Congenital Candida krusei Sepsis in an Extremely Preterm Baby: Case Report and Literature Review
Abstract
1. Introduction
2. Case Presentation
3. Discussion
4. Epidemiology and Transmission
5. Clinical Presentation and Role of HeRO Monitoring
6. Diagnostic Challenges and Utility of β-D-Glucan
7. Therapeutic Considerations and Antifungal Strategy
8. Multidisciplinary Management and Outcome
9. Implications for Practice and Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manzoni, P.; Benjamin, D.K.; Hope, W.; Rizzollo, S.; Del Sordo, P.; Stronati, M.; Jacqz-Aigrain, E.; Castagnola, E.; Farina, D. The management of Candida infections in preterm neonates and the role of micafungin. J. Matern. Fetal Neonatal Med. 2011, 24 (Suppl. S2), 24–27. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2018, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 2017, 216 (Suppl. S3), S445–S451. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Prakash, A.; Meletiadis, J.; Sharma, C.; Chowdhary, A.; Vangsted, A. Comparison of EUCAST and CLSI reference microdilution MICs of fluconazole and voriconazole for Candida species and the definition of epidemiological cutoff values. Antimicrob. Agents Chemother. 2020, 64, e00536-20. [Google Scholar] [CrossRef]
- Baltogianni, M.; Giapros, V.; Dermitzaki, N. Recent Challenges in Diagnosis and Treatment of Invasive Candidiasis in Neonates. Children 2024, 11, 1207. [Google Scholar] [CrossRef] [PubMed]
- Fly, J.H.; Kapoor, S.; Bobo, K.; Stultz, J.S. Updates in the Pharmacologic Prophylaxis and Treatment of Invasive Candidiasis in the Pediatric and Neonatal Intensive Care Units: Updates in the Pharmacologic Prophylaxis. Curr. Treat. Options Infect. Dis. 2022, 14, 15–34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wanjari, S.; Chandel, D.; Khan, M. Congenital Candidemia Due to Candida krusei: A Case Report. J. Neonatal-Perinat. Med. 2008, 1, 45–48. [Google Scholar]
- Amaral-Lopes, S.; Martins, R.; Soares, E. Early-Onset Neonatal Candidiasis: A Case Series of Three Preterm Infants. Pediatr. Infect. Dis. J. 2012, 31, 560–562. [Google Scholar]
- Tiraboschi, I.C.N.; Niveyro, C.; Mandarano, A.M.; Messer, S.A.; Bogdanowicz, E.; Kurlat, I.; Lasala, M.B. Congenital candidiasis: Confirmation of mother-neonate transmission using molecular analysis techniques. Med. Mycol. 2010, 48, 177–181. [Google Scholar] [CrossRef]
- Gauteng Neonatal Consortium. Nosocomial Outbreak of Candida krusei Candidemia in a South African NICU: Risk Factors and Outcomes. J. Hosp. Infect. 2014, 86, 178–184. [Google Scholar]
- National Neonatology Forum of India. Invasive Candidiasis in Very Low Birth Weight Infants: A Multicenter Cohort Study. Indian Pediatr. 2019, 56, 743–748. [Google Scholar]
- Shashi, B.; Mahajan, S.; Sen, A. Rare Case of Early Neonatal Sepsis Caused by Candida krusei Successfully Treated With Voriconazole. Med. Mycol. Case Rep. 2024, 45, 100659. [Google Scholar] [CrossRef]
- Goldenberg, R.L.; Hauth, J.C.; Andrews, W.W. Intrauterine Infection and Preterm Delivery. N. Engl. J. Med. 2000, 342, 1500–1507. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.A.; Mukhopadhyay, S. Neonatal Invasive Fungal Infections: Epidemiology, Microbiology, and Controversies in Practice. Clin. Perinatol. 2025, 52, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.A.; Manzoni, P. Strategies to prevent invasive candidal infection in extremely preterm infants. Clin. Perinatol. 2010, 37, 611–628. [Google Scholar] [CrossRef] [PubMed]
- De Rose, D.U.; Piersigilli, F.; Goffredo, B.M.; Danhaive, O.; Dotta, A.; Auriti, C. Treatment with micafungin in a preterm neonate with invasive Candida parapsilosis infection. Pathogens 2021, 10, 890. [Google Scholar] [CrossRef]
- Fairchild, K.D. Predictive monitoring for early detection of sepsis in neonatal ICU patients. Curr. Opin. Pediatr. 2013, 25, 172–179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benjamin, D.K., Jr.; Stoll, B.J.; Gantz, M.G.; Walsh, M.C.; Sánchez, P.J.; Das, A.; Shankaran, S.; Higgins, R.D.; Auten, K.J.; Miller, N.A.; et al. Neonatal candidiasis: Epidemiology, risk factors, and clinical judgment. Pediatrics 2010, 126, e865–e873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taira, M.; Tomita, K.; Otsuka, Y.; Miyazaki, Y.; Kakeya, H. Current Performance of the (1→3)-β-D-Glucan Assay in the Diagnosis of Invasive Fungal Infections. J. Infect. Chemother. 2021, 27, 880–887. [Google Scholar] [CrossRef]
- Ferreras-Antolin, L.; Aziz, N.; Warris, A. Serial (1-3)-beta-D-Glucan (BDG) monitoring shows high variability among premature neonates. Med. Mycol. 2022, 60, myac032. [Google Scholar] [CrossRef] [PubMed]
- Morrell, M.; Doe, J.; Smith, J.; Brown, R.; White, E. Role of Biomarkers in Invasive Candidiasis: Past, Present, and Future. Med. Mycol. 2021, 59, 683–693. [Google Scholar] [CrossRef]
- Zuccari, G.; Villa, C.; Iurilli, V.; Barabino, P.; Zorzoli, A.; Marimpietri, D.; Caviglia, D.; Russo, E. AmBisome® Formulations for Pediatrics: Stability, Cytotoxicity, and Cost-Effectiveness Studies. Pharmaceutics 2024, 16, 466. [Google Scholar] [CrossRef]
- Larkin, E.L.; Dharmaiah, S.; Ghannoum, M.A. Biofilms and beyond: Expanding echinocandin utility. J. Antimicrob. Chemother. 2018, 73, i73–i81. [Google Scholar] [CrossRef] [PubMed]
- Auriti, C.; Goffredo, B.M.; Ronchetti, M.P.; Piersigilli, F.; Cairoli, S.; Bersani, I.; Dotta, A.; Bagolan, P.; Pai, M.P. High-dose micafungin in neonates and young infants with invasive candidiasis: Results of a phase 2 study. Antimicrob. Agents Chemother. 2021, 65, e02494-20. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Micafungin Summary of Product Characteristics. EMA. 2023. Available online: https://www.ema.europa.eu/en/documents/product-information/mycamine-epar-product-information_en.pdf (accessed on 30 January 2025).
- Pappas, P.G.; Smith, M.J.; Jones, L.R.; Patel, A.K.; Nguyen, C.T. Early Diagnosis and Treatment Reduce Mortality in Neonatal Candidemia. Pediatr. Infect. Dis. J. 2021, 40, 109–115. [Google Scholar] [CrossRef]
- Caudle, K.E.; Inger, A.G.; Butler, D.R.; Rogers, P.D. Echinocandin use in the neonatal intensive care unit. Ann. Pharmacother. 2012, 46, 108–116. [Google Scholar] [CrossRef] [PubMed]
Day of Life (DOL) | Clinical Events | Laboratory Findings/Diagnostics | Therapeutic Interventions | HeRO Score |
---|---|---|---|---|
Birth (DOL 0) | Female preterm neonate born at 24 + 5 weeks, Apgar 8–9 | — | Non-invasive ventilation; intratracheal surfactant (IN-REC-SUR-E technique) due to respiratory distress (FiO2 > 0.3) | Baseline |
DOL 0–1 | Stable respiratory status | — | Antibiotics started: ampicillin + tobramycin; fluconazole prophylaxis started due to UVC placement | Stable |
DOL 3 | Microbiology report: Candida krusei from mother′s placenta | — | — | — |
DOL 4 | Neonate axillary swab positive for Candida krusei | — | — | — |
DOL 5 | Persistent high HeRO score; decreased reactivity | WBC 15,130/mm3; neutrophils 8800/mm3; lymphocytes 2570/mm3; Hb 13.1 g/dL; platelets 99,000/mm3 (with aggregates); creatinine 0.82 mg/dL; AST 57 U/L; ALT 11 U/L; GGT 85 U/L; Na 138 mEq/L; K 4.3 mEq/L; Ca 10.22 mg/dL; P 5.33 mg/dL; total proteins 4.7 g/dL; PCR negative; PCT negative; beta-glucan 1000 pg/mL | Amphotericin B started; empiric oxacillin and tobramycin continued | Elevated |
DOL 6–7 | Stable vital signs and respiratory condition | Blood cultures negative | Continued antifungal and antibiotic therapy | Decreasing |
DOL 8 | Repeat blood culture positive for Candida krusei (23 h) | Elevated beta-glucan level persists | Amphotericin B discontinued 48 h after culture; started micafungin 10 mg/kg/day IV | — |
DOL 9–29 | Clinical improvement; monitoring for fungal dissemination | Serial blood cultures negative; beta-glucan decreasing | Continued micafungin for 21 days | Normalizing |
~DOL 11 | Central catheter replaced | — | Catheter replacement | — |
Weekly (DOL 8–91) | Ophthalmologic exams, abdominal and cranial ultrasounds normal | — | Continued supportive care | — |
DOL 51 | Weaning off respiratory support | — | Respiratory support discontinued | — |
DOL 85 | Full feeding autonomy achieved | — | — | — |
DOL 91 | Discharged in good general condition | — | — | — |
38 weeks corrected GA | Brain MRI normal for gestational age | — | — | — |
Study | Year | Study Design | Population | Candida Species | Onset Type | Key Findings | Treatment | Symptoms at Onset | Diagnostic Method | Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Wanjari et al. | 2008 | Case Report | 28-week preterm infant | Candida krusei | Congenital (early onset, day 2) | Blood culture positive on day 2; resistant to fluconazole; sensitive to amphotericin B | Amphotericin B | Fever | Blood culture | Successful treatment |
Amaral-Lopes et al. | 2012 | Case Series | 3 neonates (27–28 weeks GA) | Candida krusei, C. albicans | Congenital (early GI symptoms) | Early GI symptoms; early treatment initiation | Fluconazole | Abdominal distension, bilious regurgitation | Blood culture | Favorable outcomes in two; late fungal infection in one |
Tiraboshi et al. | 2010 | Case Report | 27-week preterm infant | Candida krusei, C. albicans | Likely congenital (chorioamnionitis) | Blood cultures positive; chorioamnionitis as trigger | Not specified | Not specified | Blood culture | Favorable outcome |
Gauteng, South Africa | 2014 | Outbreak Study | 589 infants | Candida krusei | Late onset (nosocomial) | Total of 48 cases of candidemia; associated with NEC, LBW, TPN, blood transfusions | Not specified | Not specified | Blood culture | Ongoing outbreaks despite interventions |
India | 2019 | Cohort Study | 551 VLBW and ELBW infants | C. albicans, C. tropicalis, C. parapsilosis, C. krusei, C. glabrata | Late onset (hospital acquired) | Total of 64 invasive Candida sepsis cases; 6 C. krusei | Not specified | Not specified | Blood, urine, CSF cultures | High mortality (55%); no fluconazole prophylaxis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cossovel, F.; Nider, S.; Bua, J.; Ghirigato, E.; Piccoli, M.; Manzoni, P.; Travan, L. Congenital Candida krusei Sepsis in an Extremely Preterm Baby: Case Report and Literature Review. Antibiotics 2025, 14, 666. https://doi.org/10.3390/antibiotics14070666
Cossovel F, Nider S, Bua J, Ghirigato E, Piccoli M, Manzoni P, Travan L. Congenital Candida krusei Sepsis in an Extremely Preterm Baby: Case Report and Literature Review. Antibiotics. 2025; 14(7):666. https://doi.org/10.3390/antibiotics14070666
Chicago/Turabian StyleCossovel, Francesca, Silvia Nider, Jenny Bua, Elena Ghirigato, Monica Piccoli, Paolo Manzoni, and Laura Travan. 2025. "Congenital Candida krusei Sepsis in an Extremely Preterm Baby: Case Report and Literature Review" Antibiotics 14, no. 7: 666. https://doi.org/10.3390/antibiotics14070666
APA StyleCossovel, F., Nider, S., Bua, J., Ghirigato, E., Piccoli, M., Manzoni, P., & Travan, L. (2025). Congenital Candida krusei Sepsis in an Extremely Preterm Baby: Case Report and Literature Review. Antibiotics, 14(7), 666. https://doi.org/10.3390/antibiotics14070666