Distribution of Fimbrial Genes and Their Association with Virulence and Levofloxacin Resistance/Extended-Spectrum Beta-Lactamase Production in Uropathogenic Escherichia coli
Abstract
:1. Introduction
2. Results
2.1. Patient Demographics and Distribution of Fimbrial Genes
2.2. Comparison of the Distribution of Fimbrial Genes Between ABU and Symptomatic UTI Groups
2.3. Comparison of the Distribution of Fimbrial Genes by Antimicrobial Susceptibility Testing
3. Discussion
4. Materials and Methods
4.1. Study Design and Bacterial Strains
4.2. Culture Conditions
4.3. Detection of Fimbrial Genes
4.4. DNA Extraction and Real-Time PCR Analysis
4.5. Antimicrobial Susceptibility Testing
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UTI | Urinary tract infection |
UPEC | Uropathogenic Escherichia coli |
PCR | Polymerase chain reaction |
LVFX | Levofloxacin |
ABU | Asymptomatic bacteriuria |
ESBL | Extended-spectrum β-lactamase |
CLSI | Clinical and Laboratory Standards Institute |
CI | Confidence intervals |
BTB | Bromothymol blue |
References
- Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Dis. Mon. 2003, 49, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Ronald, A. The etiology of urinary tract infection: Traditional and emerging pathogens. Dis. Mon. 2003, 49, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Dielubanza, E.J.; Schaeffer, A.J. Urinary tract infections in women. Med. Clin. N. Am. 2011, 95, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Griebling, T.L. Urologic diseases in America project: Trends in resource use for urinary tract infections in women. J. Urol. 2005, 173, 1281–1287. [Google Scholar] [CrossRef]
- Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Am. J. Med. 2002, 113, 5–13. [Google Scholar] [CrossRef]
- Johnson, J.R.; Clermont, O.; Menard, M.; Kuskowski, M.A.; Picard, B.; Denamur, E. Experimental mouse lethality of Escherichia coli isolates, in relation to accessory traits, phylogenetic group, and ecological source. J. Infect. Dis. 2006, 194, 1141–1150. [Google Scholar] [CrossRef]
- Johnson, J.R.; Kuskowski, M.A.; Gajewski, A.; Soto, S.; Horcajada, J.P.; Jimenez de Anta, M.T.; Vila, J. Extended virulence genotypes and phylogenetic background of Escherichia coli isolates from patients with cystitis, pyelonephritis, or prostatitis. J. Infect Dis. 2005, 191, 46–50. [Google Scholar] [CrossRef]
- Johnson, J.R.; Owens, K.; Gajewski, A.; Kuskowski, M.A. Bacterial characteristics in relation to clinical source of Escherichia coli isolates from women with acute cystitis or pyelonephritis and uninfected women. J. Clin. Microbiol. 2005, 43, 6064–6072. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Wullt, B.; Bergsten, G.; Samuelsson, M.; Gebretsadik, N.; Hull, R.; Svanborg, C. The Role of P Fimbriae for Colonization and Host Response Induction in the Human Urinary Tract. J. Infect. Dis. 2001, 183, 43–46. [Google Scholar] [CrossRef]
- Keith, B.R.; Maurer, L.; Spears, P.A.; Orndorff, P.E. Receptor-Binding Function of Type 1 Pili Effects Bladder Colonizationbya Clinical Isolate of Escherichia coli. Infect. Immun. 1986, 53, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Langermann, S.; Palaszynski, S.; Barnhart, M.; Auguste, G.; Pinkner, J.S.; Burlein, J.; Barren, P.; Koenig, S.; Leath, S.; Jones, C.H.; et al. Prevention of Mucosal Escherichia coli Infection by FimH-Adhesin–Based Systemic Vaccination. Science 1997, 276, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Nielubowicz, G.R.; Mobley, H.L.T. Host-pathogen interactions in urinary tract infection. Nat. Rev. Urol. 2010, 7, 430–441. [Google Scholar] [CrossRef]
- Sivick, K.E.; Mobley, H.L.T. Waging war against uropathogenic Escherichia coli: Winning back the urinary tract. Infect. Immun. 2010, 78, 568–585. [Google Scholar] [CrossRef]
- Ulett, G.C.; Totsika, M.; Schaale, K.; Carey, A.J.; Sweet, M.J.; Schembri, M.A. Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr. Opin. Microbiol. 2013, 16, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Kallenius, G.; Svenson, S.B.; Hultberg, H.; Mollby, R.; Helin, I.; Cedergren, B.; Winberg, J. Occurrence of P-fimbriated Escherichia coli in urinary tract infections. Lancet. 1981, 2, 1369–1372. [Google Scholar] [CrossRef]
- Saint, S.; Chenoweth, C.E. Biofilms and catheter-associated urinary tract infections. Infect. Dis. Clin. N. Am. 2003, 17, 411–432. [Google Scholar] [CrossRef]
- Warren, J.W. The catheter and urinary tract infection. Med. Clin. N. Am. 1991, 75, 481–493. [Google Scholar] [CrossRef]
- Maki, D.G.; Tambyah, P.A. Engineering out the risk for infection with urinary catheters. Emerg. Infect. Dis. 2001, 7, 342–347. [Google Scholar] [CrossRef]
- Reisner, A.; Maierl, M.; Jorger, M.; Krause, R.; Berger, D.; Haid, A.; Tesic, D.; Zechner, E.L. Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli. J. Bacteriol. 2014, 196, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Stamm, W.E. Increasing Antimicrobial Resistance and the Management of Uncomplicated Community-Acquired Urinary Tract Infections. Ann. Intern. Med. 2001, 135, 41–50. [Google Scholar] [CrossRef]
- Critchley, I.A.; Cotroneo, N.; Pucci, M.J.; Jain, A.; Mendes, R.E. Resistance among urinary tract pathogens collected in Europe during 2018. J. Glob. Antimicrob. Resist. 2020, 23, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Gupta, V.; Mulgirigama, A.; Joshi, A.V.; Scangarella-Oman, N.E.; Yu, K.; Ye, G.; Mitrani-Gold, F.S. Antimicrobial Resistance Trends in Urine Escherichia coli Isolates from Adult and Adolescent Females in the United States from 2011 to 2019: Rising ESBL Strains and Impact on Patient Management. Clin. Infect. Dis. 2021, 73, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Malekzadegan, Y.; Khashei, R.; Ebrahim-Saraie, H.S.; Jahanabadi, Z. Distribution of virulence genes and their association with antimicrobial resistance among uropathogenic Escherichia coli isolates from Iranian patients. BMC. Infect. Dis. 2018, 18, 572. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Soto, S.; Gajewski, A.; Smithson, A.; Jimenez de Anta, M.T.; Mensa, J.; Vila, J.; Johnson, J.R. Quinolone-resistant uropathogenic Escherichia coli strains from phylogenetic group B2 have fewer virulence factors than their susceptible counterparts. J. Clin. Microbiol. 2005, 43, 2962–2964. [Google Scholar] [CrossRef]
- Velasco, M.; Horcajada, J.P.; Mensa, J.; Martinez, A.M.; Vila, J.; Martinez, J.A.; Ruiz, J.; Barranco, M.; Roig, G.; Soriano, E. Decreased invasive capacity of quinolone-resistant Escherichia coli in patients with urinary tract infections. Clin. Infect. Dis. 2001, 33, 1682–1686. [Google Scholar] [CrossRef]
- Vila, J.; Simon, K.; Ruiz, J.; Horcajada, J.P.; Velasco, M.; Barranco, M.; Moreno, A.; Mensa, J. Are quinolone-resistant uropathogenic Escherichia coli less virulent? J. Infect. Dis. 2002, 186, 1039–1042. [Google Scholar] [CrossRef]
- Bunduki, G.K.; Heinz, E.; Phiri, V.S.; Noah, P.; Feasey, N.; Musaya, J. Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 753. [Google Scholar] [CrossRef]
- Mabbetta, A.N.; Ulett, G.C.; Watts, R.E.; Tree, J.J.; Totsika, M.; Y. Ong, C.-l.; Wood, J.M.; Monaghan, W.; Looke, D.F.; Nimmo, G.R.; et al. Virulence properties of asymptomatic bacteriuria Escherichia coli. Int. J. Med. Microbiol. 2009, 299, 53–63. [Google Scholar] [CrossRef]
- Spurbeck, R.R.; Stapleton, A.E.; Johnson, J.R.; Walk, S.T.; Hooton, T.M.; Mobley, H.L.T. Fimbrial Profiles Predict Virulence of Uropathogenic Escherichia coli Strains: Contribution of Ygi and Yad Fimbriae. Infect. Immun. 2011, 79, 4753–4763. [Google Scholar] [CrossRef]
- Kulkarni, R.; Dhakal, B.K.; Slechta, E.S.; Kurtz, Z.; Mulvey, M.A.; Thanassi, D.G. Roles of putative type II secretion and type IV pilus systems in the virulence of uropathogenic Escherichia coli. PLoS ONE 2009, 4, 4752. [Google Scholar] [CrossRef] [PubMed]
- Johanson, I.M.; Plos, K.; Marklund, B.I.; Svanborg, C. Pap, papG and prsG DNA sequences in Escherichia coli from the fecal flora and the urinary tract. Microb. Pathog. 1993, 15, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.C.; Mobley, H.L.T. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int. 2007, 72, 19–25. [Google Scholar] [CrossRef]
- Otto, G.; Sandberg, T.; Marklund, B.I.; Ulleryd, P.; Svanborg, C. Virulence factors and pap genotype in Escherichia coli isolates from women with acute pyelonephritis, with or without bacteremia. Clin. Infect. Dis. 1993, 17, 448–456. [Google Scholar] [CrossRef]
- Schwartz, D.J.; Kalas, V.; Pinkner, J.S.; Chen, S.L.; Spaulding, C.N.; Dodson, K.W.; Hultgren, S.J. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc. Natl. Acad. Sci. USA 2013, 110, 15530–15537. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 1991, 4, 80–128. [Google Scholar] [CrossRef]
- Thanassi, D.G.; Hultgren, S.J. Assembly of complex organelles: Pilus biogenesis in gram-negative bacteria as a model system. Methods 2000, 20, 111–126. [Google Scholar] [CrossRef]
- Martinez, J.J.; Mulvey, M.A.; Schilling, J.D.; Pinkner, J.S.; Hultgren, S.J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 2000, 19, 2803–2812. [Google Scholar] [CrossRef]
- Mulvey, M.A.; Schilling, J.D.; Hultgren, S.J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 2001, 69, 4572–4579. [Google Scholar] [CrossRef]
- Tarchouna, M.; Ferjani, A.; Ben-Selma, W.; Boukadida, J. Distribution of uropathogenic virulence genes in Escherichia coli isolated from patients with urinary tract infection. Int. J. Infect. Dis. 2013, 17, 450–453. [Google Scholar] [CrossRef]
- Kallenius, G.; Mollby, R.; Svenson, S.B.; Winberg, J.; Lundblad, A.; Svensson, S.; Cedergren, B. The PK Antigen as Receptor for the Haemagglutinin of Pyelonephritic Escherichia coli. FEMS Lett. 1980, 7, 297–302. [Google Scholar] [CrossRef]
- Mainil, J. Molecular and cellular pathogenesis of bacterial infections Colonisation of the mucosae; Adherence factors and their interaction with host cells. Ann. Med. Vet. 2005, 12, 5–14. [Google Scholar]
- Hultgren, S.J.; Lindberg, F.; Magnusson, G.; Kihlbergt, J.; Tennent, J.M.; Normark, S. The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus. Proc. Natl. Acad. Sci. USA. 1989, 86, 4357–4361. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M. Biofilms and device-associated infections. Emerg. Infect. Dis. 2001, 7, 277–281. [Google Scholar] [CrossRef]
- Johnson, J.R.; Brown, J.J. A Novel Multiply Primed Polymerase Chain Reaction Assay for Identification of Variant papG Genes Encoding the Gal(al-4) Gal-Binding PapG Adhesins of Escherichia coli. J. Infect. Dis. 1996, 173, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Subashchandrabose, S.; Smith, S.N.; Spurbeck, R.R.; Kole, M.M.; Mobley, H.L.T. Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection. PLoS Pathog. 2013, 9, 1003788. [Google Scholar] [CrossRef]
- Qin, X.; Hu, F.; Wu, S.; Ye, X.; Zhu, D.; Zhang, Y.; Wang, M. Comparison of Adhesin Genes and Antimicrobial Susceptibilities between Uropathogenic and Intestinal Commensal Escherichia coli Strains. PLoS ONE 2013, 8, 61169. [Google Scholar] [CrossRef]
- Soto, S.M.; Jimenez de Anta, M.T.; Vila, J. Quinolones induce partial or total loss of pathogenicity islands in uropathogenic Escherichia coli by SOS-dependent or independent pathways, respectively. Antimicrob. Agents. Chemother. 2006, 50, 649–653. [Google Scholar] [CrossRef]
- Naziri, Z.; Derakhshandeh, A.; Borchaloee, A.S.; Poormaleknia, M.; Azimzadeh, N. Treatment Failure in Urinary Tract Infections: A Warning Witness for Virulent Multi-Drug Resistant ESBL- Producing Escherichia coli. Infect. Drug Resist. 2020, 13, 1839–1850. [Google Scholar] [CrossRef]
- Johnson, J.R.; Kuskowski, M.A.; Owens, K.; Gajewski, A.; Winokur, P.L. Phylogenetic origin and virulence genotype in relation to resistance to fluoroquinolones and/or extended-spectrum cephalosporins and cephamycins among Escherichia coli isolates from animals and humans. J. Infect. Dis. 2003, 188, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Van der Schee, C.; Kuskowski, M.A.; Goessens, W.; van Belkum, A. Phylogenetic background and virulence profiles of fluoroquinolone-resistant clinical Escherichia coli isolates from The Netherlands. J. Infect. Dis. 2002, 186, 1852–1856. [Google Scholar] [CrossRef]
- Garau, J.; Xercavins, M.; Rodriguez-Carballeira, M.; Gomez-Vera, J.R.; Coll, I.; Vidal, D.; Llovet, T.; Ruiz-Bremon, A. Emergence and dissemination of quinolone-resistant Escherichia coli in the community. Antimicrob. Agents. Chemother. 1999, 43, 2736–2741. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Hossain, M.M.K.; Rubaya, R.; Halder, J.; Karim, M.E.; Bhuiya, A.A.; Khatun, A.; Alam, J. Association of Antibiotic Resistance Traits in Uropathogenic Escherichia coli (UPEC) Isolates. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 4251486. [Google Scholar] [CrossRef]
- Kadry, A.A.; Serry, F.M.; El-Ganiny, A.M.; El-Baz, A.M. Integron occurrence is linked to reduced biocide susceptibility in multidrug resistant Pseudomonas aeruginosa. Br. J. Biomed. Sci. 2017, 74, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Yamane, T.; Enokida, H.; Hayami, H.; Kawahara, M.; Nakagawa, M. Genome-wide transcriptome analysis of fluoroquinolone resistance in clinical isolates of Escherichia coli. Int. J. Urol. 2011, 19, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Sarshar, M.; Behzadi, P.; Ambrosi, C.; Zagaglia, C.; Palamara, A.T.; Scribano, D. FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens. Antibiotics 2020, 9, 397. [Google Scholar] [CrossRef]
- Totsika, M.; Kostakioti, M.; Hannan, T.J.; Upton, M.; Beatson, S.A.; Janetka, J.W.; Hultgren, S.J.; Schembri, M.A. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J. Infect. Dis. 2013, 208, 921–928. [Google Scholar] [CrossRef]
- Cusumano, C.K.; Pinkner, J.S.; Han, Z.; Greene, S.E.; Ford, B.A.; Crowley, J.R.; Henderson, J.P.; Janetka, J.W.; Hultgren, S.J. Treatment and Prevention of Urinary Tract Infection with Orally Active FimH Inhibitors. Sci. Transl. Med. 2011, 3, 109–115. [Google Scholar] [CrossRef]
- Sanchez-Cespedes, J.; Saez-Lopez, E.; Frimodt-Moller, N.; Vila, J.; Soto, S.M. Effects of a Mutation in the gyrA Gene on the Virulence of Uropathogenic Escherichia coli. Antimicrob. Agents Chemother. 2015, 59, 4662–4668. [Google Scholar] [CrossRef]
- Yamamoto, S.; Terai, A.; Yuri, K.; Kurazono, H.; Takeda, Y.; Yoshida, O. Detection of urovirulence factor in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol. Med. Microbiol. 1995, 12, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.C.; Huang, J.J.; Ko, W.C.; Yan, J.J.; Wu, J.J. Decreased predominance of papG class II allele in Escherichia coli strains isolated from adult with acute pyelonephritis and urinary tract abnormalities. J. Urol. 2001, 166, 1643–1646. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Stell, A.L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 2000, 181, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Testing, 34th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. M-07-A10, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
Gene | Description | Total (n = 120) |
---|---|---|
fimH | Type 1 fimbria adhensin | 120 (100%) |
papEF | P fimbria | 27 (22.5%) |
papG1 | P fimbria adhesin (allele 1) | 12 (10%) |
papG2 | P fimbria adhesin (allele 2) | 13 (10.8%) |
papG3 | P fimbria adhesin (allele 3) | 18 (15%) |
sfaS | S fimbria | 8 (6.7%) |
focG | F1c fimbria | 6 (5%) |
afa/draBC | Afa/Dr fimbriae | 3 (2.5%) |
bmaE | M fimbriae | 0 (0.0%) |
gafD | G fimbria | 0 (0.0%) |
c2395 | Putative type IV pili | 32 (26.7%) |
ppdD | Putative type IV pili | 120 (100%) |
yadN | Yad fimbriae | 39 (32.5%) |
ygiL | Ygi fimbriae | 86 (71.7%) |
Gene | ABU (n = 69) | Symptomatic UTI (n = 51) | p Value |
---|---|---|---|
fimH | 69 (100%) | 51 (100%) | |
papEF | 15 (21.7%) | 12 (23.5%) | 0.828 |
papG1 | 9 (13%) | 4 (7.8%) | 0.554 |
papG2 | 4 (5.8%) | 10 (19.6%) | 0.024 |
papG3 | 10 (14.5%) | 9 (17.6%) | 0.801 |
sfaS | 5 (7.2%) | 4 (7.8%) | ns |
focG | 4 (5.8%) | 3 (5.9%) | ns |
afa/draBC | 2 (2.9%) | 2 (3.9%) | ns |
bmaE | 0 (0.0%) | 0 (0.0%) | |
gafD | 0 (0.0%) | 0 (0.0%) | |
c2395 | 19 (27.5%) | 14 (27.5%) | ns |
ppdD | 69 (100%) | 51 (100%) | |
yadN | 24 (34.8%) | 16 (31.4) | 0.845 |
ygiL | 51 (73.9%) | 36 (70.6%) | 0.686 |
Gene | Odds Ratio | (95% CI) | p Value |
---|---|---|---|
papEF | 0.385 | (0.075, 1.970) | 0.251 |
papG2 | 5.850 | (1.390, 24.70) | 0.016 |
papG3 | 3.300 | (0.481, 22.60) | 0.224 |
sfaS | 1.020 | (0.161, 6.500) | 0.980 |
afa/draBC | 1.090 | (0.128, 9.230) | 0.938 |
Gene | ABU (n = 69) | p Value | Symptomatic UTI (n = 51) | p Value | ||
---|---|---|---|---|---|---|
Device− (n = 35) | Device+ (n = 34) | Device− (n = 25) | Device+ (n = 26) | |||
fimH | 35 (100%) | 34 (100%) | 25 (100%) | 26 (100%) | ||
papEF | 8 (22.9%) | 7 (20.6%) | ns | 8 (32.0%) | 4 (15.4%) | 0.199 |
papG1 | 7 (20.0%) | 2 (5.9%) | 0.151 | 2 (8.0%) | 2 (7.7%) | ns |
papG2 | 2 (5.7%) | 2 (5.9%) | ns | 8 (32.0%) | 2 (7.7%) | 0.036 |
papG3 | 5 (14.3%) | 5 (14.7%) | ns | 4 (16.0%) | 5 (19.2%) | ns |
sfaS | 3 (8.6%) | 2 (5.9%) | ns | 2 (8.0%) | 2 (7.7%) | ns |
focG | 2 (5.7%) | 2 (5.9%) | ns | 3 (12.0%) | 0 (0.0%) | 0.110 |
afa/draBC | 1 (2.9%) | 1 (2.9%) | ns | 1 (4.0%) | 1 (3.8%) | ns |
bmaE | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||
gafD | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||
c2395 | 10 (28.6%) | 9 (26.5%) | ns | 11 (44.0%) | 3 (11.5%) | 0.013 |
ppdD | 35 (100%) | 34 (100%) | 25 (100%) | 26 (100%) | ||
yadN | 10 (28.6%) | 14 (41.2%) | 0.318 | 10 (40.0%) | 6 (23.1%) | 0.237 |
ygiL | 26 (74.3%) | 25 (73.5%) | ns | 19 (76.0%) | 17 (65.4%) | 0.541 |
Gene | ABU (n = 69) | p Value | Symptomatic UTI (n = 51) | p Value | ||
---|---|---|---|---|---|---|
LVFXS (n = 30) | LVFXR (n = 39) | LVFXS (n = 20) | LVFXR (n = 31) | |||
fimH | 30 (100%) | 39 (100%) | 20 (100%) | 31 (100%) | ||
papEF | 11 (36.7%) | 4 (10.3%) | 0.017 | 11 (55.0%) | 1 (3.2%) | <0.001 |
papG1 | 5 (16.7%) | 4 (10.3%) | 0.488 | 2 (10.0%) | 2 (6.5%) | 0.640 |
papG2 | 3 (10.0%) | 1 (2.6%) | 0.310 | 5 (25.0%) | 5 (16.1%) | 0.486 |
papG3 | 8 (26.7%) | 2 (5.1%) | 0.016 | 8 (40.0%) | 1 (3.2%) | 0.001 |
sfaS | 4 (13.3%) | 1 (2.6%) | 0.159 | 4 (20.0%) | 0 (0.0%) | 0.019 |
focG | 2 (6.7%) | 2 (5.1%) | ns | 2 (10.0%) | 1 (3.2%) | 0.553 |
afa/draBC | 0 (0.0%) | 2 (5.1%) | 0.501 | 0 (0.0%) | 2 (6.5%) | 0.514 |
bmaE | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||
gafD | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||
c2395 | 14 (46.7%) | 5 (12.8%) | 0.003 | 10 (50.0%) | 4 (12.9%) | 0.009 |
ppdD | 30 (100%) | 39 (100%) | 20 (100%) | 31 (100%) | ||
yadN | 18 (60.0%) | 6 (15.4%) | <0.001 | 12 (60.0%) | 4 (12.9%) | <0.001 |
ygiL | 23 (76.7%) | 28 (71.8%) | 0.784 | 16 (80.0%) | 20 (64.5%) | 0.348 |
Gene | ABU (n = 69) | p Value | Symptomatic UTI (n = 51) | p Value | ||
---|---|---|---|---|---|---|
ESBL− (n = 43) | ESBL+ (n = 26) | ESBL− (n = 31) | ESBL+ (n = 20) | |||
fimH | 43 (100%) | 26 (100%) | 31 (100%) | 20 (100%) | ||
papEF | 13 (30.2%) | 2 (7.7%) | 0.036 | 10 (32.3%) | 2 (10.0%) | 0.095 |
papG1 | 7 (16.3%) | 2 (7.7%) | 0.466 | 3 (9.7%) | 1 (5.0%) | ns |
papG2 | 4 (9.3%) | 0 (0.0%) | 0.289 | 7 (22.6%) | 3 (15.0%) | 0.721 |
papG3 | 9 (20.9%) | 1 (3.8%) | 0.077 | 9 (29.0%) | 0 (0.0%) | 0.008 |
sfaS | 4 (9.3%) | 1 (3.8%) | 0.643 | 4 (12.9%) | 0 (0.0%) | 0.145 |
focG | 4 (9.3%) | 0 (0.0%) | 0.289 | 3 (9.7%) | 0 (0.0%) | 0.271 |
afa/draBC | 1 (2.3%) | 1 (3.8%) | ns | 2 (6.5%) | 0 (0.0%) | 0.514 |
bmaE | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||
gafD | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||
c2395 | 16 (37.2%) | 3 (11.5%) | 0.027 | 14 (45.2%) | 0 (0.0%) | <0.001 |
ppdD | 43 (100%) | 26 (100%) | 31 (100%) | 20 (100%) | ||
yadN | 21 (48.8%) | 3 (11.5%) | 0.002 | 15 (48.4%) | 1 (5.0%) | 0.001 |
ygiL | 32 (74.4%) | 19 (73.1%) | ns | 21 (67.7%) | 15 (75.0%) | 0.755 |
Gene | ESBL− LVFXS (n = 48) | ESBL− LVFXR (n = 26) | ESBL+ LVFXS (n = 2) | ESBL+ LVFXR (n = 44) | ESBL− LVFXR vs. ESBL+ LVFXR (p Value) |
---|---|---|---|---|---|
fimH | 48 (100%) | 26 (100%) | 2 (100%) | 44 (100%) | |
papEF | 21 (43.8%) | 2 (7.7%) | 1 (50%) | 3 (6.8%) | ns |
papG1 | 8 (16.7%) | 3 (11.5%) | 0 (0.0%) | 8 (18.2%) | 0.664 |
papG2 | 7 (14.6%) | 4 (15.4%) | 1 (50%) | 2 (4.5%) | 0.186 |
papG3 | 16 (33.3%) | 2 (7.7%) | 0 (0.0%) | 1 (2.3%) | 0.551 |
sfaS | 8 (16.7%) | 0 (0.0%) | 0 (0.0%) | 1 (2.3%) | ns |
focG | 4 (8.3%) | 3 (11.5%) | 0 (0.0%) | 0 (0.0%) | 0.048 |
afa/draBC | 0 (0.0%) | 3 (11.5%) | 0 (0.0%) | 1 (2.3%) | 0.141 |
bmaE | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
gafD | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
c2395 | 24 (50%) | 6 (23.1%) | 0 (0.0%) | 3 (6.8%) | 0.069 |
ppdD | 48 (100%) | 26 (100%) | 2 (100%) | 44 (100%) | |
yadN | 30 (62.5%) | 6 (23.1%) | 0 (0.0%) | 4 (9.1%) | 0.158 |
ygiL | 37 (77.1%) | 16 (61.5%) | 2 (100%) | 32 (72.7%) | 0.426 |
Gene | Primer (5′→3′) | Length (bp) | Reference |
---|---|---|---|
fimH | F: TGCAGAACGGATAAGCCGTGG | 508 | [7] |
R: GCAGTCACCTGCCCTCCGGTA | |||
papEF | F: GCAACAGCAACGCTGGTTGCATCAT | 336 | [61] |
R: AGAGAGAGCCACTCTTATACGGACA | |||
papG1 | F: TCGTGCTCAGGTCCGGAATTT | 461 | [46] |
R: TGGCATCCCCCAACATTATCG | |||
papG2 | F: GGGATGAGCGGGCCTTTGAT | 190 | [46,62] |
R: CGGGCCCCCAAGTAACTCG | |||
papG3 | F: GGCCTGCAATGGATTTACCTGG | 258 | [46,62] |
R: CCACCAAATGACCATGCCAGAC | |||
sfaS | F: GTGGATACGACGATTACTGTG | 240 | [63] |
R: CCGCCAGCATTCCCTGTATTC | |||
focG | F: CAGCACAGGCAGTGGATACGA | 360 | [63] |
R: GAATGTCGCCTGCCCATTGCT | |||
afa/draBC | F: GGCAGAGGGCCGGCAACAGGC | 559 | [63] |
R: CCCGTAACGCGCCAGCATCTC | |||
bmaE | F: ATGGCGCTAACTTGCCATGCTG | 507 | [63] |
R: AGGGGGACATATAGCCCCCTTC | |||
gafD | F: TGTTGGACCGTCTCAGGGCTC | 952 | [63] |
R: CTCCCGGAACTCGCTGTTACT | |||
c2395 | F: CAAAGAGCGCAGGCAGAATCC | 295 | [31] |
R: CCGCTGTCGCAATCTTCACAC | |||
ppdD | F: AAGCGCCATTGGTATTCCCGC | 260 | [31] |
R: GAGTCATGACGACGCTTAGCC | |||
yadN | F: TGGCAATGGCTGCTGGTACTG | 423 | [31] |
R: TTTTGCTGTAAACATCACCCGG | |||
ygiL | F: AAGGTGAAGTTATCGATGCACC | 432 | [31] |
R: TAGCCTGTGCCTGCACGTTACC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsui, M.; Sekito, T.; Maruhashi, M.; Maruyama, Y.; Iwata, T.; Tominaga, Y.; Katayama, S.; Nishimura, S.; Bekku, K.; Araki, M.; et al. Distribution of Fimbrial Genes and Their Association with Virulence and Levofloxacin Resistance/Extended-Spectrum Beta-Lactamase Production in Uropathogenic Escherichia coli. Antibiotics 2025, 14, 468. https://doi.org/10.3390/antibiotics14050468
Mitsui M, Sekito T, Maruhashi M, Maruyama Y, Iwata T, Tominaga Y, Katayama S, Nishimura S, Bekku K, Araki M, et al. Distribution of Fimbrial Genes and Their Association with Virulence and Levofloxacin Resistance/Extended-Spectrum Beta-Lactamase Production in Uropathogenic Escherichia coli. Antibiotics. 2025; 14(5):468. https://doi.org/10.3390/antibiotics14050468
Chicago/Turabian StyleMitsui, Masao, Takanori Sekito, Mai Maruhashi, Yuki Maruyama, Takehiro Iwata, Yusuke Tominaga, Satoshi Katayama, Shingo Nishimura, Kensuke Bekku, Motoo Araki, and et al. 2025. "Distribution of Fimbrial Genes and Their Association with Virulence and Levofloxacin Resistance/Extended-Spectrum Beta-Lactamase Production in Uropathogenic Escherichia coli" Antibiotics 14, no. 5: 468. https://doi.org/10.3390/antibiotics14050468
APA StyleMitsui, M., Sekito, T., Maruhashi, M., Maruyama, Y., Iwata, T., Tominaga, Y., Katayama, S., Nishimura, S., Bekku, K., Araki, M., Hirakawa, H., & Sadahira, T. (2025). Distribution of Fimbrial Genes and Their Association with Virulence and Levofloxacin Resistance/Extended-Spectrum Beta-Lactamase Production in Uropathogenic Escherichia coli. Antibiotics, 14(5), 468. https://doi.org/10.3390/antibiotics14050468