Antimicrobial Susceptibility Patterns of Staphylococcus spp. Isolates from Mastitic Cases in Romanian Buffaloes from Western Romania
Abstract
:1. Introduction
2. Results
2.1. Bacteriological Results
2.2. Results of the Antimicrobial Susceptibility Test
3. Discussion
4. Materials and Methods
4.1. Romanian Buffalo Farms and Sample Collection
4.2. Bacteriological Culture
4.3. Analysis of Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emakpor, O.L.; Edo, G.I.; Jikah, A.N.; Ikpekoro, V.O.; Agbo, J.J.; Ainyanbhor, I.E.; Essaghah, A.E.A.; Ekokotu, H.A.; Oghroro, E.E.A.; Akpoghelie, P.O. Buffalo milk: An essential natural adjuvant. Discov. Food 2024, 4, 38. [Google Scholar] [CrossRef]
- Becskei, Z.; Savić, M.; Ćirković, D.; Rašeta, M.; Puvača, N.; Pajić, M.; Đorđević, S.; Paskaš, S. Assessment of Water Buffalo Milk and Traditional Milk Products in a Sustainable Production System. Sustainability 2020, 12, 6616. [Google Scholar] [CrossRef]
- Bhat, A.R.; Shah, A.H.; Ayoob, M.; Ayoob, M.F.; Saleem, F.; Ali, M.M.; Fayaz, M. Chemical, rheological, and organoleptic analysis of cow and buffalo milk mozzarella cheese. Ank. Univ. Veter-Fak. Derg. 2022, 69, 51–60. [Google Scholar] [CrossRef]
- Popa, R.; Popa, D.; Vidu, L.; Pogurschi, E.; Maftei, M.; Nicolae, C. Economic Weight of Production Traits for Romanian Buffalo. Sci. Pap. Ser. D Anim. Sci. 2018, 61, 51–60. [Google Scholar]
- Vidu, L.; Georgescu, G.; Udroiu, A.; Ungureanu, M.; Vlăsceanu, F. Studiu asupra parametrilor calitativi ai laptelui de bivoliță la o populație din zona de sud a României. In Proceedings of the 36th International Session of Scientific Communications, Bucharest, Romania, 14–16 November 2007. [Google Scholar]
- Matiuti, M.; Bogdan, A.T.; Matiuti, C.L.; Dronca, D. Eco-Physiological Aspects of the Traditional Milk (Slow) Food in Banat and its Eco-Bioeconomic Impact. Bull. UASVM Anim. Sci. Biotechnol. 2011, 68, 211–215. [Google Scholar]
- Dhaka, P.; Chantziaras, I.; Vijay, D.; Bedi, J.S.; Makovska, I.; Biebaut, E.; Dewulf, J. Can Improved Farm Biosecurity Reduce the Need for Antimicrobials in Food Animals? A Scoping Review. Antibiotics 2023, 12, 893. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Zhang, Y.; Yao, Z.; Zou, W.; Nie, P.; Yang, L. A New Method to Detect Buffalo Mastitis Using Udder Ultrasonography Based on Deep Learning Network. Animals 2024, 14, 707. [Google Scholar] [CrossRef]
- Mejares, C.T.; Huppertz, T.; Chandrapala, J. Thermal processing of buffalo milk—A review. Int. Dairy J. 2022, 129, 105311. [Google Scholar] [CrossRef]
- Napolitano, F.; De Rosa, G.; Chay-Canul, A.; Álvarez-Macías, A.; Pereira, A.M.F.; Bragaglio, A.; Mora-Medina, P.; Rodríguez-González, D.; García-Herrera, R.; Hernández-Ávalos, I.; et al. The Challenge of Global Warming in Water Buffalo Farming: Physiological and Behavioral Aspects and Strategies to Face Heat Stress. Animals 2023, 13, 3103. [Google Scholar] [CrossRef]
- Stanek, P.; Żółkiewski, P.; Januś, E. A Review on Mastitis in Dairy Cows Research: Current Status and Future Perspectives. Agriculture 2024, 14, 1292. [Google Scholar] [CrossRef]
- Tommasoni, C.; Fiore, E.; Lisuzzo, A.; Gianesella, M. Mastitis in Dairy Cattle: On-Farm Diagnostics and Future Perspectives. Animals 2023, 13, 2538. [Google Scholar] [CrossRef]
- El-Ashker, M.; Gwida, M.; Tomaso, H.; Monecke, S.; Ehricht, R.; El-Gohary, F.; Hotzel, H. Staphylococci in cattle and buffaloes with mastitis in Dakahlia Governorate, Egypt. J. Dairy Sci. 2015, 98, 7450–7459. [Google Scholar] [CrossRef] [PubMed]
- Grima, L.Y.W.; Leliso, S.A.; Bulto, A.O.; Ashenafi, D. Isolation, Identification, and Antimicrobial Susceptibility Profiles of Staphylococcus aureus from Clinical Mastitis in Sebeta Town Dairy Farms. Vet. Med. Int. 2021, 2021, 1772658. [Google Scholar] [CrossRef] [PubMed]
- Kerro Dego, O.; Vidlund, J. Staphylococcal mastitis in dairy cows. Front. Vet. Sci. 2024, 11, 1356259. [Google Scholar] [CrossRef] [PubMed]
- Horvat, O.; Kovačević, Z. Human and Veterinary Medicine Collaboration: Synergistic Approach to Address Antimicrobial Resistance Through the Lens of Planetary Health. Antibiotics 2025, 14, 38. [Google Scholar] [CrossRef]
- Javed, M.U.; Hayat, M.T.; Mukhtar, H.; Imre, K. CRISPR-Cas9 system: A prospective pathway toward combatting antibiotic resistance. Antibiotics 2023, 12, 1075. [Google Scholar] [CrossRef]
- Tomanić, D.; Samardžija, M.; Kovačević, Z. Alternatives to Antimicrobial Treatment in Bovine Mastitis Therapy: A Review. Antibiotics 2023, 12, 683. [Google Scholar] [CrossRef]
- Duse, A.; Persson-Waller, K.; Pedersen, K. Microbial Aetiology, Antibiotic Susceptibility and Pathogen-Specific Risk Factors for Udder Pathogens from Clinical Mastitis in Dairy Cows. Animals 2021, 11, 2113. [Google Scholar] [CrossRef]
- Ryman, V.E.; Kautz, F.M.; Nickerson, S.C. Case Study: Misdiagnosis of Nonhemolytic Staphylococcus aureus Isolates from Cases of Bovine Mastitis as Coagulase-Negative Staphylococci. Animals 2021, 11, 252. [Google Scholar] [CrossRef]
- Wald, R.; Hess, C.; Urbantke, V.; Wittek, T.; Baumgartner, M. Characterization of Staphylococcus species isolated from bovine quarter Milk samples. Animals 2019, 9, 200. [Google Scholar] [CrossRef]
- Preine, F.; Herrera, D.; Scherpenzeel, C.; Kalmus, P.; McCoy, F.; Smulski, S.; Rajala-Schultz, P.; Schmenger, A.; Moroni, P.; Krömker, V. Different European Perspectives on the Treatment of Clinical Mastitis in Lactation. Antibiotics 2022, 11, 1107. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.M.S.; Dubenczuk, F.C.; Melo, D.A.; Holmström, T.C.N.; Mendes, M.B.; Reinoso, E.B.; Coelho, S.M.O.; Coelho, I.S. Antimicrobial therapy approaches in the mastitis control driven by one health insights. Braz. J. Vet. Med. 2024, 46, e002624. [Google Scholar] [CrossRef] [PubMed]
- Dégi, D.M.; Dégi, J.; Cireș, A.M.; Cristina, R.T. Antibacterial Profile of Staphylococcal Isolates Associated with the Bubaline Mastitis; Lucrari Stiintifice-Universitatea de Stiinte Agricole a Banatului Timisoara, Medicina Veterinara: Bucharest, Romania, 2019; Volume 52, pp. 42–47, CABI Record Number: 20193493318. [Google Scholar]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar, C.; Herskin, M.; et al. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Antimicrobial-resistant Staphylococcus aureus in cattle and horses. EFSA J. Eur. Food Saf. Auth. 2022, 20, e07312. [Google Scholar]
- European Commission. Guidelines for the Prudent Use of Antimicrobials in Veterinary Medicine. Off. J. Eur. Union 2015, C299, 7–26. Available online: https://www.fao.org/faolex/results/details/ar/c/LEX-FAOC196120/ (accessed on 27 February 2025).
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2014.
- Elias, L.; Balasubramanyam, A.S.; Ayshpur, O.Y.; Mushtuk, I.U.; Sheremet, N.O.; Gumeniuk, V.V.; Musser, J.M.; Rogovskyy, A.S. Antimicrobial Susceptibility of Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli Isolated from Mastitic Dairy Cattle in Ukraine. Antibiotics 2020, 9, 469. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Antunes, W.; Mota, S.; Madureira-Carvalho, Á.; Dinis-Oliveira, R.J.; Dias da Silva, D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024, 12, 1920. [Google Scholar] [CrossRef]
- Taponen, S.; Tölli, H.T.; Rajala-Schultz, P.J. Antimicrobial susceptibility of staphylococci from bovine milk samples in routine microbiological mastitis analysis in Finland. Front. Vet. Sci. 2023, 10, 1235417. [Google Scholar] [CrossRef]
- János, D.; Viorel, H.; Ionica, I.; Corina, P.; Tiana, F.; Roxana, D. Carriage of Multidrug Resistance Staphylococci in Shelter Dogs in Timisoara, Romania. Antibiotics 2021, 10, 801. [Google Scholar] [CrossRef]
- Dégi, J.; Morariu, S.; Simiz, F.; Herman, V.; Beteg, F.; Dégi, D.M. Future Challenge: Assessing the Antibiotic Susceptibility Patterns of Staphylococcus Species Isolated from Canine Otitis Externa Cases in Western Romania. Antibiotics 2024, 13, 1162. [Google Scholar] [CrossRef]
- Pascu, C.; Herman, V.; Iancu, I.; Costinar, L. Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. Antibiotics 2022, 11, 57. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crespo-Piazuelo, D.; Lawlor, P.G. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation. Ir. Vet. J. 2021, 74, 21. [Google Scholar] [CrossRef]
- Xing, A.; Ng, H.M.; Jiao, H.; Li, K.; Ye, Q. The Prevalence, Epidemiological, and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus (MRSA) in Macau (2017–2022). Microorganisms 2024, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Imre, K.; Herman, V.; Morar, A. Scientific Achievements in the Study of the Occurrence and Antimicrobial Susceptibility Profile of Major Foodborne Pathogenic Bacteria in Foods and Food Processing Environments in Romania: Review of the Last Decade. BioMed Res. Int. 2020, 2020, 5134764. [Google Scholar] [CrossRef] [PubMed]
- Iancu, I.; Igna, V.; Popa, S.A.; Imre, K.; Pascu, C.; Costinar, L.; Degi, J.; Gligor, A.; Iorgoni, V.; Badea, C.; et al. Etiology and antimicrobial resistance of subclinical mastitis pathogens Staphylococcus aureus, Streptococcus spp. and Enterococcus spp. in sheep milk. Vet. Res. Commun. 2024, 49, 30. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.I.; Kamaruzzaman, N.F.; Gahamanyi, N.; Nguyen, T.T.H.; Hossain, D.; Kahwa, I. Confronting the complexities of antimicrobial management for Staphylococcus aureus causing bovine mastitis: An innovative paradigm. Ir. Vet. J. 2024, 77, 4. [Google Scholar] [CrossRef]
- Bechtold, V.; Petzl, W.; Huber-Schlenstedt, R.; Sorge, U.S. Distribution of Bovine Mastitis Pathogens in Quarter Milk Samples from Bavaria, Southern Germany, between 2014 and 2023—A Retrospective Study. Animals 2024, 14, 2504. [Google Scholar] [CrossRef]
- Bisola, M.A.I.; Olatunji, G.; Kokori, E.; Mustapha, A.A.; Scott, G.Y.; Ogieuh, I.J.; Woldehana, N.A.; Stanley, A.C.; Olohita, O.A.; Abiola, A.S.; et al. Olawade, Nicholas Aderinto, Emerging challenges in innate immunity: Staphylococcus aureus and healthcare-associated infection. J. Med. Surg. Public Health 2024, 3, 100103. [Google Scholar] [CrossRef]
- Haxhiaj, K.; Wishart, D.S.; Ametaj, B.N. Mastitis: What It Is, Current Diagnostics, and the Potential of Metabolomics to Identify New Predictive Biomarkers. Dairy 2022, 3, 722–746. [Google Scholar] [CrossRef]
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and Classification of Mastitis. Animals 2020, 10, 2212. [Google Scholar] [CrossRef]
- Grispoldi, L.; Karama, M.; Ianni, F.; La Mantia, A.; Pucciarini, L.; Camaioni, E.; Sardella, R.; Sechi, P.; Natalini, B.; Cenci-Goga, B.T. The Relationship between S. aureus and Branched-Chain Amino Acids Content in Composite Cow Milk. Animals 2019, 9, 981. [Google Scholar] [CrossRef]
- Perdomo, A.; Salazar, M.; Janardhanan, R.; Calle, A. The Tale of Staphylococcus aureus Isolated from Mastitis Infections: The Effect of Antimicrobials and Bacterial Relatedness. Appl. Microbiol. 2024, 4, 496–509. [Google Scholar] [CrossRef]
- Krebs, I.; Zhang, Y.; Wente, N.; Leimbach, S.; Krömker, V. Severity of Clinical Mastitis and Bacterial Shedding. Pathogens 2023, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.A.; Webb, E.C.; Runyan, C.L.; Spencer, J.A.; Jones, B.W.; Wellmann, K.B. The Effects of Breed, Lactation Number, and Lameness on the Behavior, Production, and Reproduction of Lactating Dairy Cows in Central Texas. Ruminants 2024, 4, 316–328. [Google Scholar] [CrossRef]
- Odoi, A.; Samuels, R.; Carter, C.N.; Smith, J. Antibiotic prescription practices and opinions regarding antimicrobial resistance among veterinarians in Kentucky, USA. PLoS ONE 2021, 16, e0249653. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Kwarteng, J.; Akabanda, F.; Agyei, D.; Jespersen, L. Microbial Safety of Milk Production and Fermented Dairy Products in Africa. Microorganisms 2020, 8, 752. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, J.; Xu, X.; Wei, J.; Liu, J.; Qin, C.; Miao, W.; Li, L.; Song, X.; Liu, Q.; et al. Revealing microbial diversity in buffalo milk with high somatic cell counts: Implications for mastitis diagnosis and treatment. Vet. Res. Commun. 2024, 48, 2537–2553. [Google Scholar] [CrossRef]
- Oliver, S.P.; Gonzalez, R.N.; Hogan, J.S.; Jayarao, B.M.; Owens, W.E. Microbiological Procedures for the Diagnosis of Bovine Udder Infection and Determination of Milk Quality; National Mastitis Council: New Prague, MN, USA, 2024. [Google Scholar]
- Langhorne, C.; Horsman, S.; Wood, C.; Clark, R.; Price, R.; Henning, J.; Grewar, J.D.; Wood, B.J.; Ranjbar, S.; McGowan, M.R.; et al. Bacterial culture and susceptibility test results for clinical mastitis samples from Australia’s subtropical dairy region. J. Dairy Sci. 2024, 107, 1151–1163. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
Staphylococcus spp. | No. of Isolated Species (n = 83) | % (95% CI) | p-Value/Chi-Squared |
---|---|---|---|
S. aureus | 46 | 55.42 (44.72–66.12%) | 0.002/12.14 |
S. hyicus | 28 | 33.73 (23.54–43.92%) | 0.95/0.004 |
S. schleiferi | 9 | 10.84 (4.06–17.62%) | 0.002/12.61 |
Antibiotics (Drugs Family) | S. aureus (n = 46) | S. hyicus (n = 28) | S. schleiferi (n = 9) | |||
---|---|---|---|---|---|---|
S | R | S | R | S | R | |
AM (BL) | 60.86 * | 39.13 | 39.28 | 60.71 | 66.66 | 33.34 |
(28) | (18) | (11) | (17) | (6) | (3) | |
P (BL) | 36.95 | 63.04 | 39.28 | 60.71 | 22.23 | 77.77 |
(17) | (29) | (11) | (17) | (2) | (7) | |
CF (BL) | 73.91 | 26.08 | 53.57 | 46.42 | 77.77 | 22.23 |
(34) | (12) | (15) | (13) | (7) | (2) | |
CFT (BL) | 89.13 | 10.86 | 53.57 | 50.0 | 55.55 | 44.45 |
(41) | (5) | (15) | (14) | (5) | (4) | |
OX1 (BL) | 82.60 | 17.39 | 60.71 | 39.28 | 100 | (0) |
(38) | (8) | (17) | (11) | (9) | ||
CEQ (BL) | 95.65 | 4.34 | 100 | 0 | 100 | (0) |
(44) | (2) | (28) | (0) | (9) | ||
OXSF | 8 Positive | 11 Positive | Negative | |||
GM (AM) | 41.30 | 58.69 | 32.14 | 67.85 | 33.34 | 66.66 |
(19) | (27) | (9) | (19) | (3) | (6) | |
AN (AM) | 54.34 | 45.65 | 46.42 | 53.57 | 33.34 | 66.66 |
(25) | (21) | (13) | (15) | (4) | (5) | |
K (AM) | 50.0 | 50.0 | 35.71 | 64.28 | 44.45 | 55.55 |
(23) | (23) | (10) | (18) | (4) | (5) | |
N (AM) | 28.26 | 71.73 | 25.0 | 75.0 | 22.23 | 77.77 |
(13) | (33) | (7) | (21) | (2) | (7) | |
HLS (AM) | 76.08 | 23.91 | 39.28 | 60.71 | 44.45 | 55.55 |
(35) | (11) | (11) | (17) | (4) | (5) | |
ENR (FQ) | 80.43 | 19.56 | 100 | 0 | 88.88 | 11.12 |
(37) | (9) | (28) | (0) | (8) | (1) | |
TE (TE) | 19.56 | 80.43 | 14.28 | 85.71 | 22.23 | 77.77 |
(9) | (37) | (4) | (24) | (2) | (7) | |
E (MA) | 39.13 | 60.86 | 28.57 | 71.42 | 33.34 | 66.66 |
(18) | (28) | (8) | (20) | (3) | (6) | |
TIL (MA) | 45.65 | 54.34 | 39.28 | 60.71 | 44.45 | 55.55 |
(21) | (25) | (11) | (17) | (4) | (5) | |
TI (MA) | 56.52 | 47.82 | 64.28 | 35.71 | 44.45 | 55.55 |
(26) | (22) | (18) | (10) | (4) | (5) | |
ICR | Negative | Negative | Negative | |||
C (Li) | 67.39 | 32.60 | 67.85 | 32.14 | 77.77 | 22.23 |
(31) | (15) | (19) | (9) | (7) | (2) | |
SXT (TS) | 26.08 | 73.91 | 25.0 | 75.0 | 22.23 | 77.77 |
(12) | (34) | (7) | (21) | (2) | (7) | |
FFC (AMF) | 63.04 | 36.95 | 53.57 | 46.42 | 55.55 | 44.45 |
(29) | (17) | (15) | (13) | (5) | (4) |
No. | Staphylococcus spp. | No. of Isolates | Resistance to Antimicrobial Profile | No. of Classes of Antimicrobials |
---|---|---|---|---|
1. | Staphylococcus aureus | 2 | AN, AM, P, CF, CFT, CFQ, OX1, GM, K, N, ENR, TE, E, FFC, C, SXT, TIL, TI | 8 |
2. | Staphylococcus aureus | 3 | AN, AM, P, CF, CFT, OX1, GM, K, N, ENR, TE, E, FFC, C, SXT, TIL, TI | 8 |
3. | Staphylococcus aureus | 3 | AN, AM, P, CF, OX1, GM, K, N, ENR, TE, E, FFC, C, SXT, TIL, TI | 8 |
4. | Staphylococcus aureus | 1 | AN, AM, P, CF, GM, K, N, ENR, TE, E, FFC, C, SXT, TIL, TI | 8 |
5. | Staphylococcus aureus | 3 | AN, AM, P, CF, GM, K, N, TE, E, FFC, C, SXT, TIL, TI | 7 |
6. | Staphylococcus aureus | 3 | AN, AM, P, GM, K, N, TE, E, FFC, C, SXT, TIL, TI | 7 |
7. | Staphylococcus aureus | 2 | AN, AM, P, GM, K, N, TE, E, FFC, SXT, TIL, TI | 6 |
8. | Staphylococcus aureus | 1 | AN, AM, P, GM, K, N, TE, E, SXT, TIL, TI | 5 |
9. | Staphylococcus aureus | 3 | AN, P, GM, K, N, TE, E, SXT, TIL, TI | 5 |
10. | Staphylococcus aureus | 1 | P, GM, K, N, TE, E, SXT, TIL, TI | 5 |
11. | Staphylococcus aureus | 1 | P, GM, K, N, TE, E, SXT, TI | 5 |
12. | Staphylococcus aureus | 2 | P, GM, N, TE, E, SXT, TI | 5 |
13. | Staphylococcus aureus | 2 | P, GM, N, TE, E, SXT | 5 |
14. | Staphylococcus aureus | 1 | P, N, TE, E, SXT | 5 |
15. | Staphylococcus aureus | 1 | P, N, TE, SXT | 4 |
16. | Staphylococcus aureus | 4 | N, TE, SXT | 3 |
17. | Staphylococcus hyicus | 9 | AN, AM, P, CF, CFT, OX1, GM, K, N, TE, E, FFC, C, SXT, TIL, TI | 7 |
18. | Staphylococcus hyicus | 1 | AN, AM, P, CF, CFT, OX1, GM, K, N, TE, E, FFC, SXT, TIL, TI | 6 |
19. | Staphylococcus hyicus | 1 | AN, AM, P, CF, CFT, OX1, GM, K, N, TE, E, FFC, SXT, TIL | 6 |
20. | Staphylococcus hyicus | 2 | AN, AM, P, CF, CFT, GM, K, N, TE, E, FFC, SXT, TIL | 6 |
21. | Staphylococcus hyicus | 1 | AN, AM, P, CFT, GM, K, N, TE, E, SXT, TIL | 5 |
22. | Staphylococcus hyicus | 1 | AN, AM, P, GM, K, N, TE, E, SXT, TIL | 5 |
23. | Staphylococcus hyicus | 2 | AM, P, GM, K, N, TE, E, SXT, TIL | 5 |
24. | Staphylococcus hyicus | 1 | GM, K, N, TE, E, SXT, | 4 |
25. | Staphylococcus hyicus | 1 | GM, N, TE, E, SXT, | 4 |
26. | Staphylococcus hyicus | 1 | N, TE, E, SXT, | 4 |
27. | Staphylococcus hyicus | 1 | N, TE, SXT, | 3 |
28. | Staphylococcus schleiferi | 1 | AN, AM, P, CF, CFT, GM, K, N, ENR, TE, E, FFC, C, SXT, TIL, TI | 8 |
29. | Staphylococcus schleiferi | 1 | AN, AM, P, CF, CFT, GM, K, N, TE, E, FFC, C, SXT, TIL, TI | 7 |
30. | Staphylococcus schleiferi | 1 | AN, AM, P, CFT, GM, K, N, TE, E, FFC, SXT, TIL, TI | 6 |
31. | Staphylococcus schleiferi | 1 | AN, P, CFT, GM, K, N, TE, E, FFC, SXT, TIL, TI | 6 |
32. | Staphylococcus schleiferi | 1 | AN, P, CFT, GM, K, N, TE, E, SXT, TIL, TI | 5 |
33. | Staphylococcus schleiferi | 1 | P, CFT, GM, N, TE, E, SXT, TIL, TI | 5 |
34. | Staphylococcus schleiferi | 1 | P, CFT, N, TE, SXT, TIL, TI | 5 |
No. | Farm/Microfarm Location | Livestock | Number of Milk Samples Collected | Milk Samples per Animal Ratio |
---|---|---|---|---|
1. | Pecica-Arad | 56 | 8 | 0.142857 |
2. | Lăzăreni-Bihor | 30 | 5 | 0.166667 |
3. | Vinga-Arad | 25 | 11 | 0.440000 |
4. | Beznea (Bratca)-Bihor | 75 | 43 | 0.573333 |
5. Microfarm, breeders’ association | Gurahonț-Arad | 10 | 2 | 0.200000 |
Hălmagiu-Arad | 8 | 1 | 0.125000 | |
Vărfurile-Arad | 15 | 2 | 0.133333 | |
6. | Rădești (Dieci)-Arad | 35 | 3 | 0.085714 |
Total | 254 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degi, J.; Herman, V.; Iancu, I.; Badea, C.; Zaha, C.; Mergheș, P.E.; Iorgoni, V.; Florea, B.-A.; Cristina, R.T.; Degi, D.M. Antimicrobial Susceptibility Patterns of Staphylococcus spp. Isolates from Mastitic Cases in Romanian Buffaloes from Western Romania. Antibiotics 2025, 14, 537. https://doi.org/10.3390/antibiotics14060537
Degi J, Herman V, Iancu I, Badea C, Zaha C, Mergheș PE, Iorgoni V, Florea B-A, Cristina RT, Degi DM. Antimicrobial Susceptibility Patterns of Staphylococcus spp. Isolates from Mastitic Cases in Romanian Buffaloes from Western Romania. Antibiotics. 2025; 14(6):537. https://doi.org/10.3390/antibiotics14060537
Chicago/Turabian StyleDegi, János, Viorel Herman, Ionica Iancu, Corina Badea, Cristian Zaha, Petru Eugen Mergheș, Vlad Iorgoni, Bogdan-Alexandru Florea, Romeo Teodor Cristina, and Diana Maria Degi. 2025. "Antimicrobial Susceptibility Patterns of Staphylococcus spp. Isolates from Mastitic Cases in Romanian Buffaloes from Western Romania" Antibiotics 14, no. 6: 537. https://doi.org/10.3390/antibiotics14060537
APA StyleDegi, J., Herman, V., Iancu, I., Badea, C., Zaha, C., Mergheș, P. E., Iorgoni, V., Florea, B.-A., Cristina, R. T., & Degi, D. M. (2025). Antimicrobial Susceptibility Patterns of Staphylococcus spp. Isolates from Mastitic Cases in Romanian Buffaloes from Western Romania. Antibiotics, 14(6), 537. https://doi.org/10.3390/antibiotics14060537