Lack of Association Between qacE and qacE∆1 Gene Variants and Sodium Hypochlorite Resistance in Clinical Isolates of ESBL- and Carbapenemase-Producing Klebsiella spp. and Enterobacter spp., from Gaborone, Botswana
Abstract
1. Introduction
2. Results
2.1. Selection of Bacterial Strains, Identification, and Antimicrobial Susceptibility Testing
2.2. MIC and MBC of Sodium Hypochlorite
2.3. PCR and Restriction Digest
3. Discussion
4. Methods
4.1. Selection of Bacterial Strains, Identification, and Antimicrobial Susceptibility Testing
4.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Biocides
4.3. DNA Extraction, PCR and Restriction Digest
4.4. Statistical Analysis
4.5. Biosafety
4.6. Ethical Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Disclaimer
Conflicts of Interest
References
- World Health Organization (WHO). WHO Bacterial Pathogens Priority List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/publications/i/item/9789240093461/ (accessed on 17 July 2024).
- Ballén, V.; Gabasa, Y.; Ratia, C.; Ortega, R.; Tejero, M.; Soto, S. Antibiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated From Different Clinical Sources. Front. Cell. Infect. Microbiol. 2021, 11, 738223. [Google Scholar] [CrossRef] [PubMed]
- Silago, V.; Kovacs, D.; Msanga, D.R.; Seni, J.; Matthews, L.; Oravcová, K.; Zadoks, R.N.; Lupindu, A.M.; Hoza, A.S.; Mshana, S.E. Bacteremia in critical care units at Bugando Medical Centre, Mwanza, Tanzania: The role of colonization and contaminated cots and mothers’ hands in cross-transmission of multidrug resistant Gram-negative bacteria. Antimicrob. Resist. Infect. Control 2020, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Expected Resistant Phenotypes Version 1.2. 2023. Available online: https://www.eucast.org/expert_rules_and_expected_phenotypes/expected_phenotypes/ (accessed on 11 January 2024).
- Wand, M.E.; Bock, L.J.; Bonney, L.C.; Sutton, J.M. Mechanisms of Increased Resistance to Chlorhexidine and Cross-Resistance to Colistin following Exposure of Klebsiella pneumoniae Clinical Isolates to Chlorhexidine. Antimicrob. Agents Chemother. 2016, 61, e01162–16. [Google Scholar] [CrossRef]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int. J. Mol. Sci. 2020, 21, 5090. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Barbarisi, A.; Passavanti, M.B.; Pace, M.C. Mechanisms of Action of Carbapenem Resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreira, N.C.; Abichabki, N.; Ferreira, J.C.; Martinez, R.; Darini, A.L.D.C.; Andrade, L.N. Genetic determinants and phenotypic characteristics of heavy metal and biocide tolerance among multidrug-resistant and susceptible Gram-negative bacilli clinical isolates. J. Glob. Antimicrob. Resist. 2025, 42, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Institute for Health Metrics and Evaluation (IHME). The burden of Antimicrobial Resistance in Botswana. 2019. Available online: https://www.healthdata.org/sites/default/files/2023-09/Botswana.pdf (accessed on 14 May 2025).
- World Health Organization (WHO). Global Report on Infection Prevention and Control; WHO: Geneva, Switzerland, 2022; Available online: https://iris.who.int/bitstream/handle/10665/354489/9789240051164-eng.pdf?sequence=1/ (accessed on 12 January 2024).
- Mbim, E.; Mboto, C.; Agbo, B. A review of nosocomial infections in Sub-Saharan Africa. Br. Microbiol. Res. J. 2016, 15, 1–11. [Google Scholar] [CrossRef]
- Samuel, S.; Kayode, O.; Nwigwe, I.; Abodrin, A.O.; Salami, T.A.T.; Taiwo, S.S. Nosocomial infections and the challenges of control in developing countries. Afr. J. Clin. Exp. Microbiol. 2010, 11, 102–110. [Google Scholar] [CrossRef]
- Gezmu, A.M.; Bulabula, A.N.H.; Dramowski, A.; Bekker, A.; Aucamp, M.; Souda, S.; Nakstad, B. Laboratory-confirmed bloodstream infections in two large neonatal units in sub-Saharan Africa. Int. J. Infect. Dis. 2021, 103, 201–207. [Google Scholar] [CrossRef]
- Mannathoko, N.; Mosepele, M.; Gross, R.; Smith, R.M.; Alby, K.; Glaser, L.; Richard-Greenblatt, M.; Dumm, R.; Sharma, A.; Jaskowiak-Barr, A.; et al. Colonization with extended-spectrum cephalosporin-resistant Enterobacterales (ESCrE) and carbapenem-resistant Enterobacterales (CRE) in healthcare and community settings in Botswana: An antibiotic resistance in communities and hospitals (ARCH) study. Int. J. Infect. Dis. 2022, 122, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.A.; Mir, R.A.; Qadri, H.; Dhiman, R.; Almilaibary, A.; Alkhanani, M.; Mir, M.A. Integrons in the development of antimicrobial resistance: Critical review and perspectives. Front. Microbiol. 2023, 14, 1231938. [Google Scholar] [CrossRef]
- Gillings, M.; Boucher, Y.; Labbate, M.; Holmes, A.; Krishnan, S.; Holley, M.; Stokes, H.W. The evolution of class 1 integrons and the rise of antibiotic resistance. J. Bacteriol. 2008, 190, 5095–5100. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, H.; Jiang, M.; Wu, Q.; Li, Q.; Wu, G. Distribution characteristics of integrons and correlation analysis of antibiotic resistance in urine isolated Enterobacter cloacae. Front. Cell. Infect. Microbiol. 2024, 14, 1462742. [Google Scholar] [CrossRef]
- Azadpour, M.; Nowroozi, J.; Goudarzi, G.R.; Mahmoudvand, H. Presence of qacEΔ1 and cepA genes and susceptibility to a hospital biocide in clinical isolates of Klebsiella pneumoniae in Iran. Trop. Biomed. 2015, 32, 109–115. [Google Scholar]
- Xiao, X.; Bai, L.; Wang, S.; Liu, L.; Qu, X.; Zhang, J.; Xiao, Y.; Tang, B.; Li, Y.; Yang, H.; et al. Chlorine Tolerance and Cross-Resistance to Antibiotics in Poultry-Associated Salmonella Isolates in China. Front. Microbiol. 2022, 12, 833743. [Google Scholar] [CrossRef]
- Fabrizio, G.; Sivori, F.; Cavallo, I.; Truglio, M.; Toma, L.; Sperati, F.; Francalancia, M.; Obregon, F.; Pamparau, L.; Kovacs, D.; et al. Efficacy of sodium hypochlorite in overcoming antimicrobial resistance and eradicating biofilms in clinical pathogens from pressure ulcers. Front. Microbiol. 2024, 15, 1432883. [Google Scholar] [CrossRef]
- Kazama, H.; Hamashima, H.; Sasatsu, M.; Arai, T. Distribution of the antiseptic-resistance genes qacE and qacEΔ1 in gram-negative bacteria. FEMS Microbiol. Lett. 1998, 159, 173–178. [Google Scholar] [CrossRef]
- Kücken, D.; Feucht, H.; Kaulfers, P. Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. FEMS Microbiol. Lett. 2000, 183, 95–98. [Google Scholar] [CrossRef]
- Abuzaid, A.; Hamouda, A.; Amyes, S.G. Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE1 and qacE efflux pump genes and antibiotic resistance. J. Hosp. Infect. 2012, 81, 87–91. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Sandle, T.; Al-Aboody, M.S.; AlFonaisan, M.K.; Alturaiki, W.; Mickymaray, S.; Premanathan, M.; Alsagaby, S.A. Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii—A first report from the Kingdom of Saudi Arabia. J. Infect. Public Health 2018, 11, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Zhang, Z.; Shen, R.; Liu, X.; Li, X.; Chen, B.; Wu, X.; Li, H.; Xie, X.; Huang, S. Disinfection Strategies for Carbapenem-Resistant Klebsiella pneumoniae in a Healthcare Facility. Antibiotics 2022, 11, 736. [Google Scholar] [CrossRef] [PubMed]
- Ntshonga, P.; Gobe, I.; Koto, G.; Strysko, J.; Paganotti, G.M. Biocide resistance in Klebsiella pneumoniae; a narrative review. Infect. Prev. Pract. 2024, 6, 100360. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Zhang, X.X.; Shi, P.; Wu, B.; Ren, H. A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing. Ecotoxicol. Environ. Saf. 2014, 109, 15–21. [Google Scholar] [CrossRef]
- Nelson, B. Infection control during gastrointestinal endoscopy. J. Lab. Clin. Med. 2003, 141, 159–167. [Google Scholar] [CrossRef]
- Hadadi, F.; Ghaznavi Rad, E.; Almasi -Hashiani, A.; Abtahi, H. Detection of qacEΔ1, qacG, qacE, qacF resistance genes in Escherichia coli producing broad-spectrum beta-lactamases to benzalkonium chloride. J. Babol Univ. Med. Sci. 2019, 21, 286–292. [Google Scholar] [CrossRef]
- Guo, W.; Shan, K.; Xu, B.; Li, J. Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog. Glob. Health 2015, 109, 184–192. [Google Scholar] [CrossRef]
- Liu, X.; Gong, L.; Liu, E.; Li, C.; Wang, Y.; Liang, J. Characterization of the Disinfectant Resistance Genes qacEΔ1 and cepA in Carbapenem-Resistant Klebsiella pneumoniae Isolates. Am. J. Trop. Med. Hyg. 2023, 110, 136–141. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, M.; Yan, C.; Zhang, Y.; He, X.; Wu, L.; Xu, J.; Lu, J.; Bao, Q.; Hu, Y.; et al. Class 1 integrons and multiple mobile genetic elements in clinical isolates of the Klebsiella pneumoniae complex from a tertiary hospital in eastern China. Front. Microbiol. 2023, 14, 985102. [Google Scholar] [CrossRef]
- Huang, L.; Wu, C.; Gao, H.; Xu, C.; Dai, M.; Huang, L.; Hao, H.; Wang, X.; Cheng, G. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics 2022, 11, 520. [Google Scholar] [CrossRef]
- Garcia Mendez, D.F.; Rengifo Herrera, J.A.; Sanabria, J.; Wist, J. Analysis of the Metabolic Response of Planktonic Cells and Biofilms of Klebsiella pneumoniae to Sublethal Disinfection with Sodium Hypochlorite Measured by NMR. Microorganisms 2022, 10, 1323. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.J.; Wang, Z.C.; Huang, H.Y.; Huang, H.D.; Peng, H.L. YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence of Klebsiella pneumoniae CG43. PLoS ONE 2013, 8, e66740. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Tao, S.; Yuan, J.; Li, X. Effect of sodium hypochlorite on biofilm of Klebsiella pneumoniae with different drug resistance. Am. J. Infect. Control. 2022, 50, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Wang, H.; Liang, L.; Wang, G.; Xu, X.; Wang, H. Response of Formed-Biofilm of Enterobacter cloacae, Klebsiella oxytoca, and Citrobacter freundii to Chlorite-Based Disinfectants. J. Food Sci. 2018, 83, 1326–1332. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Mao, D.; Wang, X.; Luo, Y. NaClO Co-selects antibiotic and disinfectant resistance in Klebsiella pneumonia: Implications for the potential risk of extensive disinfectant use during COVID-19 pandemic. J. Hazard. Mater. 2024, 470, 134102. [Google Scholar] [CrossRef]
- Surveillance of Healthcare-Associated Infections and Antimicrobial Drug Resistance. 2024. Available online: https://mailchi.mp/3cd0f76d349e/sharebotswana/ (accessed on 12 January 2024).
- Winstanley, T.; Courvalin, P. Expert systems in clinical microbiology. Clin. Microbiol. Rev. 2011, 24, 515–556. [Google Scholar] [CrossRef]
- Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett. 2016, 38, 1015–1019. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). MIC Determination of Non-Fastidious and Fastidious Organisms. 2022. Available online: https://www.eucast.org/ast_of_bacteria/mic_determination/ (accessed on 12 January 2024).
Bacterial Species (N) | MIC50 (mg/L) | MIC90 (mg/L) | Mean MBC (mg/L) |
---|---|---|---|
K. pneumoniae (143) | 9375 | 18,750 | 55,460 |
K. aerogenes (26) | 9375 | 18,750 | 56,250 |
K. oxytoca (5) | 7031 | 14,060 | 48,750 |
E. cloacae (42) | 9375 | 18,750 | 54,240 |
Bacterial Species (N) | qacE N (%; 95% CI) | qacEΔ1 N (%; 95% CI) |
---|---|---|
K. pneumoniae (143) | 21 (14.69; 9.33–21.57) | 114 (79.72; 72.19–85.98) |
E. cloacae (42) | 8 (19.05; 8.60–34.12) | 31 (73.81; 57.96–86.14) |
K. aerogenes (26) | 3 (11.54; 2.45–30.15) | 23 (88.46; 69.85–97.55) |
K. oxytoca (5) | 1 (20.00; 0.51–71.64) | 5 (100; 39.76–100.00) |
Total (216) | 33 (15.28; 10.76–20.78) | 174 (80.56; 74.64–85.61) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntshonga, P.; Ntereke, T.D.; Zankere, T.; Morse, D.P.; Koto, G.; Gobe, I.; Paganotti, G.M. Lack of Association Between qacE and qacE∆1 Gene Variants and Sodium Hypochlorite Resistance in Clinical Isolates of ESBL- and Carbapenemase-Producing Klebsiella spp. and Enterobacter spp., from Gaborone, Botswana. Antibiotics 2025, 14, 662. https://doi.org/10.3390/antibiotics14070662
Ntshonga P, Ntereke TD, Zankere T, Morse DP, Koto G, Gobe I, Paganotti GM. Lack of Association Between qacE and qacE∆1 Gene Variants and Sodium Hypochlorite Resistance in Clinical Isolates of ESBL- and Carbapenemase-Producing Klebsiella spp. and Enterobacter spp., from Gaborone, Botswana. Antibiotics. 2025; 14(7):662. https://doi.org/10.3390/antibiotics14070662
Chicago/Turabian StyleNtshonga, Pearl, Tlhalefo Dudu Ntereke, Tshiamo Zankere, Daniel Paul Morse, Garesego Koto, Irene Gobe, and Giacomo Maria Paganotti. 2025. "Lack of Association Between qacE and qacE∆1 Gene Variants and Sodium Hypochlorite Resistance in Clinical Isolates of ESBL- and Carbapenemase-Producing Klebsiella spp. and Enterobacter spp., from Gaborone, Botswana" Antibiotics 14, no. 7: 662. https://doi.org/10.3390/antibiotics14070662
APA StyleNtshonga, P., Ntereke, T. D., Zankere, T., Morse, D. P., Koto, G., Gobe, I., & Paganotti, G. M. (2025). Lack of Association Between qacE and qacE∆1 Gene Variants and Sodium Hypochlorite Resistance in Clinical Isolates of ESBL- and Carbapenemase-Producing Klebsiella spp. and Enterobacter spp., from Gaborone, Botswana. Antibiotics, 14(7), 662. https://doi.org/10.3390/antibiotics14070662