Antimicrobial Resistance Characterization of Methicillin-Resistant Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Clinical Cases in Dogs and Cats in Belgium
Abstract
1. Introduction
2. Results
2.1. MRSA
2.2. MRSP
3. Discussion
4. Materials and Methods
4.1. Strain Collection
4.2. DNA Extraction
4.3. Real-Time PCR
4.4. Antimicrobial Susceptibility Testing
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; Van Leeuwen, W.; Van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The Role of Nasal Carriage in Staphylococcus aureus Infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Schaumburg, F.; Fegeler, C.; Friedrich, A.W.; Köck, R. Staphylococcus aureus from the German General Population Is Highly Diverse. Int. J. Med. Microbiol. 2017, 307, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in Animals. Microbiol. Spectr. 2019, 7, e10-1128. [Google Scholar] [CrossRef] [PubMed]
- Van Duijkeren, E.; Catry, B.; Greko, C.; Moreno, M.A.; Pomba, M.C.; Pyorala, S.; Ruzauskas, M.; Sanders, P.; Threlfall, E.J.; Torren-Edo, J.; et al. Review on Methicillin-Resistant Staphylococcus pseudintermedius. J. Antimicrob. Chemother. 2011, 66, 2705–2714. [Google Scholar] [CrossRef]
- Smith, J.T.; Amador, S.; McGonagle, C.J.; Needle, D.; Gibson, R.; Andam, C.P. Population Genomics of Staphylococcus pseudintermedius in Companion Animals in the United States. Commun. Biol. 2020, 3, 282. [Google Scholar] [CrossRef]
- Ma, G.C.; Worthing, K.A.; Ward, M.P.; Norris, J.M. Commensal Staphylococci Including Methicillin-Resistant Staphylococcus aureus from Dogs and Cats in Remote New South Wales, Australia. Microb. Ecol. 2020, 79, 164–174. [Google Scholar] [CrossRef]
- Lee, A.S.; De Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-Resistant Staphylococcus aureus. Nat. Rev. Dis. Primer 2018, 4, 18033. [Google Scholar] [CrossRef]
- Weese, J.S.; Van Duijkeren, E. Methicillin-Resistant Staphylococcus aureus and Staphylococcus pseudintermedius in Veterinary Medicine. Vet. Microbiol. 2010, 140, 418–429. [Google Scholar] [CrossRef]
- Bierowiec, K.; Korzeniowska-Kowal, A.; Wzorek, A.; Rypuła, K.; Gamian, A. Prevalence of Staphylococcus Species Colonization in Healthy and Sick Cats. BioMed Res. Int. 2019, 2019, 4360525. [Google Scholar] [CrossRef]
- Joosten, P.; Van Cleven, A.; Sarrazin, S.; Paepe, D.; De Sutter, A.; Dewulf, J. Dogs and Their Owners Have Frequent and Intensive Contact. Int. J. Environ. Res. Public Health 2020, 17, 4300. [Google Scholar] [CrossRef]
- Moses, I.B.; Santos, F.F.; Gales, A.C. Human Colonization and Infection by Staphylococcus pseudintermedius: An Emerging and Underestimated Zoonotic Pathogen. Microorganisms 2023, 11, 581. [Google Scholar] [CrossRef] [PubMed]
- Baptiste, K.E.; Williams, K.; Willams, N.J.; Wattret, A.; Clegg, P.D.; Dawson, S.; Corkill, J.E.; O’Neill, T.; Hart, C.A. Methicillin-Resistant Staphylococci in Companion Animals. Emerg. Infect. Dis. 2005, 11, 1942–1944. [Google Scholar] [CrossRef]
- van Duijkeren, E. Human-to-Dog Transmission of Methicillin-Resistant. Emerg. Infect. Dis. 2004, 10, 2235–2237. [Google Scholar] [CrossRef]
- Mader, R.; Demay, C.; Jouvin-Marche, E.; Ploy, M.-C.; Barraud, O.; Bernard, S.; Lacotte, Y.; Pulcini, C.; Weinbach, J.; EU-JAMRAI. Defining the Scope of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet): A Bottom-up and One Health Approach. J. Antimicrob. Chemother. 2022, 77, 816–826. [Google Scholar] [CrossRef]
- Cuny, C.; Layer-Nicolaou, F.; Weber, R.; Köck, R.; Witte, W. Colonization of Dogs and Their Owners with Staphylococcus aureus and Staphylococcus pseudintermedius in Households, Veterinary Practices, and Healthcare Facilities. Microorganisms 2022, 10, 677. [Google Scholar] [CrossRef]
- Lehner, G.; Linek, M.; Bond, R.; Lloyd, D.H.; Prenger-Berninghoff, E.; Thom, N.; Straube, I.; Verheyen, K.; Loeffler, A. Case–Control Risk Factor Study of Methicillin-Resistant Staphylococcus pseudintermedius (MRSP) Infection in Dogs and Cats in Germany. Vet. Microbiol. 2014, 168, 154–160. [Google Scholar] [CrossRef]
- Grönthal, T.; Moodley, A.; Nykäsenoja, S.; Junnila, J.; Guardabassi, L.; Thomson, K.; Rantala, M. Large Outbreak Caused by Methicillin Resistant Staphylococcus pseudintermedius ST71 in a Finnish Veterinary Teaching Hospital—From Outbreak Control to Outbreak Prevention. PLoS ONE 2014, 9, e110084. [Google Scholar] [CrossRef]
- Lord, J.; Millis, N.; Jones, R.D.; Johnson, B.; Kania, S.A.; Odoi, A. Patterns of Antimicrobial, Multidrug and Methicillin Resistance among Staphylococcus Spp. Isolated from Canine Specimens Submitted to a Diagnostic Laboratory in Tennessee, USA: A Descriptive Study. BMC Vet. Res. 2022, 18, 91. [Google Scholar] [CrossRef]
- García-Álvarez, L.; Holden, M.T.; Lindsay, H.; Webb, C.R.; Brown, D.F.; Curran, M.D.; Walpole, E.; Brooks, K.; Pickard, D.J.; Teale, C.; et al. Meticillin-Resistant Staphylococcus aureus with a Novel mecA Homologue in Human and Bovine Populations in the UK and Denmark: A Descriptive Study. Lancet Infect. Dis. 2011, 11, 595–603. [Google Scholar] [CrossRef]
- Kim, C.; Milheiriço, C.; Gardete, S.; Holmes, M.A.; Holden, M.T.G.; De Lencastre, H.; Tomasz, A. Properties of a Novel PBP2A Protein Homolog from Staphylococcus aureus Strain LGA251 and Its Contribution to the β-Lactam-Resistant Phenotype. J. Biol. Chem. 2012, 287, 36854–36863. [Google Scholar] [CrossRef]
- Rasmussen, S.L.; Larsen, J.; Van Wijk, R.E.; Jones, O.R.; Berg, T.B.; Angen, Ø.; Larsen, A.R. European Hedgehogs (Erinaceus europaeus) as a Natural Reservoir of Methicillin-Resistant Staphylococcus aureus Carrying mecC in Denmark. PLoS ONE 2019, 14, e0222031. [Google Scholar] [CrossRef] [PubMed]
- Paterson, G.K.; Harrison, E.M.; Holmes, M.A. The Emergence of mecC Methicillin-Resistant Staphylococcus aureus. Trends Microbiol. 2014, 22, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Châtre, P.; Dupieux, C.; Métayer, V.; Maillard, K.; Bes, M.; Madec, J.-Y.; Laurent, F. mecC-Positive MRSA in Horses. J. Antimicrob. Chemother. 2015, 70, 3401–3407. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, K.; Ito, T.; Tsubakishita, S.; Sasaki, T.; Takeuchi, F.; Morimoto, Y.; Katayama, Y.; Matsuo, M.; Kuwahara-Arai, K.; Hishinuma, T.; et al. Genomic Basis for Methicillin Resistance in Staphylococcus aureus. Infect. Chemother. 2013, 45, 117. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying Definitions for Multidrug Resistance, Extensive Drug Resistance and Pandrug Resistance to Clinically Significant Livestock and Companion Animal Bacterial Pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- European Medicines Agency. Categorisation of Antibiotics in the European Union—Answer to the Request from the European Commission for Updating the Scientific Advice on the Impact on Public Health Animal Health of the Use of Antibiotics in Animals. (EMA/CVMP/CHMP/682198/2017). 2019. Available online: https://www.ema.europa.eu/system/files/documents/report/ameg_-_categorisation_of_antibiotics_en.pdf (accessed on 5 May 2025).
- EUCAST. Epidemiological Cut-Off—MIC EUCAST. 2025. Available online: https://mic.eucast.org/search/ (accessed on 31 May 2025).
- Peacock, S.J.; Paterson, G.K. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Annu. Rev. Biochem. 2015, 84, 577–601. [Google Scholar] [CrossRef]
- Tomasz, A.; Drugeon, H.B.; de Lencastre, H.M.; Jabes, D.; McDougall, L.; Bille, J. New Mechanism for Methicillin Resistance in Staphylococcus aureus: Clinical Isolates That Lack the PBP 2a Gene and Contain Normal Penicillin-Binding Proteins with Modified Penicillin-Binding Capacity. Antimicrob. Agents Chemother. 1989, 33, 1869–1874. [Google Scholar] [CrossRef]
- Frank, L.A.; Loeffler, A. Meticillin-Resistant Staphylococcus pseudintermedius: Clinical Challenge and Treatment Options. Vet. Dermatol. 2012, 23, 283–291. [Google Scholar] [CrossRef]
- Yin, N.; Michel, C.; Makki, N.; Deplano, A.; Milis, A.; Prevost, B.; Miendje-Deyi, V.Y.; Hallin, M.; Martiny, D. Emergence and Spread of a Mupirocin-Resistant Variant of the European Epidemic Fusidic Acid-Resistant Impetigo Clone of Staphylococcus aureus, Belgium, 2013 to 2023. Eurosurveillance 2024, 29, 2300668. [Google Scholar] [CrossRef]
- Weese, J.S.; Faires, M.; Brisson, B.A.; Slavic, D. Infection with Methicillin-Resistant Staphylococcus pseudintermedius Masquerading as Cefoxitin Susceptible in a Dog. J. Am. Vet. Med. Assoc. 2009, 235, 1064–1066. [Google Scholar] [CrossRef] [PubMed]
- Bemis, D.A.; Jones, R.D.; Frank, L.A.; Kania, S.A. Evaluation of Susceptibility Test Breakpoints Used to Predict mecA-Mediated Resistance in Staphylococcus Pseudintevmedius Isolated from Dogs. J. Vet. Diagn. Investig. 2009, 21, 53–58. [Google Scholar] [CrossRef] [PubMed]
- M31 A3; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals. Cinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2008.
- Deplano, A.; Vandendriessche, S.; Nonhoff, C.; Denis, O. Genetic Diversity among Methicillin-Resistant Staphylococcus aureus Isolates Carrying the mecC Gene in Belgium. J. Antimicrob. Chemother. 2014, 69, 1457–1460. [Google Scholar] [CrossRef] [PubMed]
- Loncaric, I.; Kubber-Heiss, A.; Posautz, A.; Stalder, G.L.; Hoffmann, D.; Rosengarten, R.; Walzer, C. Characterization of Methicillin-Resistant Staphylococcus spp. Carrying the mecC Gene, Isolated from Wildlife. J. Antimicrob. Chemother. 2013, 68, 2222–2225. [Google Scholar] [CrossRef]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; Van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public Health Risk of Antimicrobial Resistance Transfer from Companion Animals. J. Antimicrob. Chemother. 2016, 72, 957–968. [Google Scholar] [CrossRef]
- Medhus, A.; Slettemeas, J.S.; Marstein, L.; Larssen, K.W.; Sunde, M. Methicillin-Resistant Staphylococcus aureus with the Novel mecC Gene Variant Isolated from a Cat Suffering from Chronic Conjunctivitis. J. Antimicrob. Chemother. 2013, 68, 968–969. [Google Scholar] [CrossRef]
- Perreten, V.; Kadlec, K.; Schwarz, S.; Gronlund Andersson, U.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Clonal Spread of Methicillin-Resistant Staphylococcus pseudintermedius in Europe and North America: An International Multicentre Study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef]
- Wijesekara, P.; Kumbukgolla, W.; Jayaweera, J.; Rawat, D. Review on Usage of Vancomycin in Livestock and Humans: Maintaining Its Efficacy, Prevention of Resistance and Alternative Therapy. Vet. Sci. 2017, 4, 6. [Google Scholar] [CrossRef]
- Joosten, P.; Ceccarelli, D.; Odent, E.; Sarrazin, S.; Graveland, H.; Van Gompel, L.; Battisti, A.; Caprioli, A.; Franco, A.; Wagenaar, J.A.; et al. Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in Three European Countries. Antibiotics 2020, 9, 87. [Google Scholar] [CrossRef]
- Ruscher, C.; Lübke-Becker, A.; Wleklinski, C.-G.; Şoba, A.; Wieler, L.H.; Walther, B. Prevalence of Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Clinical Samples of Companion Animals and Equidaes. Vet. Microbiol. 2009, 136, 197–201. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M. Methicillin-Resistant Staphylococcus aureus among Animals: Current Overview. Clin. Microbiol. Infect. 2017, 23, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Bierowiec, K.; Miszczak, M.; Korzeniowska-Kowal, A.; Wzorek, A.; Płókarz, D.; Gamian, A. Epidemiology of Staphylococcus pseudintermedius in Cats in Poland. Sci. Rep. 2021, 11, 18898. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-151552-8. [Google Scholar]
- Timmermans, M.; Bogaerts, B.; Vanneste, K.; De Keersmaecker, S.C.J.; Roosens, N.H.C.; Kowalewicz, C.; Simon, G.; Argudín, M.A.; Deplano, A.; Hallin, M.; et al. Large Diversity of Linezolid-Resistant Isolates Discovered in Food-Producing Animals through Linezolid Selective Monitoring in Belgium in 2019. J. Antimicrob. Chemother. 2021, 77, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Driesen, M.; Timmermans, M.; Cargnel, M.; Simons, X.; Filippitzi, M.-E.; Catry, B.; Dal Pozzo, F.; Vanderhaeghen, W.; Callens, B.; Dispas, M.; et al. Risk Factor Analysis for Occurrence of Linezolid-Resistant Bacteria in the Digestive and Respiratory Tract of Food-Producing Animals in Belgium: A Pilot Study. Antibiotics 2024, 13, 707. [Google Scholar] [CrossRef]
- Marco-Fuertes, A.; Marin, C.; Gimeno-Cardona, C.; Artal-Muñoz, V.; Vega, S.; Montoro-Dasi, L. Multidrug-Resistant Commensal and Infection-Causing Staphylococcus Spp. Isolated from Companion Animals in the Valencia Region. Vet. Sci. 2024, 11, 54. [Google Scholar] [CrossRef]
- Penna, B.; Silva, M.B.; Soares, A.E.R.; Vasconcelos, A.T.R.; Ramundo, M.S.; Ferreira, F.A.; Silva-Carvalho, M.C.; De Sousa, V.S.; Rabello, R.F.; Bandeira, P.T.; et al. Comparative Genomics of MRSA Strains from Human and Canine Origins Reveals Similar Virulence Gene Repertoire. Sci. Rep. 2021, 11, 4724. [Google Scholar] [CrossRef]
- Bellato, A.; Robino, P.; Stella, M.C.; Scarrone, L.; Scalas, D.; Nebbia, P. Resistance to Critical Important Antibacterials in Staphylococcus pseudintermedius Strains of Veterinary Origin. Antibiotics 2022, 11, 1758. [Google Scholar] [CrossRef]
- Kadlec, K.; Van Duijkeren, E.; Wagenaar, J.A.; Schwarz, S. Molecular Basis of Rifampicin Resistance in Methicillin-Resistant Staphylococcus pseudintermedius Isolates from Dogs. J. Antimicrob. Chemother. 2011, 66, 1236–1242. [Google Scholar] [CrossRef]
- Calabro, C.; Sadhu, R.; Xu, Y.; Aprea, M.; Guarino, C.; Cazer, C.L. Longitudinal Antimicrobial Susceptibility Trends of Canine Staphylococcus pseudintermedius. Prev. Vet. Med. 2024, 226, 106170. [Google Scholar] [CrossRef]
- Feuer, L.; Frenzer, S.K.; Merle, R.; Bäumer, W.; Lübke-Becker, A.; Klein, B.; Bartel, A. Comparative Analysis of Methicillin-Resistant Staphylococcus pseudintermedius Prevalence and Resistance Patterns in Canine and Feline Clinical Samples: Insights from a Three-Year Study in Germany. Antibiotics 2024, 13, 660. [Google Scholar] [CrossRef]
- Robb, A.R.; Ure, R.; Chaput, D.L.; Foster, G. Emergence of Novel Methicillin Resistant Staphylococcus pseudintermedius Lineages Revealed by Whole Genome Sequencing of Isolates from Companion Animals and Humans in Scotland. PLoS ONE 2024, 19, e0305211. [Google Scholar] [CrossRef] [PubMed]
- WHO. Access, Watch, Reserve (AWaRe) Classification of Antibiotics for Evaluation and Monitoring of Use, 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Pichon, B.; Hill, R.; Laurent, F.; Larsen, A.R.; Skov, R.L.; Holmes, M.; Edwards, G.F.; Teale, C.; Kearns, A.M. Development of a Real-Time Quadruplex PCR Assay for Simultaneous Detection of Nuc, Panton-Valentine Leucocidin (PVL), mecA and Homologue mecALGA251. J. Antimicrob. Chemother. 2012, 67, 2338–2341. [Google Scholar] [CrossRef] [PubMed]
- Aerts, M.; Battisti, A.; Hendriksen, R.; Kempf, I.; Teale, C.; Tenhagen, B.; Veldman, K.; Wasyl, D.; Guerra, B.; European Food Safety Authority (EFSA). Technical Specifications on Harmonised Monitoring of Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Food-producing Animals and Food. EFSA J. 2019, 17, e05709. [Google Scholar] [CrossRef] [PubMed]
- Commission Implementing Decision (EU) 2023/1017 of 23 May 2023 Amending Implementing Decision (EU) 2020/1729 as Regards the Monitoring of Methicillin-Resistant Staphylococcus aureus (MRSA) in Fattening Pigs (Notified under Document C(2023)3251). Available online: https://eur-lex.europa.eu/eli/dec_impl/2023/1017/oj/eng (accessed on 7 May 2025).
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2022–2023. EFSA J. 2025, 23, e9237. [Google Scholar] [CrossRef]
- Sergeant, ESG. Epitools Epidemiological Calculators. Ausvet. 2018. Available online: http://epitools.ausvet.com.au (accessed on 3 June 2025).
Antimicrobial | Range Tested (µg/mL) | ECOFF MRSA (µg/mL) | ECOFF MRSP (µg/mL) |
---|---|---|---|
Chloramphenicol | 4–64 | 16 * | 16 * |
Ciprofloxacin | 0.25–8 | 2 * | 2 * |
Clindamycin | 0.12–4 | 0.25 * | 0.25 # |
Erythromycin | 0.25–8 | 1 * | 0.5 # |
Cefoxitin | 0.5–16 | 4 * | 4 * |
Fusidic acid | 0.25–4 | 0.5 * | 0.5 * |
Gentamicin | 0.5–16 | 2 * | 0.25 # |
Kanamycin | 4–32 | (8) * | (8) * |
Linezolid | 1–8 | 4 * | 4 * |
Penicillin | 0.06–1 | 0.125 * | 0.03 # |
Rifampicin | 0.015–0.5 | 0.03 * | 0.03 * |
Sulfamethoxazole | 64–512 | (128) § | (128) § |
Streptomycin | 4–32 | 16 * | 16 * |
Quinupristin–Dalfopristin | 0.5–4 | 1 * | 1 * |
Tetracycline | 0.5–16 | 1 * | 1 # |
Tiamulin | 0.5–4 | (2) * | 2 * |
Trimethoprim | 1–16 | 2 * | 2 * |
Vancomycin | 1–8 | 2 * | 2 * |
Mupirocin | 0.5–256 | 1 * | 1 * |
Antimicrobial Agent | Number of Strains with MIC (mg/L) | Wild-Type | Non-Wild-Type | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | >128 | n | % | n | % | |
CHL | 50 | 9 | 5 | 59 | 92.2% | 5 | 7.8% | |||||||||||
CIP | 9 | 14 | 1 | 1 | 39 | 24 | 37.5% | 40 | 62.5% | |||||||||
CLI | 38 | 1 | 25 | 39 | 60.9% | 25 | 39.1% | |||||||||||
ERY | 26 | 10 | 1 | 27 | 36 | 56.3% | 28 | 43.8% | ||||||||||
FOX | 14 | 50 | 0 | 0.0% | 64 | 100.0% | ||||||||||||
FUS | 54 | 4 | 2 | 1 | 3 | 58 | 90.6% | 6 | 9.4% | |||||||||
GEN | 36 | 6 | 22 | 36 | 56.3% | 28 | 43.8% | |||||||||||
KAN | 24 | 4 | 1 | 35 | 28 | 43.8% | 36 | 56.3% | ||||||||||
LZD | 4 | 59 | 1 | 64 | 100.0% | 0 | 0.0% | |||||||||||
MUP | 64 | 64 | 100.0% | 0 | 0.0% | |||||||||||||
PEN | 64 | 0 | 0.0% | 64 | 100.0% | |||||||||||||
RIF | 62 | 2 | 62 | 96.9% | 2 | 3.1% | ||||||||||||
SMX | 55 | 5 | 4 | 60 | 93.8% | 4 | 6.3% | |||||||||||
STR | 32 | 15 | 9 | 8 | 56 | 87.5% | 8 | 12.5% | ||||||||||
SYN | 43 | 11 | 10 | 54 | 84.4% | 10 | 15.6% | |||||||||||
TET | 31 | 33 | 31 | 48.4% | 33 | 51.6% | ||||||||||||
TIA | 46 | 12 | 6 | 58 | 90.6% | 6 | 9.4% | |||||||||||
TMP | 24 | 5 | 35 | 29 | 45.3% | 35 | 54.7% | |||||||||||
VAN | 63 | 1 | 64 | 100.0% | 0 | 0.0% |
Antimicrobial Agent | Number of Strains with MIC (mg/L) | Wild-Type | Non-Wild-Type | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | >128 | n | % | n | % | |
CHL | 21 | 64 | 2 | 19 | 87 | 82.1% | 19 | 17.9% | ||||||||||
CIP | 18 | 3 | 1 | 84 | 22 | 20.8% | 84 | 79.2% | ||||||||||
CLI | 8 | 2 | 1 | 95 | 10 | 9.4% | 96 | 90.6% | ||||||||||
ERY | 8 | 98 | 8 | 7.5% | 98 | 92.5% | ||||||||||||
FOX | 6 | 18 | 16 | 12 | 40 | 14 | 52 | 49.1% | 54 | 50.9% | ||||||||
FUS | 92 | 2 | 1 | 11 | 94 | 88.7% | 12 | 11.3% | ||||||||||
GEN | 10 | 6 | 27 | 63 | 0 | 0.0% | 106 | 100.0% | ||||||||||
KAN | 4 | 102 | 4 | 3.8% | 102 | 96.2% | ||||||||||||
LZD | 105 | 1 | 105 | 99.1% | 1 | 0.9% | ||||||||||||
MUP | 103 | 3 | 106 | 100.0% | 0 | 0.0% | ||||||||||||
PEN | 1 | 105 | 0 | 0.0% | 106 | 100.0% | ||||||||||||
RIF | 101 | 5 | 101 | 95.3% | 5 | 4.7% | ||||||||||||
SMX | 14 | 12 | 80 | 26 | 24.5% | 80 | 75.5% | |||||||||||
STR | 8 | 1 | 97 | 9 | 8.5% | 97 | 91.5% | |||||||||||
SYN | 78 | 13 | 12 | 3 | 91 | 85.8% | 15 | 14.2% | ||||||||||
TET | 10 | 2 | 94 | 10 | 9.4% | 96 | 90.6% | |||||||||||
TIA | 92 | 1 | 13 | 93 | 87.7% | 13 | 12.3% | |||||||||||
TMP | 4 | 6 | 2 | 94 | 10 | 9.4% | 96 | 90.6% | ||||||||||
VAN | 105 | 1 | 105 | 99.1% | 1 | 0.9% |
Sample Reference | Resistance Profiles | Number of Antimicrobial Families |
---|---|---|
CT 66 | CIP-ERY-GEN-KAN-PEN-TMP | 5 |
CT 71 | CIP-CLI-ERY-FOX-GEN-KAN-PEN-SMX-STR-TET-TMP | 8 |
CT 85 | CIP-CLI-ERY-FOX-GEN-KAN-PEN-RIF-SMX-STR-TET-TMP | 9 |
CT 58 | CIP-CLI-ERY-GEN-KAN-LZD-PEN-SMX-STR-SYN-TET-TIA-TMP | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewulf, S.; Boyen, F.; Paepe, D.; Clercx, C.; Tilman, N.; Dewulf, J.; Boland, C. Antimicrobial Resistance Characterization of Methicillin-Resistant Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Clinical Cases in Dogs and Cats in Belgium. Antibiotics 2025, 14, 631. https://doi.org/10.3390/antibiotics14070631
Dewulf S, Boyen F, Paepe D, Clercx C, Tilman N, Dewulf J, Boland C. Antimicrobial Resistance Characterization of Methicillin-Resistant Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Clinical Cases in Dogs and Cats in Belgium. Antibiotics. 2025; 14(7):631. https://doi.org/10.3390/antibiotics14070631
Chicago/Turabian StyleDewulf, Suzanne, Filip Boyen, Dominique Paepe, Cécile Clercx, Noah Tilman, Jeroen Dewulf, and Cécile Boland. 2025. "Antimicrobial Resistance Characterization of Methicillin-Resistant Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Clinical Cases in Dogs and Cats in Belgium" Antibiotics 14, no. 7: 631. https://doi.org/10.3390/antibiotics14070631
APA StyleDewulf, S., Boyen, F., Paepe, D., Clercx, C., Tilman, N., Dewulf, J., & Boland, C. (2025). Antimicrobial Resistance Characterization of Methicillin-Resistant Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Clinical Cases in Dogs and Cats in Belgium. Antibiotics, 14(7), 631. https://doi.org/10.3390/antibiotics14070631