacija i Identifikacija Antimikrobnih Spojeva; Prirodno-matematički fakultet Univerziteta u Sarajevu: Sarajevo, Bosnia and Herzegovina, 2022. [Google Scholar]
- Tadić, V.; Žugić, A.; Arsić, I. Multi-Target Herbal Preparations. In Supercritical CO2 Extraction and Its Applications; Roj, E., Ed.; Polish Foundations of the Opportunities Industralization Centers “OIC Poland”: Lublin, Poland, 2014; pp. 99–121. ISBN 978-83-86499-96-0. [Google Scholar]
- Mohamed, A.A.; Alotaibi, B.M. Essential Oils of Some Medicinal Plants and Their Biological Activities: A Mini Review. J. Umm Al-Qura Univ. Appll. Sci. 2023, 9, 40–49. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Machado, C.A.; Oliveira, F.O.; de Andrade, M.A.; Hodel, K.V.S.; Lepikson, H.; Machado, B.A.S. Steam Distillation for Essential Oil Extraction: An Evaluation of Technological Advances Based on an Analysis of Patent Documents. Sustainability 2022, 14, 7119. [Google Scholar] [CrossRef]
- Polatoğlu, K.; Karakoç, Ö.C. Chapter 5—Biologically Active Essential Oils against Stored Product Pests. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 39–59. ISBN 978-0-12-416641-7. [Google Scholar]
- Judzentiene, A.; Kupcinskiene, E. Chemical Composition on Essential Oils from Needles of Pinus Sylvestris L. Grown in Northern Lithuania. J. Essent. Oil Res. 2008, 20, 26–29. [Google Scholar] [CrossRef]
- Pezantes-Orellana, C.; German Bermúdez, F.; Matías De la Cruz, C.; Montalvo, J.L.; Orellana-Manzano, A. Essential Oils: A Systematic Review on Revolutionizing Health, Nutrition, and Omics for Optimal Well-Being. Front. Med. 2024, 11, 1337785. [Google Scholar] [CrossRef]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef]
- Antolak, H.; Kregiel, D. Food preservatives from plants. In Food Additives; Holban, A.M., Grumezescu, A.M., Eds.; InTech: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Vakil Asadollahei, M.; Tabatabaeian, J.; Yousefifard, M.; Mahdavi, S.M.E.; Sabagh Nekonam, M. Impact of Elicitors on Essential Oil Compositions and Phytochemical Constituents in Lavandula stoechas L. Plant Physiol. Biochem. 2023, 194, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Hegde, R.B.; Rao, A.S.; Poojary, R. Unlocking the Potential of Essential Oils in Aromatic Plants: A Guide to Recovery, Modern Innovations, Regulation and AI Integration. Planta 2025, 262, 6. [Google Scholar] [CrossRef] [PubMed]
- Šojić, B.; Milošević, S.; Savanović, D.; Zeković, Z.; Tomović, V.; Pavlić, B. Isolation, Bioactive Potential, and Application of Essential Oils and Terpenoid-Rich Extracts as Effective Antioxidant and Antimicrobial Agents in Meat and Meat Products. Molecules 2023, 28, 2293. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.R.T.S.; Périno, S.; Fernandez, X.; Cunha, C.; Rodrigues, M.; Ribeiro, M.P.; Jordao, L.; Silva, L.A.; Rodilla, J.; Coutinho, P.; et al. Solvent-Free Microwave Extraction of Thymus mastichina Essential Oil: Influence on Their Chemical Composition and on the Antioxidant and Antimicrobial Activities. Pharmaceuticals 2021, 14, 709. [Google Scholar] [CrossRef]
- Stashenko, E.; Martínez, J.R. Essential Oils and the Circular Bioeconomy. In Essential Oils—Sources, Extraction and Applications; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Zulaica-Villagomez, H.; Peterson, D.; Herrin, L.; Young, R.A. Antioxidant Activity of Different Components of Pine Species. Holzforschung 2005, 59, 156–162. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, Z.; Li, Z. Chemical Composition and Antioxidant Activity of Essential Oil of Six Pinus Taxa Native to China. Molecules 2015, 20, 9380–9392. [Google Scholar] [CrossRef]
- Maury, G.L.; Rodríguez, D.M.; Hendrix, S.; Arranz, J.C.E.; Boix, Y.F.; Pacheco, A.O.; Díaz, J.G.; Morris-Quevedo, H.J.; Dubois, A.F.; Aleman, E.I.; et al. Antioxidants in Plants: A Valorization Potential Emphasizing the Need for the Conservation of Plant Biodiversity in Cuba. Antioxidants 2020, 9, 1048. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef]
- Zeb, U.; Wang, X.; AzizUllah, A.; Fiaz, S.; Khan, H.; Ullah, S.; Ali, H.; Shahzad, K. Comparative Genome Sequence and Phylogenetic Analysis of Chloroplast for Evolutionary Relationship among Pinus Species. Saudi J. Biol. Sci. 2022, 29, 1618–1627. [Google Scholar] [CrossRef]
- Mirković, S.; Tadić, V.; Milenković, M.T.; Ušjak, D.; Racić, G.; Bojović, D.; Žugić, A. Antimicrobial Activities of Essential Oils of Different Pinus Species from Bosnia and Herzegovina. Pharmaceutics 2024, 16, 1331. [Google Scholar] [CrossRef]
- Šilić, Č. Atlas Dendroflore (Drveće i Grmlje) Bosne i Hercegovine; Matica Hrvatska: Zagreb, Croatia, 2005. [Google Scholar]
- Ioannou, E.; Koutsaviti, A.; Tzakou, O.; Roussis, V. The Genus Pinus: A Comparative Study on the Needle Essential Oil Composition of 46 Pine Species. Phytochem. Rev. 2014, 13, 741–768. [Google Scholar] [CrossRef]
- Kurti, F.; Giorgi, A.; Beretta, G.; Mustafa, B.; Gelmini, F.; Testa, C.; Angioletti, S.; Giupponi, L.; Zilio, E.; Pentimalli, D.; et al. Chemical Composition, Antioxidant and Antimicrobial Activities of Essential Oils of Different Pinus Species from Kosovo. J. Essent. Oil Res. 2019, 31, 263–275. [Google Scholar] [CrossRef]
- Politeo, O.; Skocibusic, M.; Maravic, A.; Ruscic, M.; Milos, M. Chemical Composition and Antimicrobial Activity of the Essential Oil of Endemic Dalmatian Black Pine (Pinus Nigra ssp. Dalmatica). Chem. Biodivers. 2011, 8, 540–547. [Google Scholar] [CrossRef]
- Ustun, O.; Sezik, E.; Kurkcuoglu, M.; Baser, K.H.C. Study of the Essential Oil Composition of Pinus Sylvestris from Turkey. Chem. Nat. Compd. 2006, 42, 26–31. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, S.Y.; Lee, J.; Chang, M.; Chung, Y.; Lee, T.-K. Biochemical Compositions and Biological Activities of Extracts from 3 Species of Korean Pine Needles. J. Food Nutr. Res. Res. 2017, 5, 31–36. [Google Scholar] [CrossRef]
- Ait Mimoune, N.; Ait Mimoune, D.; Yataghene, A. Chemical Composition and Antimicrobial Activity of the Essential Oils of Pinus Pinaster. J. Coast. Life Med. 2013, 1, 55–59. [Google Scholar] [CrossRef]
- Lis, A.; Lukas, M.; Mellor, K. Comparison of Chemical Composition of the Essential Oils from Different Botanical Organs of Pinus Mugo Growing in Poland. Chem. Biodivers. 2019, 16, e1900397. [Google Scholar] [CrossRef]
- Macchioni, F.; Cioni, P.; Flamini, G.; Morelli, I.; Maccioni, S.; Ansaldi, M. Chemical Composition of Essential Oils from Needles, Branches and Cones of Pinus Pinea, P-Halepensis, P-Pinaster and P. Nigra from Central Italy. Flavour. Fragr. J. 2003, 18, 139–143. [Google Scholar] [CrossRef]
- Tumen, I.; Hafizoglu, H.; Kilic, A.; Dönmez, I.E.; Sivrikaya, H.; Reunanen, M. Yields and Constituents of Essential Oil from Cones of Pinaceae Spp. Natively Grown in Turkey. Molecules 2010, 15, 5797–5806. [Google Scholar] [CrossRef]
- Karapandzova, M.; Stefkov, G.; Karanfilova, I.C.; Panovska, T.K.; Stanoeva, J.P.; Stefova, M.; Kulevanova, S. Chemical Characterization and Antioxidant Activity of Mountain Pine (Pinus Mugo Turra, Pinaceae) from Republic of Macedonia. Rec. Nat. Prod. 2018, 13, 50–63. [Google Scholar] [CrossRef]
- Fekih, N.; Allali, H.; Merghache, S.; Chaïb, F.; Merghache, D.; El Amine, M.; Djabou, N.; Muselli, A.; Tabti, B.; Costa, J. Chemical Composition and Antibacterial Activity of Pinus Halepensis Miller Growing in West Northern of Algeria. Asian Pac. J. Trop. Dis. 2014, 4, 97–103. [Google Scholar] [CrossRef]
- Dob, T.; Berramdane, T.; Chelgoum, C. Chemical Composition of Essential Oil of Pinus Halepensis Miller Growing in Algeria. Comptes Rendus Chim. 2005, 8, 1939–1945. [Google Scholar] [CrossRef]
- Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Mihajilov-Krstev, T.; Stojanović-Radić, Z.Z.; Cvetković, V.J.; Mitrović, T.L.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Comparative Study of the Essential Oils of Four Pinus Species: Chemical Composition, Antimicrobial and Insect Larvicidal Activity. Ind. Crop. Prod. 2018, 111, 55–62. [Google Scholar] [CrossRef]
- Basholli-Salihu, M.; Schuster, R.; Hajdari, A.; Mulla, D.; Viernstein, H.; Mustafa, B.; Mueller, M. Phytochemical Composition, Anti-Inflammatory Activity and Cytotoxic Effects of Essential Oils from Three Pinus spp. Pharm. Biol. 2017, 55, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Semerdjieva, I.B.; Radoukova, T.; Cantrell, C.L.; Astatkie, T.; Kacaniova, M.; Borisova, D.; Zheljazkov, V.D. Essential Oil Composition of Pinus heldreichii Christ., P. peuce Griseb., and P. mugo Turra as a Function of Hydrodistillation Time and Evaluation of Its Antimicrobial Activity. Ind. Crop. Prod. 2022, 187, 115484. [Google Scholar] [CrossRef]
- Lis, A.; Kalinowska, A.; Krajewska, A.; Mellor, K. Chemical Composition of the Essential Oils from Different Morphological Parts of Pinus Cembra L. Chem. Biodivers. 2017, 14, e1600345. [Google Scholar] [CrossRef]
- Yamini, Y.; Bahramifar, N.; Sefidkon, F.; Saharkhiz, M.J.; Salamifar, E. Extraction of Essential Oil from Pimpinella anisum Using Supercritical Carbon Dioxide and Comparison with Hydrodistillation. Nat. Prod. Res. 2008, 22, 212–218. [Google Scholar] [CrossRef]
- Silori, G.K.; Kushwaha, N.; Kumar, V. Essential Oils from Pines: Chemistry and Applications. In Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production; Springer: Cham, Switzerland, 2019; pp. 275–297. [Google Scholar]
- Allenspach, M.; Valder, C.; Flamm, D.; Grisoni, F.; Steuer, C. Verification of Chromatographic Profile of Primary Essential Oil of Pinus Sylvestris L. Combined with Chemometric Analysis. Molecules 2020, 25, 2973. [Google Scholar] [CrossRef]
- Oyewole, K.A.; Oyedara, O.O.; Awojide, S.H.; Olawade, M.O.; Adetunji, C.O. Chemical constituents and antibacterial activity of essential oils of needles of Pinus sylvestris (Scots pine) from South West Nigeria. Res. Sq. 2021; preprint. [Google Scholar] [CrossRef]
- Fayemiwo, K.A.; Adeleke, M.A.; Okoro, O.P.; Awojide, S.H.; Awoniyi, I.O. Larvicidal Efficacies and Chemical Composition of Essential Oils of Pinus Sylvestris and Syzygium Aromaticum against Mosquitoes. Asian Pac. J. Trop. Biomed. 2014, 4, 30–34. [Google Scholar] [CrossRef]
- Judzentiene, A.; Stikliene, A.; Kupcinskiene, E. Changes in the Essential Oil Composition in the Needles of Scots Pine (Pinus Sylvestris L.) Under Anthropogenic Stress. Sci. World J. 2007, 7, 125054. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Zhang, Y.; Zhao, H.; Dong, A.; Xu, D.; Yang, L.; Ma, Y.; Wang, J. Analysis of the Essential Oils of Pine Cones of Pinus Koraiensis Steb. Et Zucc. and P. Sylvestris L. from China. J. Essent. Oil Res. 2010, 22, 446–448. [Google Scholar] [CrossRef]
- Semerdjieva, I.; Zheljazkov, V.D.; Cantrell, C.L.; Koleva-Valkova, L.; Maneva, V.; Radoukova, T.; Astatkie, T.; Kačániová, M.; Slavov, S.B.; Atanasova, D.; et al. Phytochemical Composition and Biopesticidal Potential of Pinus Mugo Turra Essential Oil. Ind. Crop. Prod. 2024, 209, 118019. [Google Scholar] [CrossRef]
- Hajdari, A.; Mustafa, B.; Ahmeti, G.; Pulaj, B.; Lukas, B.; Ibraliu, A.; Stefkov, G.; Quave, C.L.; Novak, J. Essential Oil Composition Variability among Natural Populations of Pinus Mugo Turra in Kosovo. Springerplus 2015, 4, 828. [Google Scholar] [CrossRef]
- Tsitsimpikou, C.; Petrakis, P.V.; Ortiz, A.; Harvala, C.; Roussis, V. Volatile Needle Terpenoids of Six Pinus Species. J. Essent. Oil Res. 2001, 13, 174–178. [Google Scholar] [CrossRef]
- Bojović, S.; Jurc, M.; Ristić, M.; Popović, Z.; Matić, R.; Vidaković, V.; Stefanović, M.; Jurc, D. Essential-Oil Variability in Natural Populations of Pinus Mugo Turra from the Julian Alps. Chem. Biodivers. 2016, 13, 181–187. [Google Scholar] [CrossRef]
- Roussis, V.; Petrakis, P.V.; Ortiz, A.; Mazomenos, B.E. Volatile Constituents of Needles of Five Pinus Species Grown in Greece. Phytochemistry 1995, 39, 357–361. [Google Scholar] [CrossRef]
- Šarac, Z.; Matejić, J.S.; Stojanović-Radić, Z.Z.; Veselinović, J.B.; Džamić, A.M.; Bojović, S.; Marin, P.D. Biological Activity of Pinus Nigra Terpenes—Evaluation of FtsZ Inhibition by Selected Compounds as Contribution to Their Antimicrobial Activity. Comput. Biol. Med. 2014, 54, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Fkiri, S.; Mezni, F.; Rigane, G.; Ben Salem, R.; Ghazghazi, H.; Khouja, M.L.; Nasr, Z.; Khaldi, A. Chemotaxonomic Study of Four Subspecies of Pinus Nigra Arn. Grown in Common Garden Based on Essential Oil Composition. J. Food Qual. 2021, 2021, 5533531. [Google Scholar] [CrossRef]
- Gallis, A.; Arrabal, C.; Papageorgiou, A.C.; Garcia-Vallejo, M.C. Needle Terpenoid Composition of Pinus Halepensis (Mill.) Trees Infested by the Scale Insect Marchalina Hellenica (Genn.) in Greece. In Sniezko, Richard A.; Yanchuk, Alvin D.; Kliejunas, John T.; Palmieri, Katharine M.; Alexander, Janice M.; Frankel, Susan J., tech. coords. Proceedings of the Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees. Gen. Tech. Rep. PSW-GTR-240; Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: Albany, CA, USA, 2012; Volume 204, pp. 304–308. [Google Scholar]
- Hamzaoui, E.; Zallez, O.B.Y.; Buñay, J.; Leremboure, M.; Argui, H.; Baron, S.; Said, H.; Lobaccaro, J.-M.A.; Akriche, S. Comparative Study of Essential Oils from Tunisian Pinus Halepensis Mill. by Hydrodistillation and Microwave-Assisted Processes: Chemical Composition and Antioxidant and Cytotoxic Potential against Prostate and Cervical Cancer Cells. ACS Omega 2024, 9, 34128–34139. [Google Scholar] [CrossRef]
- El-BahaA, M.; El-Settawy, A.A.; Hassan, F.; Salem, M.M.; Soliman, M. Chemical Composition of Essential Oils Extracted from Aleppo Pine (Pinus Halepensis Miller) and Their Termiticidal and Fungicidal Effects. Alex. J. Agric. Sci. 2016, 61, 193–202. [Google Scholar]
- Bouyahya, A.; Belmehdi, O.; Abrini, J.; Dakka, N.; Bakri, Y. Chemical Composition of Mentha Suaveolens and Pinus Halepensis Essential Oils and Their Antibacterial and Antioxidant Activities. Asian Pac. J. Trop. Med. 2019, 12, 117. [Google Scholar] [CrossRef]
- Dakhlaoui, S.; Bourgou, S.; Bachkouel, S.; Ben Mansour, R.; Ben Jemaa, M.; Jallouli, S.; Megdiche-Ksouri, W.; Hessini, K.; Msaada, K. Essential Oil Composition and Biological Activities of Aleppo Pine (Pinus Halepensis Miller) Needles Collected from Different Tunisian Regions. Int. J. Environ. Health Res. 2023, 33, 83–97. [Google Scholar] [CrossRef]
- Vidrich, V.; Michelozzi, M.; Fusii, P.; Heimler, D. Essential oils of vegetable species of the Mediterranean and alpine temperate climate areas. In Biomass for Energy and Industry. 4th EC Conference; Grassi, G., Delmon, B., Moll, J.F., Zibeta, H., Eds.; Elsevier Applied Science: London, UK, 1987; pp. 963–967. [Google Scholar]
- Amri, I.; Hamrouni, L.; Hanana, M.; Gargouri, S.; Fezzani, T.; Jamoussi, B. Chemical Composition, Physico-Chemical Properties, Antifungal and Herbicidal Activities of Pinus Halepensis Miller Essential Oils. Biol. Agric. Hortic. 2013, 29, 91–106. [Google Scholar] [CrossRef]
- Djerrad, Z.; Djouahri, A.; Kadik, L. Variability of Pinus Halepensis Mill. Essential Oils and Their Antioxidant Activities Depending on the Stage of Growth During Vegetative Cycle. Chem. Biodivers. 2017, 14, e1600340. [Google Scholar] [CrossRef] [PubMed]
- Hjouji, K.; Atemni, M.; Mehdaoui, I.; Ainane, A.; Berrada, S.; Rais, Z.; Mustapha, T.; Ainane, T. Essential oil of Aleppo pine needles: Antioxidant and antibacterial activities. Pharmacologyonline 2021, 2, 556–565. [Google Scholar]
- Nam, A.-M.; Casanova, J.; Tomi, F.; Bighelli, A. Composition and Chemical Variability of Corsican Pinus Halepensis Cone Oil. Nat. Prod. Commun. 2014, 9, 1934578X1400900935. [Google Scholar] [CrossRef]
- Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Ates, B.; Erdogan, S.; Cenet, M.; Karaaslan, M.G. Chemical Composition, Antimicrobial, Insecticidal, Phytotoxic and Antioxidant Activities of Mediterranean Pinus Brutia and Pinus Pinea Resin Essential Oils. Chin. J. Nat. Med. 2014, 12, 901–910. [Google Scholar] [CrossRef]
- Bojović, S.; Nikolić, B.; Ristić, M.; Orlović, S.; Veselinović, M.; Rakonjac, L.; Dražić, D. Variability in Chemical Composition and Abundance of the Rare Tertiary Relict Pinus Heldreichii in Serbia. Chem. Biodivers. 2011, 8, 1754–1765. [Google Scholar] [CrossRef]
- Petrakis, P.V.; Tsitsimpikou, C.; Tzakou, O.; Couladis, M.; Vagias, C.; Roussis, V. Needle Volatiles from Five Pinus Species Growing in Greece. Flavour. Fragr. J. 2001, 16, 249–252. [Google Scholar] [CrossRef]
- Nikolic, B.; Ristic, M.; Bojović, S.; Krivosej, Z.; Matevski, V.; Marin, P.D. Population Variability of Essential Oils of Pinus Heldreichii from the Scardo-Pindic Mountains Osljak and Galicica. Chem. Biodivers. 2015, 12, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Maric, S.; Jukic, M.; Katalinic, V.; Milos, M. Comparison of ChemicalComposition and Free Radical Scavenging Ability of Glycosidically Bound andFree Volatiles from Bosnian Pine (Pinus Heldreichii Christ. Var. Leucodermis). Molecules 2007, 12, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, B.; Ristić, M.; Janaćković, P.; Novaković, J.; Šarac, Z.; Rajčević, N.; Marin, P. Essential Oil Composition of One-Year-Old Bosnian Pine Needles. In Proceedings of the International Conference: Reforestation Challenges, Belgrade, Serbia, 3–6 June 2015; Ivetić, V., Stanković, D., Eds.; 2015; pp. 282–287. [Google Scholar]
- Simić, N.; Palić, R.; Andelković, S.; Vajs, V.; Milosavljević, S. Essential Oil of Pinus Heldreichii, Needles. J. Essent. Oil Res. 1996, 8, 1–5. [Google Scholar] [CrossRef]
- Menkovic, N.R.; Ristic, M.S.; Samardzic, Z.J.; Kovacevic, N.N.; Tasic, S.R. Investigations Of Relic Pinus Species. II. The Essential Oil of Pinus Heldreichii. Acta Hortic. 1993, 344, 578–581. [Google Scholar] [CrossRef]
- Semerdjieva, I.; Cantrell, C.L.; Zheljazkov, V.D.; Radoukova, T.; Koleva-Valkova, L.H.; Astatkie, T.; Kačániová, M.; Borisova, D. Chemical Profile, Antioxidant and Antimicrobial Activity of Pinus Heldreichii Christ. Distributed in Bulgaria. Heliyon 2024, 10, e22967. [Google Scholar] [CrossRef]
- Rosato, A.; Vitali, C.; De Laurentis, N.; Armenise, D.; Antonietta Milillo, M. Antibacterial Effect of Some Essential Oils Administered Alone or in Combination with Norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar] [CrossRef]
- Hmamouchi, M.; Hamamouchi, J.; Zouhdi, M.; Bessiere, J.M. Chemical and Antimicrobial Properties of Essential Oils of Five Moroccan Pinaceae. J. Essent. Oil Res. 2001, 13, 298–302. [Google Scholar] [CrossRef]
- Caetano da Silva, S.D.; Mendes de Souza, M.G.; Oliveira Cardoso, M.J.; da Silva Moraes, T.; Ambrósio, S.R.; Sola Veneziani, R.C.; Martins, C.H.G. Antibacterial Activity of Pinus Elliottii against Anaerobic Bacteria Present in Primary Endodontic Infections. Anaerobe 2014, 30, 146–152. [Google Scholar] [CrossRef]
- Hong, E.-J.; Na, K.-J.; Choi, I.-G.; Choi, K.-C.; Jeung, E.-B. Antibacterial and Antifungal Effects of Essential Oils from Coniferous Trees. Biol. Pharm. Bull. 2004, 27, 863–866. [Google Scholar] [CrossRef]
- Smith, E.; Williamson, E.; Zloh, M.; Gibbons, S. Isopimaric Acid from Pinus Nigra Shows Activity against Multidrug-Resistant and EMRSA Strains of Staphylococcus Aureus. Phytother. Res. 2005, 19, 538–542. [Google Scholar] [CrossRef]
- Jurado, P.; Uruén, C.; Martínez, S.; Lain, E.; Sánchez, S.; Rezusta, A.; López, V.; Arenas, J. Essential Oils of Pinus Sylvestris, Citrus Limon and Origanum Vulgare Exhibit High Bactericidal and Anti-Biofilm Activities against Neisseria Gonorrhoeae and Streptococcus Suis. Biomed. Pharmacother. 2023, 168, 115703. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Vukic, M.; Čmiková, N.; Bianchi, A.; Garzoli, S.; Saad, R.B.; Hsouna, A.B.; Kluz, M.I.; Waszkiewicz-Robak, B.; Branković, J.; et al. Exploring the Bioactive Potential of Turra Essential Oil: Volatile Composition, Antioxidant, Antimicrobial, Antibiofilm and Insecticidal Activities. Flavour. Fragr. J. 2023, 39, e3838. [Google Scholar] [CrossRef]
- Karapandzova, M.; Stefkov, G.; Trajkovska-Dokic, E.; Kaftandzieva, A.; Kulevanova, S. Antimicrobial Activity of Needle Essential Oil of Pinus Peuce Griseb. (Pinaceae) from Macedonian Flora. Maced. Pharm. Bull. 2012, 57, 25–36. [Google Scholar] [CrossRef]
- Garzoli, S.; Masci, V.L.; Caradonna, V.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties. Pharmaceuticals 2021, 14, 134. [Google Scholar] [CrossRef]
- Thielmann, J.; Muranyi, P.; Kazman, P. Screening Essential Oils for Their Antimicrobial Activities against the Foodborne Pathogenic Bacteria Escherichia Coli and Staphylococcus Aureus. Heliyon 2019, 5, e01860. [Google Scholar] [CrossRef]
- Abi-Ayad, M.; Abi-Ayad, F.; Lazzouni, H.A.; Sid Ahmed, R. Antibacterial Activity of Pinus Halepensis Essential Oil from Algeria (Tlemcen). J. Nat. Prod. Plant Resour. 2011, 1, 33–36. [Google Scholar]
- Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Stojanović-Radić, Z.Z.; Mihajilov-Krstev, T.; Jovanović, N.M.; Nikolić, B.M.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Essential Oils of Pinus Halepensis and P. Heldreichii: Chemical Composition, Antimicrobial and Insect Larvicidal Activity. Ind. Crops Prod. 2019, 140, 111702. [Google Scholar] [CrossRef]
- Ashmawy, N.A.; Al Farraj, D.A.; Salem, M.Z.M.; Elshikh, M.S.; Al-Kufaidy, R.; Alshammari, M.K.; Salem, A.Z.M. Potential Impacts of Pinus Halepensis Miller Trees as a Source of Phytochemical Compounds: Antibacterial Activity of the Cones Essential Oil and n-Butanol Extract. Agrofor. Syst. 2020, 94, 1403–1413. [Google Scholar] [CrossRef]
- Elkady, W.M.; Gonaid, M.H.; Yousif, M.F.; El-Sayed, M.; Omar, H.A.N. Impact of Altitudinal Variation on the Phytochemical Profile, Anthelmintic and Antimicrobial Activity of Two Pinus Species. Molecules 2021, 26, 3170. [Google Scholar] [CrossRef]
- Maciąg, A.; Milaković, D.; Christensen, H.H.; Antolović, V.; Kalemba, D. Essential oil composition and plant-insect relations in scots pine (Pinus sylvestris L.). Zesz. Nauk. Politech. Łódzka. Chem. Spożywcza I Biotechnol. 2007, 71, 71–95. [Google Scholar]
- Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the Biological Potential of Pinus Pinaster Bark Extracts. Antioxidants 2020, 9, 334. [Google Scholar] [CrossRef] [PubMed]
- Moussaoui, F.; Alaoui, T. Evaluation of Antibacterial Activity and Synergistic Effect between Antibiotic and the Essential Oils of Some Medicinal Plants. Asian Pac. J. Trop. Biomed. 2016, 6, 32–37. [Google Scholar] [CrossRef]
- Agreles, M.A.A.; Cavalcanti, I.D.L.; Cavalcanti, I.M.F. The Role of Essential Oils in the Inhibition of Efflux Pumps and Reversion of Bacterial Resistance to Antimicrobials. Curr. Microbiol. 2021, 78, 3609–3619. [Google Scholar] [CrossRef]
- Chen, I.N.; Chang, C.C.; Ng, C.C.; Wang, C.Y.; Shyu, Y.T.; Chang, T.L. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum. Nutr. 2008, 63, 15–20. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Lim, S.H.E.; Hu, C.P.; Yiap, B.C. Combination of Essential Oils and Antibiotics Reduce Antibiotic Resistance in Plasmid-Conferred Multidrug Resistant Bacteria. Phytomedicine 2013, 20, 710–713. [Google Scholar] [CrossRef]
- Gibbons, S.; Oluwatuyi, M.; Veitch, N.C.; Gray, A.I. Bacterial Resistance Modifying Agents from Lycopus Europaeus. Phytochemistry 2003, 62, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between Essential Oil Components and Antibiotics: A Review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
- Owen, L.; Laird, K. Synchronous Application of Antibiotics and Essential Oils: Dual Mechanisms of Action as a Potential Solution to Antibiotic Resistance. Crit. Rev. Microbiol. 2018, 44, 414–435. [Google Scholar] [CrossRef]
- Amassmoud, O.; Abbad, I.; Iriti, M.; Hassani, L.; Mezrioui, N.; Abbad, A. Antibacterial Activity of Essential Oils Combinations Based on Thymus Broussonnetii, and Their Synergism with Some Antibiotics. Curr. Microbiol. 2023, 80, 398. [Google Scholar] [CrossRef]
- Scalas, D.; Mandras, N.; Roana, J.; Tardugno, R.; Cuffini, A.M.; Ghisetti, V.; Benvenuti, S.; Tullio, V. Use of Pinus Sylvestris L. (Pinaceae), Origanum Vulgare L. (Lamiaceae), and Thymus Vulgaris L. (Lamiaceae) Essential Oils and Their Main Components to Enhance Itraconazole Activity against Azole Susceptible/Not-Susceptible Cryptococcus Neoformans Strains. BMC Complement. Altern. Med. 2018, 18, 143. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Sonam, K.S.; Guleria, S. Synergistic Antioxidant Activity of Natural Products. Ann. Pharmacol. Pharm. 2017, 2, 1086. [Google Scholar]
- Yener, H.O.; Saygideger, S.D.; Sarikurkcu, C.; Yumrutas, O. Evaluation of Antioxidant Activities of Essential Oils and Methanol Extracts of Pinus Species. J. Essent. Oil Bear. Plants 2014, 17, 295–302. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, R.; Sharma, L. Potential Biological Efficacy of Pinus Plant Species against Oxidative, Inflammatory and Microbial Disorders. BMC Complement. Altern. Med. 2016, 16, 35. [Google Scholar] [CrossRef] [PubMed]
- Koutsaviti, A.; Toutoungy, S.; Saliba, R.; Loupassaki, S.; Tzakou, O.; Roussis, V.; Ioannou, E. Antioxidant Potential of Pine Needles: A Systematic Study on the Essential Oils and Extracts of 46 Species of the Genus Pinus. Foods 2021, 10, 142. [Google Scholar] [CrossRef]
- Kačániová, M.; Vukovič, N.; Horská, E.; Šalamon, I.; Bobková, A.; Hleba, L.; Mellen, M.; Vatľák, A.; Petrová, J.; Bobko, M. Antibacterial Activity against Clostridium Genus and Antiradical Activity of the Essential Oils from Different Origin. J. Environ. Sci. Health. 2014, 49, 505–512. [Google Scholar] [CrossRef]
- Kačániová, M.; Terentjeva, M.; Vukovic, N.; Puchalski, C.; Roychoudhury, S.; Kunová, S.; Klūga, A.; Tokár, M.; Kluz, M.; Ivanišová, E. The Antioxidant and Antimicrobial Activity of Essential Oils against Pseudomonas Spp. Isolated from Fish. Saudi Pharm. J. 2017, 25, 1108–1116. [Google Scholar] [CrossRef]
- Adjaoud, A.; Laouer, H.; Braca, A.; Cioni, P.; Moussi, K.; Berboucha-Rahmani, M.; Abbaci, H.; Falconieri, D. Chemical Composition, Antioxidant and Insecticidal Activities of a New Essential Oil Chemotype of Pinus Nigra Ssp. Mauritanica (Pinaceae), Northern Algeria. Plant Biosyst. 2022, 156, 358–369. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Daungchana, N.; Sisubalan, N.; Chaiyasut, C. Composition, Bioactivities, Microbiome, Safety Concerns, and Impact of Essential Oils on the Health Status of Domestic Animals. Appl. Sci. 2024, 14, 6882. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Ancuceanu, R.; Anghel, A.I.; Hovaneț, M.V.; Ciobanu, A.-M.; Lascu, B.E.; Dinu, M. Antioxidant Activity of Essential Oils from Pinaceae Species. Antioxidants 2024, 13, 286. [Google Scholar] [CrossRef]
- Baccouri, B.; Rajhi, I.; Baccouri, B.; Rajhi, I. Potential Antioxidant Activity of Terpenes. In Terpenes and Terpenoids—Recent Advances; IntechOpen: London, UK, 2021; ISBN 978-1-83881-917-0. [Google Scholar]
- Bouzenna, H.; Samout, N.; Amani, E.; Mbarki, S.; Tlili, Z.; Rjeibi, I.; Elfeki, A.; Talarmin, H.; Hfaiedh, N. Protective Effects of Pinus Halepensis L. Essential Oil on Aspirin-Induced Acute Liver and Kidney Damage in Female Wistar Albino Rats. J. Oleo Sci. 2016, 65, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Postu, P.A.; Sadiki, F.Z.; El Idrissi, M.; Cioanca, O.; Trifan, A.; Hancianu, M.; Hritcu, L. Pinus Halepensis Essential Oil Attenuates the Toxic Alzheimer’s Amyloid Beta (1-42)-Induced Memory Impairment and Oxidative Stress in the Rat Hippocampus. Biomed. Pharmacother. 2019, 112, 108673. [Google Scholar] [CrossRef]
- Amri, I.; Hanana, M.; Gargouri, S.; Jamoussi, B.; Hamrouni, L. Comparative Study of Two Coniferous Species (Pinus Pinaster Aiton and Cupressus Sempervirens L. Var. Dupreziana [A. Camus] Silba) Essential Oils: Chemical Composition and Biological Activity. Chil. J. Agric. Res. 2013, 73, 259–266. [Google Scholar] [CrossRef]
- Macchioni, F.; Cioni, P.L.; Flamini, G.; Morelli, I.; Perrucci, S.; Franceschi, A.; Macchioni, G.; Ceccarini, L. Acaricidal Activity of Pine Essential Oils and Their Main Components against Tyrophagus Putrescentiae, a Stored Food Mite. J. Agric. Food Chem. 2002, 50, 4586–4588. [Google Scholar] [CrossRef]
- Amri, I.; Khammassi, M.; Gargouri, S.; Hanana, M.; Jamoussi, B.; Hamrouni, L.; Mabrouk, Y. Tunisian Pine Essential Oils: Chemical Composition, Herbicidal and Antifungal Properties. J. Essent. Oil Bear. Plant 2022, 25, 430–443. [Google Scholar] [CrossRef]
- Lahlou, M. Composition and Molluscicidal Properties of Essential Oils of Five Moroccan Pinaceae. Pharm. Biol. 2003, 41, 207–210. [Google Scholar] [CrossRef]
- Tognolini, M.; Barocelli, E.; Ballabeni, V.; Bruni, R.; Bianchi, A.; Chiavarini, M.; Impicciatore, M. Comparative Screening of Plant Essential Oils: Phenylpropanoid Moiety as Basic Core for Antiplatelet Activity. Life Sci. 2006, 78, 1419–1432. [Google Scholar] [CrossRef]
- Hoai, N.T.; Duc, H.V.; Thao, D.T.; Orav, A.; Raal, A. Selectivity of Pinus Sylvestris Extract and Essential Oil to Estrogen-Insensitive Breast Cancer Cells Pinus Sylvestris against Cancer Cells. Pharmacogn. Mag. 2015, 11, S290–S295. [Google Scholar] [CrossRef]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef]
- Pavoni, L.; Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials 2020, 10, 135. [Google Scholar] [CrossRef]
- Al-Suwaytee, S.H.M.; Ben Hadj Ayed, O.; Chaâbane-Banaoues, R.; Kosksi, T.; Shleghm, M.R.; Chekir-Ghedira, L.; Babba, H.; Sfar, S.; Lassoued, M.A. Exploring the Antifungal Effectiveness of a Topical Innovative Formulation Containing Voriconazole Combined with Pinus Sylvestris L. Essential Oil for Onychomycosis. Colloids Interfaces 2024, 8, 56. [Google Scholar] [CrossRef]
- Hammoud, Z.; Kayouka, M.; Trifan, A.; Sieniawska, E.; Jemâa, J.M.B.; Elaissari, A.; Greige-Gerges, H. Encapsulation of α-Pinene in Delivery Systems Based on Liposomes and Cyclodextrins. Molecules 2021, 26, 6840. [Google Scholar] [CrossRef]
- Khoa Huynh, N.A.; Do, T.H.T.; Le, X.L.; Huynh, T.T.N.; Nguyen, D.H.; Tran, N.K.; Tran, C.T.H.L.; Nguyen, D.H.; Truong, C.T. Development of Softgel Capsules Containing Cyclosporine a Encapsulated Pine Essential Oil Based Self-Microemulsifying Drug Delivery System. J. Drug Deliv. Sci. Technol. 2022, 68, 103115. [Google Scholar] [CrossRef]
- Song, G.; Sun, R.; Li, H.; Zhang, H.; Xia, N.; Guo, P.; Jiang, L.W.; Zhang, X.; Rayan, A.M. Effects of Pine Needle Essential Oil Combined with Chitosan Shellac on Physical and Antibacterial Properties of Emulsions for Egg Preservation. Food Biophys. 2022, 17, 260–272. [Google Scholar] [CrossRef]
- Lee, J.; Kang, H.K.; Cheong, H.; Park, Y. A Novel Antimicrobial Peptides from Pine Needles of Pinus Densiflora Sieb. et Zucc. Against Foodborne Bacteria. Front. Microbiol. 2021, 12, 662462. [Google Scholar] [CrossRef]
- Price, C.T.D.; Singh, V.K.; Jayaswal, R.K.; Wilkinson, B.J.; Gustafson, J.E. Pine Oil Cleaner-Resistant Staphylococcus Aureus: Reduced Susceptibility to Vancomycin and Oxacillin and Involvement of SigB. Appl. Environ. Microbiol. 2002, 68, 5417–5421. [Google Scholar] [CrossRef]
- Siddiqui, T.; Khan, M.U.; Sharma, V.; Gupta, K. Terpenoids in essential oils: Chemistry, classification, and potential impact on human health and industry. Phytomed. Plus 2024, 4, 100549. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Armstrong, J.S. Mitochondrial membrane permeabilization: The sine qua non for cell death. BioEssays 2006, 28, 253–260. [Google Scholar] [CrossRef]
- Islam, M.T.; da Mata, A.M.O.F.; de Aguiar, R.P.S.; Paz, M.F.C.J.; de Alencar, M.V.O.B.; Ferreira, P.M.P.; de Carvalho Melo-Cavalcante, A.A. Therapeutic Potential of Essential Oils Focusing on Diterpenes. Phytother. Res. 2016, 30, 1420–1444. [Google Scholar] [CrossRef]
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed). Scientific Opinion on the safety and efficacy of aliphatic and aromatic hydrocarbons (chemical group 31) when used as flavourings for all animal species. EFSA J. 2015, 13, 4053. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A., Jr.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; Dekant, W.; et al. RIFM fragrance ingredient safety assessment, α-pinene, CAS Registry Number 80-56-8. Food Chem. Toxicol. 2022, 159 (Suppl. 1), 112702. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; Dekant, W.; et al. RIFM fragrance ingredient safety assessment, β-caryophyllene, CAS Registry Number 87-44-5. Food Chem. Toxicol. 2022, 159, 112707. [Google Scholar] [CrossRef]
- Api, A.M.; Belmonte, F.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A., Jr.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; et al. RIFM fragrance ingredient safety assessment, caryophyllene oxide, CAS Registry Number 1139-30-6. Food Chem. Toxicol. 2020, 138 (Suppl. 1), 111102. [Google Scholar] [CrossRef]
- Sartori Tamburlin, I.; Roux, E.; Feuillée, M.; Labbé, J.; Aussaguès, Y.; El Fadle, F.E.; Fraboul, F.; Bouvier, G. Toxicological safety assessment of essential oils used as food supplements to establish safe oral recommended doses. Food Chem. Toxicol. 2021, 157, 112603. [Google Scholar] [CrossRef]
Species Needles/Cones | Ref. | Essential Oil Isolation Method | Method of Quantification | Dominant Compounds |
---|---|---|---|---|
Pinus sylvestris L. green needles | [45] | industrial distillation | GC-FID, GC-MS | α-pinene (11.2–40.7%), limonene (0.4–9.4%), β-phellandrene (0.3–9.4%), γ-cadinene (1.7–11.0%), germacrene-D-4-ol (0.5–18.7%), β-pinene (1.1–23.7%) |
[11] | hydro- distillation | GC-FID, GC-MS | α-pinene (7–16%), δ-3-carene (5.2–14.3%), bornyl acetate (1.1–3.9%), β-caryophyllene (2.6–5.8%), δ-cadinene (2.3–5.9%), α-cadinol (4.2–8.5%), epi-α-cadinol, epi-α-muurolol, α-muurolol (4.0–9.1%) | |
[30] | hydro- distillation | GC-MS | α-pinene (36.21–51.09%), camphene (4.78–10.73%), β-pinene (5.54–17.09%) | |
[46] | hydro- distillation | GC-MS | α-terpineol (27.17%), borneol (6.72%), fenchol (3.52%), caryophyllene (1.3%), δ-cadinene (0.23%), palmitic acid (1.32%) | |
[47] | hydro- distillation | GC-MS | 3-cyclohexan-1-methanol, α,α,4-trimethyl (21.17%); 3-cyclohexen-1-ol, 1-methyl-4-(1-methylethyl) (21.82%); cyclohexanol, 1-methyl-4-(1-methylethenyl) (14.07%); borneol (6.72%); 1,4-methanoazulene, decahydro-4,8,8-trimethyl-9-methylene-[1.α.3a.β,4.α,8a.β] (5.45%); trans-13-octadecenoic acid (4.71%) | |
[48] | hydro- distillation | GC-MS | α-pinene (6.1–26.1%), δ-3-carene (4.9–22.9%), bornyl acetate (0.2–5.6%), (E)-caryophyllene (2.9–7.9%), δ-cadinene (2.7–8.2%), α-cadinol (3.9–9.8%), epi-α-cadinol, epi-α- and α-muurolol (4.0–9.1%) | |
Pinus sylvestris L. green cones | [35] | hydro- distillation | GC-MS | 18-norabieta-8,11,13-triene (15.78%), α-pinene (14.78%), caryophyllene oxide (12.58%), dehydroabietal (7.12%), abieta-8,11,13-triene (5.2%), 19-norabieta-8,11,13-triene (4.75%), norabieta-4(18), 8,11,13-tetraene (4.59%), β-caryophyllene (2.87%) |
[49] | hydro- distillation | GC-FID, GC-MS | aromadendrene (20.2%), α-pinene (18.5%), α-longipinene (10.5%), α-terpineol (5.5%), caryophyllene oxide (3.6%), limonene (3.3%), and pinocarveol (3.0%) | |
Pinus mugo L. needles | [50] | hydro- distillation | GC-FID, GC-MS | α-pinene (12.11–35.10%), α-phellandrene (8.3–27.0%), β-phellandrene (2.9–10.9%), β-caryophyllene (4.2–10.3%) |
[33] | hydro- distillation | GC-FID, GC-MS, 1H-NMR | α-pinene (18.6%), 3-carene (11.3%), bornyl acetate (8.3%), camphene (3%), β-pinene (3.1%), myrcene (4.3%), β-phellandrene (3.6%), germacrene (4.6%), limonene (3.8%), terpinolene (4.6%), α-terpinyl acetate (2.8%), (E)-β-caryophyllene (2.8%), α-cadinol (3.2%) | |
[51] | hydro- distillation | GC-FID, GC-MS | α-pinene (16.9–24.5%), δ-3-carene (15.4–27.8%), E-caryophyllene (4.4–8.9%), germacrene D (4.0–8.3%), γ-terpinolene (2.2–4.3%),β-pinene (1.5–5.4%), limonene+β-phellandrene (1.9–5.9%), bornyl acetate (2.6–8.1%), δ-cadinene (2.1–3.6%) | |
[52] | hydro- distillation | GC-MS | α-pinene (33.3%), γ-muurolene (3.5%), α-fenchene (6.4%), γ-cadinene (9.0%), caryophyllene oxide (6.1%), spathulenol (3.5%), α-cadinol (4.4%), T-muurolol (4.6%), α-terpinyl acetate (3.6%) | |
[41] | hydro- distillation | GC-MS-FID | α-phellandrene (16.23–23.76%), β-phellandrene (12.13–28.79%), α-pinene (12.68–17.84%) | |
[53] | hydro- distillation | GC-FID, GC-MS | car-3-ene (20.70 ± 9.41%), β-phellandrene (16.44 ± 5.48%), α-pinene (14.99 ± 4.25%), myrcene (7.82 ± 8.02%), caryophyllene (5.30 ± 1.40%) | |
Pinus mugo L. green cones | [33] | hydro- distillation | GC-FID, GC-MS, 1H-NMP | (E)-β-caryophyllene (24%), 3-carene (19.2%), myrcene (16.5%), α-pinene (8.9%), abieta-6(8),14-dien-18-al (4.8%), β-phellandrene (4.5%), α-humulene (3.8%), limonene (3.0%) |
[51] | hydro- distillation | GC-FID, GC-MS | E-caryophyllene (10.4–27%), δ-3-carene (10.5–31.5%), linalool (tr-3.6%), α-pinene (3.1–5.7%), aromadendrene (tr-3.3%), limonene+β-phellandrene (2–9.3%) | |
Pinus nigra J.F., needles | [29] | hydro- distillation | GC-MS | α-pinene (24.3%), β-pinene (16%), germacrene D (14.6%), β-caryophyllene (9.6%) |
[54] | steam distillation | GC-MS | α-pinene (52.19%), germacrene D (14.27%), caryophyllene (5.67%) | |
[55] | maceration with organic solvents | GC-FID, GC-MS | α-pinene (45.4%), germacrene D (28.03%), (E)-caryophyllene (7.69%), β-pinene (5.47%), germacrene D-4-ol (1.02%) | |
[56] | hydro- distillation | GC-FID, GC-MS | caryophyllene oxide (0.99–90.85%), camphene (0.15–38.07%), β-caryophyllene (0.7–42.82%), α-amorphene (0.52–26.04%), germacrene (0.16–27.13%) | |
Pinus nigra J.F., green cones | [35] | hydro- distillation | GC-MS | α-pinene (45.36%), caryophyllene oxide (8.05%), β-caryophyllene (6.73%), dehydroabietal (3.33%), 18-norabieta-8,11,13-triene (3.42%) |
Pinus halapenis Miller, needles | [57] | maceration with organic solvents | GC-MS | cembrene (33.03%), β-caryophyllene (11.89%), α-pinene (5.30%), myrcene (4.87%), phenylethyl isovalerate (3.99%), methyl-8,13(15)-abietadien-18-oate (2.57%), sabinene (2.41%), terpinolene (2.47%), neoabietol (2.10%), α-humulene (2.03%), methyl levopimarate (1.88%), methyl dehydroabietate (1.81%), neoabietal (1.43%) |
[58] | hydro- distillation | GC-MS | β-caryophyllene (22.20%), cembrene (13.24%), cyclofenchene (8.05%) | |
[58] | microwave-assisted extraction | GC-MS | β-caryophyllene (31.50%), α-caryophyllene (7.80%), phenyl isovalerate (6.29%) | |
[59] | hydro- distillation | GC-MS | caryophyllene (40.78%), α-pinene (10.30%), dehydro-1,1,7-trimethyl-4-methylene-[1aR-(1aα,4aα,7α,7aβ,7bα)] 1H-cyclopropa[e]azulene (9.53%), 3-carene (7.58%), thunbergol (4.03%), butylphosphonic acid di(2-phenylethyl) ester (3.48%), 3-methylene-bicyclo[3.2.1]oct-6-en-8-ol (4.07%) | |
[60] | hydro- distillation | GC-MS | β-caryophyllene (28.04%), myrcene (23.81%), α-pinene (12.02%) | |
[61] | unknown | unknown | caryophyllene (48.77%), phenyl isovalerate (22.22%), β-myrcene (15.55%), α-pinene (14.52%) | |
[62] | unknown | unknown | β-caryophyllene, myrcene, p-cymene, α-pinene, sabinene, methyl chavicol, methyl iso-eugenol | |
[54] | steam distillation | GC-MS | β-caryophyllene (19.05%), α-pinene (13.40%), myrcene (6.62%), cembrene (7.62%), butenoic acid, 3-methyl, 2-phenylethyl ester (6.57%), δ-3-carene (6.87%), limonene (5.03%), terpinolene (3.07%), α-humulene (3.36%) | |
[38] | hydro- distillation | GC-MS | (Z)-β-caryophyllene (40.31%), α-humulene (7.92%), aromadendrene (7.1%), myrcene (3.07%), α-pinene (1.23%), sabinene (1.23%) | |
[63] | hydro- distillation | GC-FID, GC-MS | longifolene (33.9%), β-pinene (10.70%), α-pinene (9.9%), β-myrcene (9.52%), (Z)-muurrola-4-(14).5-diene (7.40%), α-terpinolene (5.36%), α-humulene (5.20%), | |
[64] | hydro- distillation | GC-MS | myrcene (17.5–21.6%), (Z)-β-caryophyllene (17.3–21.2%), p-cymene (7.9–11.9%), caryophyllene oxide (5.4–12.6%), α-pinene (8.5–12.9%) | |
[65] | hydro- distillation | GC-MS | caryophyllene (32.97%), α-pinene (13.72%), β-pinene (11.02%), α-humulene (7.68%), cembrene (6.30%), trans-β-ocimene (5.31%), 1R-α-pinene (5%), β-phenylethyl isovalerate (4.43%), | |
Pinus halapenis Miller, green cones | [59] | hydro- distillation | GC-MS | caryophyllene (38.26%), 3-carene (31.78%), 4-methylene-1-(1-methylethyl)-bicyclo[3.1.0]hexane, (11.74%), 1-methyl-4-(1-methylethyl)-1,4-cyclohexadiene (3.01%) |
[66] | hydro- distillation | GC-MS, 13C-NMR | α-pinene (47.5%), myrcene (11.0%), (E)-β-caryophyllene (8.3%), caryophyllene oxide (5.9%) | |
[63] | hydro- distillation | GC-FID, GC-MS | α-pinene (51.70%), α-phellandrene (11.88%), β-myrcene (10.33%), longifolene (15.05%) | |
[35] | hydro- distillation | GC-MS | α-pinene (47.09%), β-myrcene (6.25%), β-caryophyllene (11.22%), caryophyllene oxide (7.47%), β-pinene (2.75%), α-humulene (2.65%) | |
Pinus peuce Griseb. fresh needles | [39] | hydro- distillation | GC-MS | α-pinene (49.3%), β-pinene (13%), germacrene D (6.5%), bornyl acetate (7.7%) |
[41] | hydro- distillation | GC-MS-FID | α-pinene (34.26–43.75%), limonene (19.2–22.2%), β-pinene (9.24–11.48%) (from 0 to 15 min distillation timeframe) | |
[40] | hydro- distillation | GC-FID, GC-MS | α-pinene (36.8%), β-phellandrene (6.1%), β-pinene (13%), germacrene D (10%), α-terpinol (9.3%), camphene (8%), bornyl acetate (4.2%) | |
Pinus peuce Griseb. twigs | [40] | hydro- distillation | GC-FID, GC-MS | α-pinene (16%), β-phellandrene (35.8%), β-pinene (21.5%), germacrene D (4.7%); α-terpinol (2.4%), camphene (2%), bornyl acetate (3.3%) |
Pinus pinea L. resin | [67] | hydro- distillation | GC-FID, GC-MS | α-pinene (21.39%), camphene (1.30%), β-pinene (9.68%), D-limonene (5.80%), β-phellandrene (1.57%), 1, 4-methenoazulene (8.63%), caryophyllene (9.12%), trans-verbenol (1.76%), α-caryophyllene (2.33%), α-phellandren-8-ol (1.25%), caryophyllene oxide (3.26%) |
Pinus cembra L. twigs with needles | [42] | hydro- distillation | GC-FID, GC-MS, 1H-NMR spectroscopy | α-pinene (36.3%), limonene (22.7%), β-phellandrene (12.0%), β-pinene (4.2%), myrcene (1.0%), camphene (1.0%), δ-cadinene (3.8%), methyl lambertianate (0.3%) |
Pinus cembra L. needles | [42] | hydro- distillation | GC-FID, GC-MS, 1H-NMR spectroscopy | α-pinene (48.4%), limonene (7.5%), δ-cadinene (6.2%), sesquiterpene hydrocarbons (24%) |
Pinus cembra L. twigs without needles | [42] | hydro- distillation | GC-FID, GC-MS, 1H-NMR spectroscopy | limonene (33.6%), α-pinene (17.5%), β-phellandrene (17.1%), β-pinene (7.6%), sesquiterpene hydrocarbons (13%) |
Pinus cembra L. bark | [42] | hydro- distillation | GC-FID, GC-MS, 1H-NMR spectroscopy | limonene (36.2%), β-phellandrene (18.8%), α-pinene (17.9%) |
Pinus cembra L. wood | [42] | hydro- distillation | GC-FID, GC-MS, 1H-NMR spectroscopy | α-pinene (35.2%), β-pinene (10.4%), thunbergol (8.4%) |
Pinus cembra L. unripe cones | [42] | hydro- distillation | GC-FID, GC-MS, 1H-NMR spectroscopy | α-pinene (35.4%), β-pinene (21.6%), limonene (21.1%), oxygenated monoterpenes (1%), oxygenated diterpenes (8%) |
Pinus cembra L. ripe cones | [42] | hydro- distillation | GC-FID, GC-MS, 1H-NMR spectroscopy | α-pinene (39.0%), β-pinene (18.9%), limonene (3.5%), oxygenated monoterpenes (8%), oxygenated diterpenes (17%) |
Pinus heldreichii Crist. needles | [68] | maceration with organic solvents | GC-FID, GC-MS | limonene, (19.7%) germacrene D, (25.65%), β-caryophyllene (11.69%), α-pinene (10.14%), Δ3-carene (5.99%) |
[69] | hydro- distillation | GC-FID, GC-MS | limonene, (19.7%) germacrene D, (25.65%), β-caryophyllene (11.69%), α-pinene (10.14%), Δ3-carene (5.99%) | |
[70] | maceration with organic solvents | GC-FID, GC-MS | germacrene D (28.%), limonene (27.1%), α-pinene (16.2%), β-caryophyllen (6.9%), β-.pinene (5.2%), β-myrcene (2.3%), pimaric acid (2.0%), α-humulene (1.2%),camphene (0.85%), thunbergo (0.78%), germacreneD-4-ol (0.64%), isopimarol (0.58%), kauran-18-oicacid (0.57%), (E)-hex-2-enal (0.52%) | |
[71] | hydro- distillation | GC-MS | Limonene (52.8%), germacrene D (15.8%), α-pinene (10.2%), trans-caryophyllene (7.7%), β-pinene (3.0%) | |
[72] | maceration with organic solvents | GC-FID, GC-MS | germacrene D (25.1%), α-pinene (19.3%), limonene (14.1%) β-caryophyllene (7.2%), β-pinene (7.0%) | |
[73] | hydro- distillation | GC-FID, GC-MS, 1H-NMR, IR | limonene (20.26–25.15%), germacrene D (42.6445.42%), β-caryophyllene (10.58–13.32%) | |
Pinus heldreichii Crist. green cones | [74] | hydro- distillation | GC-FID, GC-MS | limonene (75.90–77.75), α-pinene (10.39–12.78), β-myrcene (2.49–2.89), β-cubebene (2.51–2.62), trans-caryophyllene (2.18–2.38) |
[75] | hydro- distillation | GC-FID, GC-MS | Limonene (39.7–81.1%), α-pinen (6.97–21.01%), β-myrcene (1.29–1.75%), β-caryophyllene (0.91–5.83%), germacrene D (0.05–6.99%) |
Species | Isolate/ Plant Part | Essential Oil Isolation Method | Test Method | Microorganisms | Results | Ref. |
---|---|---|---|---|---|---|
P. sylvestris | essential oil from needles | hydro- distillation | microdilution method | Klebsiella pneumoniae (nasal and throat swabs), Escherichia coli (nasal and throat swabs and sputum), Morganella morganii (nasal swab), Staphylococcus aureus (nasal and throat swabs and sputum) | MIC = 1.5–10 mg/mL MBC = 2.5–40 mg/mL | [39] |
essential oil from needles | hydro- distillation | microdilution method | E. coli, Candida albicans, Enterococcus faecalis | moderate activity against C. albicans; no antibacterial activity against E. coli and E. faecalis | [28] | |
essential oil from needles | hydro- distillation | microdilution method | Neisseria gonorrhoeae, Streptococcus suis | 3 (1–0.06) mg/mL 2 (4–0.12) mg/mL | [81] | |
essential oil from needles | hydro- distillation | microdilution method | S. aureus, E. faecalis, Kocuria rhizophila, E. coli, K. pneumonia, Salmonella typhimurium, C. albicans | MIC = 0.1–1.0 mg/mL | [25] | |
essential oil from cones | hydro- distillation | microdilution method | S. aureus, E. faecalis, K. rhizophila, E. coli, K. pneumonia, S. typhimurium, C. albicans, Pseudomonas aeruginosa | MIC = 0.1–1.0 mg/mL | [25] | |
essential oil from needles | hydro- distillation | disc diffusion method microdilution method | Bacillus cereus S. aureus, B. stearothermophilus B. subtilis E. faecalis Micrococcus luteus E. coli K. pneumoniae P. fluorescens | Inhibition zones: 8–24 mm MIC = 0.025–25.00 mg/mL | [46] | |
P. mugo | essential oil from needles | hydro- distillation | microdilution method | E. coli, C. albicans, E. faecalis | moderate activity against C. albicans; no antibacterial activity against E. coli and E. faecalis | [28] |
essential oil from needles | steam distillation | disc diffusion method microdilution method | Gram-positive bacteria: Listeria monocytogenes, M. luteus, S. aureus Gram-negative bacteria: Enterobacter aerogenes, E. coli, P. putida; Fungi: C. albicans, C. glabrata, C. krusei, C. tropicalis | Inhibition zones: 6.67–13.33 mm MIC50 = 2.52–7.41 mg/mL MIC90 = 2.72–7.7 mg/mL | [82] | |
essential oil from needles | hydro- distillation | microdilution method | S. pneumoniae, S. pyogenes S. agalactiae | MIC: 15.26 µL/mL, 7.5 µL/mL, 31.25 µL/mL | [83] | |
essential oil from needles | hydro- distillation | microdilution method | K. pneumoniae (nasal and throat swabs), E. coli (nasal and throat swabs and sputum), M. morganii (nasal swab), S. aureus (nasal and throat swabs and sputum) | MIC = 2.5–20 mg/mL MBC = 10–40 mg/mL | [39] | |
essential oil from needles | steam distillation | microdilution method | Gram-negative bacteria: P. fluorescens, E. coli, Acinetobacter bohemicus Gram-positive bacteria: Krichia coli, P. fluorescens | MIC = 26.56–52.16 mg/mL | [84] | |
essential oil from needles | hydro- distillation | microdilution method | S. aureus, E. faecalis, K. rhizophila, B. subtilis, E. coli, K. pneumonia, S. typhimurium, C. albicans | MIC = 0.5–1.0 mg/mL | [25] | |
essential oil from cones | hydro- distillation | microdilution method | E. faecalis, K. rhizophila, E. coli, K. pneumonia, S. typhimurium, C. albicans | MIC = 0.4–1.0 mg/mL | [25] | |
essential oil from needles | industrial distillation | microdilution method | S. aureus E. coli | MIC = 0.0–1600 µg/mL | [85] | |
P nigra | essential oil from needles | hydro- distillation | microdilution method | E. coli, C. albicans, E. faecalis | no antibacterial activity against any strain | [28] |
essential oil from needles | hydro- distillation | disc diffusion method microdilution method | Gram-positive bacteria: B. cereus, E. faecalis, M. luteus, S. aureus; Fungi: C. albicans, A. niger Gram-negative bacteria: Aeromonas hydrophila, Chryseobacterium indologenes, Enterobacter cloacae, E. coli, K. pneumonia, P. aeruginosa | Gram-positive: inhibition zones from 0.0 to 37.0 ± 1.5 mm; Gram-negative: inhibition zones from 0.0 to 14.5 ± 0.5 mm; MIC for Gram-positive = 0.03–0.50% (v/v); MIC for Gram-negative = 0.12–3.2% (v/v) | [29] | |
essential oil from needles | hydro- distillation | microdilution method | K. pneumoniae (nasal and throat swabs), E. coli (nasal and throat swabs and sputum), M. morganii (nasal swab), S. aureus (nasal and throat swabs and sputum) | MIC = 2.5–10 mg/mL MBC = 10–40 mg/mL | [39] | |
essential oil from needles | industrial distillation | microdilution method | S. aureus, E. coli | MIC = 0.0–400 µg/mL | [85] | |
essential oil from needles | hydro- distillation | microdilution method | E. faecalis, C. albicans, K. rhizophila, E. coli, K. pneumonia, S. typhimurium, | MIC = 0.4–1.0 mg/mL | [25] | |
essential oil from cones | hydro- distillation | microdilution method | E. faecalis, C. albicans K. rhizophila, E. coli, K. pneumonia, S. typhimurium, | MIC = 0.1–1.0 mg/mL | [25] | |
P. halеpensis | essential oil from needles | hydro- distillation | paper disc diffusion method | Gram-positive bacteria: S. aureus, B. cereus, E. faecalis, L. monocytogenes Gram-negative bacteria: P. aeruginosa, E. coli, S. typhimurium, A. baumanii, Citrobacter freundii, Proteus mirabilis, K. pneumoniae | Inhibition zone 8–10 mm | [37] |
essential oil from needles | unknown | disc diffusion method | S. aureus, P. aeruginosa, E. coli, B. cereus | Inhibition zones: 0–4 mm | [86] | |
essential oil from needles | hydro- distillation | microdilution method | E. faecalis, C. albicans K. rhizophila, E. coli, B. subtilis, K. pneumoniae, S. typhimurium, P. aeruginosa | MIC = 0.15–0.8 mg/mL | [25] | |
essential oil from needles | hydro- distillation | microdilution method | K. pneumonia, E. coli, M. morganii, S. aureus | MIC = 0.19–4.0 mg/mL MBC = 0.5–4.0 mg/mL | [87] | |
essential oil from cones | hydro- distillation | microdilution method | E. faecalis, C. albicans K. rhizophila, E. coli, B. subtilis, K. pneumoniae, S. typhimurium | MIC = 0.1–0.8 mg/mL | [25] | |
essential oil from cones | hydro- distillation | disc diffusion method microdilution method | B. subtilis, Sarcina lutea, E. coli, S. aureus | Inhibition zones: 0–12.67 ± 0.58 mm (conc. 125–2000 µg/mL) MIC ≤ 125–2000 µg/mL | [88] | |
butanol fraction of essential oil | hydro- distillation | disc diffusion method microdilution method | B. subtilis, S. lutea, E. coli, S. aureus | Inhibition zones: 0–15.33 ± 0.58 mm (conc. 125–2000 µg/mL) MIC ≤ 125–>2000 µg/mL | ||
essential oil from needles | hydro- distillation | disc diffusion method | B. subtilis, M. lutea E. coli, P. mirabilis C. albican | Inhibition zones: 8 ± 0.32–39 ± 0.83 mm | [89] | |
P. pinea | essential oils of the resin (hydrodistillation, distilled water) | hydro- distillation | disc diffusion method | M. luteus, B. subtilis, S. aureus ATCC 29213, S. aureus BAA, B. cereus, E. casseliflavus, E. faecalis, E. hormaechei, E. coli, C. albicans | MIC = 34 mg/mL | [67] |
P. peuce | essential oil from needles (hydrodistillation, diethyl ether) | hydro- distillation | microdilution method | K. pneumoniae (nasal and throat swabs), E. coli (nasal and throat swabs and sputum), M. morganii (nasal swab), S. aureus (nasal and throat swabs and sputum) | MIC = 2.5–20 mg/mL MBC = 5–40 mg/mL | [39] |
essential oil from needles with one-two year old twigs (hydrodistillation, water) | hydro- distillation | disc diffusion method | S. aureus subsp. aureus, L. monocytogenes, B. cereus, S. enterica subsp. enterica, P. aeruginosa, E. coli, C. albicans, C. glabrata, C. tropicalis | Inhibition zones: 3.17–8.17 mm | [41] | |
P. heldreichii | essential oil from needles | hydro- distillation | disc diffusion method | Gram-positive bacteria: S. aureus subsp. aureus, L. monocytogenes, B. cereus Gram-negative bacteria: S. enterica subsp. enterica, P. aeruginosa, E. coli Fungi: C. albicans, C. glabrata, C. tropicalis | 3–8 mm | [41] |
fractions of essential oil from needles (n-hexane fraction, n-hexane/diethyl ether (1:1) fraction, diethyl ether fraction | hydro- distillation | disc diffusion method | E. coli, C. albicans, C. krusei (clinically isolated), E. faecalis | Candida albicans Inhibition zones: d > 35 mm | [28] | |
microdilution method | E. coli, C. albicans, C. krusei (clinically isolated), E. faecalis | weak activity against C. albicans; inactive against E. coli and E. faecalis | [28] | |||
essential oil from needles | hydro- distillation | microdilution method | S. aureus, K. pneumoniae, E. coli | MIC for S. aureus = 1.50 mg/mL | [87] |
Species | Essential Oil Isolation Method | Test Method | Results | Reference |
---|---|---|---|---|
P. sylvestris | hydrodistillation | POCL | 4.86 ± 0.48 μg/mL | [106] |
hydrodistillation | DPPH | 0.224 ± 0.011 µgTE/mL EO | [28] | |
industrial distillation | DPPH | 82.09% inhibition of DPPH radicals (conc. 50 µL/mL) | [107] | |
hydrodistillation | DPPH | 30.37 ± 2.63 µgTE/mL EO | [108] | |
hydrodistillation | DPPH | 0.262 ± 0.019 µgTE/mL EO | [28] | |
P.nigra | hydrodistillation | DPPH | 0.263 ± 0.021 µgTE/mL EO | [28] |
hydrodistillation | DPPH | 2.6 ± 0.1–12.1 ± 1.7% (conc. 0.2–1.0 mg/mL) | [104] | |
steam distillation | DPPH | 3.08 ± 0.65 µg/mL | [84] | |
hydrodistillation and solid phase micro-extraction | β-carotene bleaching test | IC50 = 1.59 ± 0.01 µg/mL | [109] | |
P. halеpensis | hydrodistillation | POCL | 1.78 ± 0.17 μg/mL | [106] |
hydrodistillation | β-carotene bleaching test | IC50 = 45.22 µg/mL | [64] | |
P. pinea | hydrodistillation | DPPH | 52.10% | [67] |
P. mugo | steam distillation | TBA | IC50 = 2.42 ± 0.2–4.14 ± 0.3 mg/mL | [36] |
P. heldreichii | hydrodistillation | DPPH | 91.3% inhibition of DPPH radicals | [75] |
hydrodistillation | DPPH | 0.141 ± 0.011 μgTE/mLEO) | [28] | |
hydrodistillation | DPPH | EC50 for aglycones: 0.7 g/L EC50 for essential oil: undetermined (maximum concentration only 6% of DPPH) | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirković, S.; Martinović, M.; Tadić, V.M.; Nešić, I.; Jovanović, A.S.; Žugić, A. Antimicrobial and Antioxidant Activity of Essential Oils from Selected Pinus Species from Bosnia and Herzegovina. Antibiotics 2025, 14, 677. https://doi.org/10.3390/antibiotics14070677
Mirković S, Martinović M, Tadić VM, Nešić I, Jovanović AS, Žugić A. Antimicrobial and Antioxidant Activity of Essential Oils from Selected Pinus Species from Bosnia and Herzegovina. Antibiotics. 2025; 14(7):677. https://doi.org/10.3390/antibiotics14070677
Chicago/Turabian StyleMirković, Snježana, Milica Martinović, Vanja M. Tadić, Ivana Nešić, Aleksandra Stolić Jovanović, and Ana Žugić. 2025. "Antimicrobial and Antioxidant Activity of Essential Oils from Selected Pinus Species from Bosnia and Herzegovina" Antibiotics 14, no. 7: 677. https://doi.org/10.3390/antibiotics14070677
APA StyleMirković, S., Martinović, M., Tadić, V. M., Nešić, I., Jovanović, A. S., & Žugić, A. (2025). Antimicrobial and Antioxidant Activity of Essential Oils from Selected Pinus Species from Bosnia and Herzegovina. Antibiotics, 14(7), 677. https://doi.org/10.3390/antibiotics14070677