Hypervirulent Acinetobacter baumannii (hvAB): The Convergence of Virulence and Multidrug Resistance
Abstract
:1. Introduction
2. Virulence Factors of A. baumannii
2.1. Capsule and Hypermucoviscosity
2.2. Iron Acquisition Systems
2.3. Outer Membrane Proteins (OMPs) and Secretion Systems
2.4. Biofilm Formation
3. AMR Mechanisms
3.1. Enzymatic Degradation
3.2. Target-Site Modifications
3.3. Efflux Pumps
3.4. Outer Membrane Porin Modifications
4. Evolutionary Pathways
4.1. Horizontal Gene Transfer
4.1.1. Acquisition of Virulence Plasmids by MDR Strains
4.1.2. Acquisition of Resistance Plasmids by Hypervirulent Strains
4.1.3. Integration of Resistance and Virulence Genes into Composite Plasmids
4.2. Co-Evolution of Virulence and Resistance
4.3. Adaptive Mutagenesis
5. Clinical Impacts
5.1. Infections and Disease Severity
5.1.1. Ventilator-Associated Pneumonia
5.1.2. Bloodstream Infections
5.1.3. Meningitis
5.2. Mortality and Treatment Strategies
6. Surveillance and Control Measures
- Enhancing diagnostic capabilities for early hvAB detection.
- Developing robust genomic surveillance systems to track circulating strains.
- Fostering international cooperation through a unified global tracking platform for monitoring cross-border transmission.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
Bap | Biofilm-associated protein |
BSI | Bloodstream infection |
CRAB | Carbapenem-resistant A. baumannii |
ESBL | Extended-spectrum β-lactamase |
GGT | γ-glutamyltransferase enzyme |
HAI | Healthcare-associated infection |
HGT | Horizontal gene transfer |
H-NS | Histone-like nucleoid structuring protein |
hvAB | Hypervirulent A. baumannii |
ICU | Intensive care unit |
IS | Insertion sequence |
LPS | Lipopolysaccharide |
MDR | Multidrug resistance |
MGE | Mobile genetic elements |
MLST | Multi-locus sequence typing |
OMP | Outer membrane protein |
OMV | Outer membrane vesicle |
T2SS | Type II secretion system |
T6SS | Type VI secretion system |
TCS | Two-component system |
UTI | Urinary tract infection |
VAP | Ventilator-associated pneumonia |
WGS | Whole-genome sequencing |
WHO | World Health Organization |
XDR | Extensively drug-resistant |
References
- Benyamini, P. The Comparative Characterization of a Hypervirulent Acinetobacter baumannii Bacteremia Clinical Isolate Reveals a Novel Mechanism of Pathogenesis. Int. J. Mol. Sci. 2024, 25, 9780. [Google Scholar] [CrossRef]
- Bjånes, E.; Koh, T.; Qayum, T.; Zurich, R.; McCabe, S.; Hampel, K.; Cartwright, L.; Nizet, V. Exploring Roles of the Polysaccharide Capsule in Pathogenesis of Hypervirulent Acinetobacter baumannii Clinical Isolate Lac-4. Antibiotics 2023, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.S.; Talyansky, Y.; Nielsen, T.B.; Yan, J.; Carlino-Macdonald, U.; Di Venanzio, G.; Chakravorty, S.; Ulhaq, A.; Feldman, M.F.; Russo, T.A.; et al. Capsule carbohydrate structure determines virulence in Acinetobacter baumannii. PLoS Pathog. 2021, 17, e1009291. [Google Scholar] [CrossRef]
- Zhou, K.; Tang, X.; Wang, L.; Guo, Z.; Xiao, S.; Wang, Q.; Zhuo, C. An Emerging Clone (ST457) ofAcinetobacter baumanniiClonal Complex 92 With Enhanced Virulence and Increasing Endemicity in South China. Clin. Infect. Dis. 2018, 67, S179–S188. [Google Scholar] [CrossRef]
- Gedefie, A.; Demsiss, W.; Belete, M.A.; Kassa, Y.; Tesfaye, M.; Tilahun, M.; Bisetegn, H.; Sahle, Z. Acinetobacter baumannii Biofilm Formation and Its Role in Disease Pathogenesis: A Review. Infect. Drug Resist. 2021, 14, 3711–3719. [Google Scholar] [CrossRef]
- Martinez, J.; Razo-Gutierrez, C.; Le, C.; Courville, R.; Pimentel, C.; Liu, C.; Fung, S.E.; Tuttobene, M.R.; Phan, K.; Vila, A.J.; et al. Cerebrospinal fluid (CSF) augments metabolism and virulence expression factors in Acinetobacter baumannii. Sci. Rep. 2021, 11, 4737. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Liu, N.; Guo, Y.; Zhuo, C.; Yang, X.; Wang, Y.; Wang, J.; Li, F.; Li, J.; He, N.; et al. Comparison of Hypervirulent and Non-Hypervirulent Carbapenem-Resistant Acinetobacter baumannii Isolated from Bloodstream Infections: Mortality, Potential Virulence Factors, and Combination Therapy in vitro. Antibiotics 2024, 13, 807. [Google Scholar] [CrossRef]
- Ou, H.-Y.; Kuang, S.N.; He, X.; Molgora, B.M.; Ewing, P.J.; Deng, Z.; Osby, M.; Chen, W.; Xu, H.H. Complete genome sequence of hypervirulent and outbreak-associated Acinetobacter baumannii strain LAC-4: Epidemiology, resistance genetic determinants and potential virulence factors. Sci. Rep. 2015, 5, 8643. [Google Scholar] [CrossRef]
- Bruhn, K.W.; Pantapalangkoor, P.; Nielsen, T.; Tan, B.; Junus, J.; Hujer, K.M.; Wright, M.S.; Bonomo, R.A.; Adams, M.D.; Chen, W.; et al. Host Fate is Rapidly Determined by Innate Effector-Microbial Interactions During Acinetobacter baumannii Bacteremia. J. Infect. Dis. 2014, 211, 1296–1305. [Google Scholar] [CrossRef]
- Singh, M.; De Silva, P.M.; Al-Saadi, Y.; Switala, J.; Loewen, P.C.; Hausner, G.; Chen, W.; Hernandez, I.; Castillo-Ramirez, S.; Kumar, A. Characterization of Extremely Drug-Resistant and Hypervirulent Acinetobacter baumannii AB030. Antibiotics 2020, 9, 328. [Google Scholar] [CrossRef]
- Paterson, D.L.; Harris, P.N.A. The New Acinetobacter Equation: Hypervirulence Plus Antibiotic Resistance Equals Big Trouble. Clin. Infect. Dis. 2015, 61, 155–156. [Google Scholar] [CrossRef]
- Mohd Sazlly Lim, S.; Zainal Abidin, A.; Liew, S.M.; Roberts, J.A.; Sime, F.B. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. J. Infect. 2019, 79, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, B. Genetic mechanisms of antibiotic resistance and virulence in Acinetobacter baumannii: Background, challenges and future prospects. Mol. Biol. Rep. 2020, 47, 4037–4046. [Google Scholar] [CrossRef]
- Valcek, A.; Philippe, C.; Whiteway, C.; Robino, E.; Nesporova, K.; Bové, M.; Coenye, T.; De Pooter, T.; De Coster, W.; Strazisar, M.; et al. Phenotypic Characterization and Heterogeneity among Modern Clinical Isolates of Acinetobacter baumannii. Microbiol. Spectr. 2023, 11, e0306122. [Google Scholar] [CrossRef]
- Pimentel, C.; Le, C.; Tuttobene, M.R.; Subils, T.; Martinez, J.; Sieira, R.; Papp-Wallace, K.M.; Keppetipola, N.; Bonomo, R.A.; Actis, L.A.; et al. Human Pleural Fluid and Human Serum Albumin Modulate the Behavior of a Hypervirulent and Multidrug-Resistant (MDR) Acinetobacter baumannii Representative Strain. Pathogens 2021, 10, 471. [Google Scholar] [CrossRef]
- Zeng, X.; Gu, H.; Peng, L.; Yang, Y.; Wang, N.; Shi, Y.; Zou, Q. Transcriptome Profiling of Lung Innate Immune Responses Potentially Associated With the Pathogenesis of Acinetobacter baumannii Acute Lethal Pneumonia. Front. Immunol. 2020, 11, 708. [Google Scholar] [CrossRef]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef]
- Aranda, J.; Bardina, C.; Beceiro, A.; Rumbo, S.; Cabral, M.P.; Barbé, J.; Bou, G. Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J. Bacteriol. 2011, 193, 3740–3747. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, J.; Zhang, M.; Liu, Z.; Zhong, Y.; Liu, S.; Cui, R.; Shi, Y.; Zeng, H.; Yang, X.; et al. Rapid Identification of KL49 Acinetobacter baumannii Associated with Clinical Mortality. Infect. Drug Resist. 2020, 13, 4125–4132. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Li, B.B.; Zhang, Y.Y.; Zhang, W.; Shen, H.; Li, H.; Cao, B. Clinical and Molecular Characteristics of Emerging Hypervirulent Klebsiella pneumoniae Bloodstream Infections in Mainland China. Antimicrob. Agents Chemother. 2014, 58, 5379–5385. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Lei, T.; Gao, J.; Xu, Q.; Xu, L.; Zhao, B.; Qin, S.; Yu, Y.; Hua, X. Discovery of novel BfmR inhibitors restoring carbapenem susceptibility against carbapenem-resistant Acinetobacter baumannii by structure-based virtual screening and biological evaluation. Emerg. Microbes Infect. 2024, 13, 2396877. [Google Scholar] [CrossRef] [PubMed]
- Law, S.K.K.; Tan, H.S. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies. Microbiol. Res. 2022, 260, 127032. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Y.; Kim, H.J. Current biochemical understanding regarding the metabolism of acinetobactin, the major siderophore of the human pathogen Acinetobacter baumannii, and outlook for discovery of novel anti-infectious agents based thereon. Nat. Prod. Rep. 2020, 37, 477–487. [Google Scholar] [CrossRef]
- Giardina, B.J.; Shahzad, S.; Huang, W.; Wilks, A. Heme uptake and utilization by hypervirulent Acinetobacter baumannii LAC-4 is dependent on a canonical heme oxygenase (abHemO). Arch. Biochem. Biophys. 2019, 672, 108066. [Google Scholar] [CrossRef]
- Nie, D.; Hu, Y.; Chen, Z.; Li, M.; Hou, Z.; Luo, X.; Mao, X.; Xue, X. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J. Biomed. Sci. 2020, 27, 26. [Google Scholar] [CrossRef]
- Scribano, D.; Cheri, E.; Pompilio, A.; Di Bonaventura, G.; Belli, M.; Cristina, M.; Sansone, L.; Zagaglia, C.; Sarshar, M.; Palamara, A.T.; et al. Acinetobacter baumannii OmpA-like porins: Functional characterization of bacterial physiology, antibiotic-resistance, and virulence. Commun. Biol. 2024, 7, 948. [Google Scholar] [CrossRef]
- Parra-Millán, R.; Guerrero-Gómez, D.; Ayerbe-Algaba, R.; Pachón-Ibáñez, M.E.; Miranda-Vizuete, A.; Pachón, J.; Smani, Y. Intracellular Trafficking and Persistence of Acinetobacter baumannii Requires Transcription Factor EB. mSphere 2018, 3, e00106-18. [Google Scholar] [CrossRef]
- Gaddy, J.A.; Tomaras, A.P.; Actis, L.A. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun. 2009, 77, 3150–3160. [Google Scholar] [CrossRef]
- Choi, C.H.; Lee, J.S.; Lee, Y.C.; Park, T.I.; Lee, J.C. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol. 2008, 8, 216. [Google Scholar] [CrossRef]
- Choi, C.H.; Lee, E.Y.; Lee, Y.C.; Park, T.I.; Kim, H.J.; Hyun, S.H.; Kim, S.A.; Lee, S.K.; Lee, J.C. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol. 2005, 7, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.; Hyun, S.H.; Lee, J.Y.; Lee, J.S.; Lee, Y.S.; Kim, S.A.; Chae, J.P.; Yoo, S.M.; Lee, J.C. Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity. Cell Microbiol. 2008, 10, 309–319. [Google Scholar] [CrossRef]
- Repizo, G.D.; Espariz, M.; Seravalle, J.L.; Salcedo, S.P. Bioinformatic Analysis of the Type VI Secretion System and Its Potential Toxins in the Acinetobacter Genus. Front. Microbiol. 2019, 10, 2519. [Google Scholar] [CrossRef] [PubMed]
- Elhosseiny, N.M.; Elhezawy, N.B.; Sayed, R.M.; Khattab, M.S.; El Far, M.Y.; Attia, A.S. γ-Glutamyltransferase as a Novel Virulence Factor of Acinetobacter baumannii Inducing Alveolar Wall Destruction and Renal Damage in Systemic Disease. J. Infect. Dis. 2020, 222, 871–879. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, H.; Yao, Y.; Chen, H.; Yang, Z.; Xie, H.; Cui, R.; Liu, H.; Li, C.; Gong, W.; et al. Emergence of novel hypervirulent Acinetobacter baumannii strain and herpes simplex type 1 virus in a case of community-acquired pneumonia in China. J. Infect. Public Health 2024, 17, 102456. [Google Scholar] [CrossRef]
- Gaddy, J.A.; Actis, L.A. Regulation of Acinetobacter Baumannii Biofilm Formation. Future Microbiol. 2009, 4, 273–278. [Google Scholar] [CrossRef]
- Martínez-Trejo, A.; Ruiz-Ruiz, J.M.; Gonzalez-Avila, L.U.; Saldaña-Padilla, A.; Hernández-Cortez, C.; Loyola-Cruz, M.A.; Bello-López, J.M.; Castro-Escarpulli, G. Evasion of Antimicrobial Activity in Acinetobacter baumannii by Target Site Modifications: An Effective Resistance Mechanism. Int. J. Mol. Sci. 2022, 23, 6582. [Google Scholar] [CrossRef]
- Saikia, S.; Gogoi, I.; Oloo, A.; Sharma, M.; Puzari, M.; Chetia, P. Co-production of metallo-β-lactamase and OXA-type β-lactamases in carbapenem-resistant Acinetobacter baumannii clinical isolates in North East India. World J. Microbiol. Biotechnol. 2024, 40, 167. [Google Scholar] [CrossRef]
- Ambler, R.P. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar] [CrossRef]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2022, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X. Detection of AmpC β-lactamases in Acinetobacter baumannii in the Xuzhou region and analysis of drug resistance. Exp. Ther. Med. 2015, 10, 933–936. [Google Scholar] [CrossRef] [PubMed]
- Noel, H.R.; Petrey, J.R.; Palmer, L.D. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann. N. Y. Acad. Sci. 2022, 1518, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Savari, M.; Ekrami, A.; Shoja, S.; Bahador, A. Plasmid borne Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) and AdeABC efflux pump conferring carbapenem-tigecycline resistance among Acinetobacter baumannii isolates harboring TnAbaRs. Microb. Pathog. 2017, 104, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Fedrigo, N.H.; Xavier, D.E.; Cerdeira, L.; Fuga, B.; Marini, P.V.B.; Shinohara, D.R.; Carrara-Marroni, F.E.; Lincopan, N.; Tognim, M.C.B. Genomic insights of Acinetobacter baumannii ST374 reveal wide and increasing resistome and virulome. Infect. Genet. Evol. 2022, 97, 105148. [Google Scholar] [CrossRef]
- Nie, L.; Lv, Y.; Yuan, M.; Hu, X.; Nie, T.; Yang, X.; Li, G.; Pang, J.; Zhang, J.; Li, C.; et al. Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China. Acta Pharm. Sin. B 2014, 4, 295–300. [Google Scholar] [CrossRef]
- Wright, M.S.; Jacobs, M.R.; Bonomo, R.A.; Adams, M.D. Transcriptome Remodeling of Acinetobacter baumannii during Infection and Treatment. mBio 2017, 8, e02193-16. [Google Scholar] [CrossRef]
- Da Silva, G.J.; Domingues, S. Interplay between Colistin Resistance, Virulence and Fitness in Acinetobacter baumannii. Antibiotics 2017, 6, 28. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, Y.; Zhou, H.; He, J.; Wang, J.; Li, L.; Gao, M.; Liu, X.; Shi, Y.; Lin, J.; et al. Interactions between host epithelial cells and Acinetobacter baumannii promote the emergence of highly antibiotic resistant and highly mucoid strains. Emerg. Microbes Infect. 2022, 11, 2556–2569. [Google Scholar] [CrossRef]
- Geisinger, E.; Huo, W.; Hernandez-Bird, J.; Isberg, R.R. Acinetobacter baumannii: Envelope Determinants That Control Drug Resistance, Virulence, and Surface Variability. Annu. Rev. Microbiol. 2019, 73, 481–506. [Google Scholar] [CrossRef]
- Saranathan, R.; Pagal, S.; Sawant, A.R.; Tomar, A.; Madhangi, M.; Sah, S.; Satti, A.; Arunkumar, K.P.; Prashanth, K. Disruption of tetR type regulator adeN by mobile genetic element confers elevated virulence inAcinetobacter baumannii. Virulence 2017, 8, 1316–1334. [Google Scholar] [CrossRef] [PubMed]
- Padilla, E.; Llobet, E.; Doménech-Sánchez, A.; Martínez-Martínez, L.; Bengoechea, J.A.; Albertí, S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 2010, 54, 177–183. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, R.; Bhattacharyya, T.; Bhando, T.; Pathania, R. Fosfomycin resistance inAcinetobacter baumanniiis mediated by efflux through a major facilitator superfamily (MFS) transporter—AbaF. J. Antimicrob. Chemother. 2017, 72, 68–74. [Google Scholar] [CrossRef]
- Pagès, J.-M.; James, C.E.; Winterhalter, M. The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 2008, 6, 893–903. [Google Scholar] [CrossRef]
- Fonseca, E.L.; Scheidegger, E.; Freitas, F.S.; Cipriano, R.; Vicente, A.C. Carbapenem-resistant Acinetobacter baumannii from Brazil: Role of carO alleles expression and blaOXA-23 gene. BMC Microbiol. 2013, 13, 245. [Google Scholar] [CrossRef]
- Qiu, J.; Zhu, P.; Wagh, K.; Singh, N.; Dong, S.; Srivastava, V.K. Phenotypic and Molecular Characterization of Hypervirulent and Multidrug-Resistant Acinetobacter baumannii Isolated from ICU Respiratory Infections. Can. J. Infect. Dis. Med. Microbiol. 2024, 2024, 9670708. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2017, 16, 91–102. [Google Scholar] [CrossRef]
- Si-Tuan, N.; Ngoc, H.M.; Nhat, L.D.; Nguyen, C.; Pham, H.Q.; Huong, N.T. Genomic features, whole-genome phylogenetic and comparative genomic analysis of extreme-drug-resistant ventilator-associated-pneumonia Acinetobacter baumannii strain in a Vietnam hospital. Infect. Genet. Evol. 2020, 80, 104178. [Google Scholar] [CrossRef]
- Le, C.; Pimentel, C.; Tuttobene, M.R.; Subils, T.; Escalante, J.; Nishimura, B.; Arriaga, S.; Rodgers, D.; Bonomo, R.A.; Sieira, R.; et al. Involvement of the Histone-Like Nucleoid Structuring Protein (H-NS) in Acinetobacter baumannii’s Natural Transformation. Pathogens 2021, 10, 1083. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef]
- Jeon, J.H.; Jang, K.-M.; Lee, J.H.; Kang, L.-W.; Lee, S.H. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. Sci. Total Environ. 2023, 857, 159497. [Google Scholar] [CrossRef]
- Asif, M.; Alvi, I.A.; Rehman, S.U. Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect. Drug Resist. 2018, 11, 1249–1260. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, Q.; Zhou, H. Virulence Factors and Pathogenicity Mechanisms of Acinetobacter baumannii in Respiratory Infectious Diseases. Antibiotics 2023, 12, 1749. [Google Scholar] [CrossRef]
- Gebhardt, M.J.; Gallagher, L.A.; Jacobson, R.K.; Usacheva, E.A.; Peterson, L.R.; Zurawski, D.V.; Shuman, H.A.; Sansonetti, P.J. Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii. mBio 2015, 6, e01660-15. [Google Scholar] [CrossRef]
- Weiss, D.; Geisinger, E.; Isberg, R.R. Antibiotic Modulation of Capsular Exopolysaccharide and Virulence in Acinetobacter baumannii. PLoS Pathog. 2015, 11, e1004691. [Google Scholar] [CrossRef]
- Liou, M.-L.; Soo, P.-C.; Ling, S.-R.; Kuo, H.-Y.; Tang, C.Y.; Chang, K.-C. The sensor kinase BfmS mediates virulence in Acinetobacter baumannii. J. Microbiol. Immunol. Infect. 2014, 47, 275–281. [Google Scholar] [CrossRef]
- Dijkshoorn, L.; Nemec, A.; Seifert, H. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 2007, 5, 939–951. [Google Scholar] [CrossRef]
- Cavallo, I.; Oliva, A.; Pages, R.; Sivori, F.; Truglio, M.; Fabrizio, G.; Pasqua, M.; Pimpinelli, F.; Di Domenico, E.G. Acinetobacter baumannii in the critically ill: Complex infections get complicated. Front. Microbiol. 2023, 14, 1196774. [Google Scholar] [CrossRef]
- Harris, G.; Kuo Lee, R.; Lam, C.K.; Kanzaki, G.; Patel, G.B.; Xu, H.H.; Chen, W. A Mouse Model of Acinetobacter baumannii-Associated Pneumonia Using a Clinically Isolated Hypervirulent Strain. Antimicrob. Agents Chemother. 2013, 57, 3601–3613. [Google Scholar] [CrossRef]
- Zheng, C.; Li, D.; Wang, Y.; Wang, L.; Huang, Y.; Yao, J. Risk factors and genetic characteristics of the carriage of hypervirulent and carbapenem-resistant Acinetobacter baumannii among pregnant women. Front. Microbiol. 2024, 15, 1351722. [Google Scholar] [CrossRef]
- Chukamnerd, A.; Saipetch, N.; Singkhamanan, K.; Ingviya, N.; Assanangkornchai, N.; Surachat, K.; Chusri, S. Association of biofilm formation, antimicrobial resistance, clinical characteristics, and clinical outcomes among Acinetobacter baumannii isolates from patients with ventilator-associated pneumonia. Clin. Respir. J. 2024, 18, e13732. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, D.; Huang, N.; Liu, S.; Zheng, J.; Cao, J.; Zeng, W.; Zheng, X.; Wang, L.; Zhou, T.; et al. Clinical impact of the type VI secretion system on clinical characteristics, virulence and prognosis of Acinetobacter baumannii during bloodstream infection. Microb. Pathog. 2023, 182, 106252. [Google Scholar] [CrossRef]
- Yang, J.L.; Yang, C.J.; Chuang, Y.C.; Sheng, W.H.; Chen, Y.C.; Chang, S.C. Association of capsular polysaccharide locus 2 with prognosis of Acinetobacter baumannii bacteraemia. Emerg. Microbes Infect. 2022, 11, 83–90. [Google Scholar] [CrossRef]
- Li, J.; Yu, T.; Luo, Y.; Peng, J.Y.; Li, Y.J.; Tao, X.Y.; Hu, Y.M.; Wang, H.C.; Zou, M.X. Characterization of carbapenem-resistant hypervirulent Acinetobacter baumannii strains isolated from hospitalized patients in the mid-south region of China. BMC Microbiol. 2020, 20, 281. [Google Scholar] [CrossRef]
- Novović, K.; Jovčić, B. Colistin Resistance in Acinetobacter baumannii: Molecular Mechanisms and Epidemiology. Antibiotics 2023, 12, 516. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
- Isler, B.; Doi, Y.; Bonomo, R.A.; Paterson, D.L. Paterson. New Treatment Options against Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2018, 63, e01110-18. [Google Scholar] [CrossRef]
- Keam, S.J. Sulbactam/Durlobactam: First Approval. Drugs 2023, 83, 1245–1252. [Google Scholar] [CrossRef]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [CrossRef]
- Lob, S.H.; Hoban, D.J.; Sahm, D.F.; Badal, R.E. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii. Int. J. Antimicrob. Agents 2016, 47, 317–323. [Google Scholar] [CrossRef]
Gene | Function | Virulence Mechanism |
---|---|---|
Capsule and Hypermucoviscosity | ||
K locus | Capsule basic coding gene | |
grt6 | Promote phagocytosis in vivo | Mutant strain: innate immune escape |
BfmRS system | Capsule synthesis | Mutant strain: influence virulence and antibiotic susceptibly |
Iron Acquisition Systems | ||
Siderophore-mediated systems | Evade host nutritional immunity | Allow bacteria to obtain nutrients from the host |
bas/bau | Promote the scavenging of iron from host proteins | Provide nutrition for bacteria |
hemO | Promote acquisition of iron from hemoglobin | Provide nutrition for bacteria |
Outer Membrane Proteins and Secretion Systems | ||
ompA | Facilitate adhesion to host tissues, promote biofilm formation, and promote apoptosis in epithelial cells | Immune evasion and epithelial cell apoptosis |
T6SS | Bacterial competition, host cell invasion, and immune modulation | Provide survival advantages in external and host environments |
T2SS | Secrete GGT | Cause more severe infection |
Biofilm Formation | ||
bap | Promote surface adhesion and intercellular aggregation | Essential in biofilm development |
abaI/abaR | Modulate biofilm architecture and density | Modulate biofilm in response to environmental signals |
Enzymes/Gene | Characteristic | Target Antibiotics |
---|---|---|
Enzymatic degradation | ||
Class A (serine-β-lactamases) | ||
Penicillinases and cephalosporinases | Catalyze the hydrolysis of the β-lactam ring | Penicillin, cephalosporin, carbapenem |
Class B (metallo-β-lactamases) | ||
NDM-1/IMP/VIM enzymes | Use metal ions as catalysts, typically encoded on MGEs | Carbapenems |
Class C (AmpC β-lactamases) | ||
Cephalosporinase | Mediating resistance to penicillin, cephalosporin, β-lactamase inhibitor, and β-lactam combination | Cephalosporins |
Class D (OXA-type β-lactamases) | ||
OXA-23, OXA-24/40, OXA-58-like, OXA-143 and OXA-51-like enzymes | OXA-51-like is innate, the others are acquirable | Carbapenems |
Target Site Modifications | ||
DNA gyrase (gyrA), topoisomerase IV (parC) | Reduce drug binding | Fluoroquinolones |
ArmA enzyme | Methylation of the 16S ribosomal RNA | Aminoglycoside |
pmrA, pmrB, lpxD | Modifications to LPS structure, reduce binding affinity | Polymyxins |
Efflux Pumps | ||
RND family | ||
AdeABC efflux pump (adeR, adeS) | Function both with antibiotics and hypervirulence | Aminoglycosides, tigecycline, fluoroquinolones |
AdeIJK and AdeFGH pump | Main cause of intrinsic resistance and cause of broad-spectrum resistance | |
Outer Membrane Porin Modifications | ||
CarO | Essential for carbapenem entry | Carbapenems (after variation) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, N.; Ma, X.; Ni, W. Hypervirulent Acinetobacter baumannii (hvAB): The Convergence of Virulence and Multidrug Resistance. Antibiotics 2025, 14, 551. https://doi.org/10.3390/antibiotics14060551
Wu N, Ma X, Ni W. Hypervirulent Acinetobacter baumannii (hvAB): The Convergence of Virulence and Multidrug Resistance. Antibiotics. 2025; 14(6):551. https://doi.org/10.3390/antibiotics14060551
Chicago/Turabian StyleWu, Nan, Xinqian Ma, and Wentao Ni. 2025. "Hypervirulent Acinetobacter baumannii (hvAB): The Convergence of Virulence and Multidrug Resistance" Antibiotics 14, no. 6: 551. https://doi.org/10.3390/antibiotics14060551
APA StyleWu, N., Ma, X., & Ni, W. (2025). Hypervirulent Acinetobacter baumannii (hvAB): The Convergence of Virulence and Multidrug Resistance. Antibiotics, 14(6), 551. https://doi.org/10.3390/antibiotics14060551