Phenolic-Rich Wine Pomace Extracts as Antioxidant and Antipathogenic Agents Against Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Sampling and Extraction
3.2. Phytochemical Analysis
3.2.1. Determination of Total Phenolic and Nonflavonoid Compounds
3.2.2. Determination of Flavones/Flavonols
3.2.3. Determination of Anthocyanins
3.2.4. Determination of Condensed Tannins
3.2.5. Identification of Phenolic Compounds Using HPLC-DAD
3.3. Antioxidant Activity Assays
3.3.1. Total Antioxidant Activity
3.3.2. ABTS•+ Free Radical Scavenging Activity
3.3.3. Nitric Oxide Scavenging Activity
3.3.4. Iron III Reducing Power
3.4. Antipathogenic Analysis
3.4.1. Bacterial Strains
3.4.2. Bacterial Growth
3.4.3. Biofilm Formation Assay
3.4.4. Elastase Activity
3.4.5. Protease Activity
3.4.6. Pyocyanin Quantification
3.4.7. Swarming Motility
3.4.8. Bioassay for the Detection of Anti-QS Activity
3.5. Toxicity Assay
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elbehiry, A.; Abalkhail, A.; Marzouk, E.; Elmanssury, A.E.; Almuzaini, A.M.; Alfheeaid, H.; Abu-Okail, A. An overview of the public health challenges in diagnosing and controlling human foodborne pathogens. Vaccines 2023, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Kabiraz, M.P.; Majumdar, P.R.; Mahmud, M.C.; Bhowmik, S.; Ali, A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023, 9, e15482. [Google Scholar] [CrossRef]
- Moi, I.M.; Ibrahim, Z.; Abubakar, B.M.; Katagum, Y.M.; Abdullahi, A.; Yiga, G.A.; Ayuba, I. Properties of Foodborne Pathogens and Their Diseases; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial biofilms in the food industry—A comprehensive review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef]
- Gao, X.; Li, C.; He, R.; Zhang, Y.; Wang, B.; Zhang, Z.H.; Ho, C.T. Research advances on biogenic amines in traditional fermented foods: Emphasis on formation mechanism, detection and control methods. Food Chem. 2023, 405, 134911. [Google Scholar] [CrossRef]
- Li, X.; Gu, N.; Huang, T.Y.; Zhong, F.; Peng, G. Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Front. Microbiol. 2023, 13, 1114199. [Google Scholar] [CrossRef]
- Nahar, S.; Ha, A.J.W.; Byun, K.H.; Hossain, M.I.; Mizan, M.F.R.; Ha, S.D. Efficacy of flavourzyme against Salmonella typhimurium, Escherichia coli, and Pseudomonas aeruginosa biofilms on food-contact surfaces. Int. J. Food Microbiol. 2021, 336, 108897. [Google Scholar] [CrossRef]
- Urgancı, N.N.; Yılmaz, N.; Koçer Alaşalvar, G.; Yıldırım, Z. Pseudomonas aeruginosa and its pathogenicity. Turk. J. Agric. Food Sci. Technol. 2022, 10, 726–738. [Google Scholar] [CrossRef]
- Maiga, A.; Ampomah-Wireko, M.; Teng, L.H.; Min, F.Z.; Lin, Z.W.; Jie, Z.H.; Wu, C. Multidrug-resistant bacteria quorum-sensing inhibitors: A particular focus on Pseudomonas aeruginosa. Eur. J. Med. Chem. 2024, 281, 117008. [Google Scholar] [CrossRef]
- Xuan, G.; Lin, H.; Tan, L.; Zhao, G.; Wang, J. Quorum sensing promotes phage infection in Pseudomonas aeruginosa PAO1. mBio 2022, 13, e03174-21. [Google Scholar] [CrossRef]
- Díaz-Pérez, S.P.; Solis, C.S.; López-Bucio, J.S.; Valdez Alarcón, J.J.; Villegas, J.; Reyes-De la Cruz, H.; Campos-Garcia, J. Pathogenesis in Pseudomonas aeruginosa PAO1 biofilm-associated is dependent on the pyoverdine and pyocyanin siderophores by quorum sensing modulation. Microb. Ecol. 2023, 86, 727–741. [Google Scholar] [CrossRef]
- Luciardi, M.C.; Blázquez, M.A.; Alberto, M.R.; Cartagena, E.; Arena, M.E. Grapefruit essential oils inhibit quorum sensing of Pseudomonas aeruginosa. Food Sci. Technol. Int. 2020, 26, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Acet, Ö.; Erdönmez, D.; Acet, B.Ö.; Odabaşı, M. N-acyl homoserine lactone molecules assisted quorum sensing: Effects, consequences, and monitoring of bacteria talking in real life. Arch. Microbiol. 2021, 203, 3739–3749. [Google Scholar] [CrossRef] [PubMed]
- Quintieri, L.; Caputo, L.; Brasca, M.; Fanelli, F. Recent Advances in the Mechanisms and Regulation of QS in Dairy Spoilage by Pseudomonas spp. Foods 2021, 10, 3088. [Google Scholar] [CrossRef]
- Elfaky, M.A. Unveiling the hidden language of bacteria: Anti-quorum sensing strategies for gram-negative bacteria infection control. Arch. Microbiol. 2024, 206, 124. [Google Scholar] [CrossRef]
- Naga, N.G.; Shaaban, M.I. Quorum Sensing and Quorum sensing inhibitors of natural origin. In Drug Discovery and Design Using Natural Products; Springer: Cham, Switzerland, 2023; pp. 395–416. [Google Scholar] [CrossRef]
- Luciardi, M.C.; Blázquez, M.A.; Cartagena, E.; Bardón, A.; Arena, M.E. Mandarin essential oils inhibit quorum sensing and virulence factors of Pseudomonas aeruginosa. LWT—Food Sci. Technol. 2016, 68, 373–380. [Google Scholar] [CrossRef]
- Nazareth, M.S.; Shreelakshmi, S.V.; Shetty, N.P. Identification and characterization of polyphenols from Carissa spinarum fruit and evaluation of their antioxidant and anti-quorum sensing activity. Curr. Microbiol. 2021, 78, 1277–1285. [Google Scholar] [CrossRef]
- Mangal, S.; Singh, V.; Chhibber, S.; Harjai, K. Natural bioactives versus synthetic antibiotics for the attenuation of quorum sensing-regulated virulence factors of Pseudomonas aeruginosa. Future Microbiol. 2022, 17, 773–787. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef]
- Salazar, P.B.; Fanzone, M.; Zabala, B.A.; Rodriguez Vaquero, M.J.; Cilli, E.; Barroso, P.A.; Acuña, L. A byproduct from the Valles Calchaquíes vineyards (Argentina) rich in phenolic compounds: A tool against endemic Leishmania dissemination. Environ. Sci. Pollut. Res. 2023, 30, 97377–97385. [Google Scholar] [CrossRef]
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising application of grape pomace and its agri-food valorization: Source of bioactive molecules with beneficial effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Tapia, P.E.; Silva, A.M.; Delerue-Matos, C.; Moreira, M.; Rodrigues, F.; Torres Carro, R.; Santi, M.D.; Ortega, M.G.; Blázquez, M.A.; Arena, M.E.; et al. Exploring the Phytochemical Composition and the Bioactive Properties of Malbec and Torrontés Wine Pomaces from the Calchaquíes Valleys (Argentina) for Their Sustainable Exploitation. Foods 2024, 13, 1795. [Google Scholar] [CrossRef] [PubMed]
- Baroi, A.M.; Popitiu, M.; Fierascu, I.; Sărdărescu, I.D.; Fierascu, R.C. Grapevine wastes: A rich source of antioxidants and other biologically active compounds. Antioxidants 2022, 11, 393. [Google Scholar] [CrossRef]
- Constantin, O.E.; Stoica, F.; Rațu, R.N.; Stănciuc, N.; Bahrim, G.E.; Râpeanu, G. Bioactive components, applications, extractions, and health benefits of winery by-products from a circular bioeconomy perspective: A review. Antioxidants 2024, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.D.C.; Madureira, J.; Margaça, F.M.; Cabo Verde, S. Grape Pomace: A Review of Its Bioactive Phenolic Compounds, Health Benefits, and Applications. Molecules 2025, 30, 362. [Google Scholar] [CrossRef]
- Taifouris, M.; El-Halwagi, M.; Martin, M. Evaluation of the economic, environmental, and social impact of the valorization of grape pomace from the wine industry. ACS Sustain. Chem. Eng. 2023, 11, 13718–13728. [Google Scholar] [CrossRef]
- Gabur, G.D.; Teodosiu, C.; Fighir, D.; Cotea, V.V.; Gabur, I. From Waste to Value in Circular Economy: Valorizing Grape Pomace Waste through Vermicomposting. Agriculture 2024, 14, 1529. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Igrejas, G.; Gaivão, I.; Aires, A.; Klibi, N.; Poeta, P. Valorization of winemaking by-products as a novel source of antibacterial properties: New strategies to fight antibiotic resistance. Molecules 2021, 26, 2331. [Google Scholar] [CrossRef]
- Gerardi, C.; Pinto, L.; Baruzzi, F.; Giovinazzo, G. Comparison of antibacterial and antioxidant properties of red (cv. Negramaro) and white (cv. Fiano) skin pomace extracts. Molecules 2021, 26, 5918. [Google Scholar] [CrossRef]
- Krasteva, D.; Ivanov, Y.; Chengolova, Z.; Godjevargova, T. Antimicrobial potential, antioxidant activity, and phenolic content of grape seed extracts from four grape varieties. Microorganisms 2023, 11, 395. [Google Scholar] [CrossRef]
- Moreno-Chamba, B.; Salazar-Bermeo, J.; Navarro-Simarro, P.; Narváez-Asensio, M.; Martínez-Madrid, M.C.; Saura, D.; Valero, M. Autoinducers modulation as a potential anti-virulence target of bacteria by phenolic compounds. Int. J. Antimicrob. Agents 2023, 62, 106937. [Google Scholar] [CrossRef]
- Ibrahim, B.M.; Dereli, F.T.; Erzurumlu, Y.; Önem, E.; Arin, E.; Muhammed, M.T. Anti-quorum sensing activity of Vitis vinifera L. seed extract on some bacteria: A greener alternative against antimicrobial resistance. Erwerbs-Obstbau 2023, 65, 1931–1939. [Google Scholar] [CrossRef]
- Rémy, B.; Mion, S.; Plener, L.; Elias, M.; Chabrière, E.; Daudé, D. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Front. Pharmacol. 2018, 9, 203. [Google Scholar] [CrossRef]
- Nicolosi, R.M.; Bonincontro, G.; Imperia, E.; Badiali, C.; De Vita, D.; Sciubba, F.; Dugo, L.; Guarino, M.P.L.; Altomare, A.; Simonetti, G.; et al. Protective Effect of Procyanidin-Rich Grape Seed Extract against Gram-Negative Virulence Factors. Antibiotics 2023, 12, 1615. [Google Scholar] [CrossRef] [PubMed]
- Mulinacci, N.; Valletta, A.; Pasqualetti, V.; Innocenti, M.; Giuliani, C.; Bellumori, M.; De Angelis, G.; Carnevale, A.; Locato, V.; Di Venanzio, C.; et al. Effects of Ionizing Radiation on Bio-Active Plant Extracts Useful for Preventing Oxidative Damages. Nat. Prod. Res. 2018, 33, 1106–1114. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Lima, M.D.C.; De Sousa, C.P.; Fernandez-Prada, C.; Harel, J.; Dubreuil, J.D.; De Souza, E.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog. 2019, 130, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Nunes Sagini, J.P.N.; Possamai Rossatto, F.C.P.; Souza, F.; Pilau, E.; Brandão Quines, C.B.; Ávila, D.S.; Ligabue-Braun, R.; Rigon Zimmer, A.R.; Inhoque Pereira, R.; Rigon Zimmer, K. Inhibition of Staphylococcus epidermidis and Pseudomonas aeruginosa biofilms by grape and rice agroindustrial residues. Microb. Pathog. 2024, 197, 107019. [Google Scholar] [CrossRef]
- Castangia, I.; Aroffu, M.; Fulgheri, F.; Abi Rached, R.; Corrias, F.; Sarais, G.; Nácher, A. From field to waste valorization: A preliminary study exploring the impact of the wine supply chain on the phenolic profile of three Sardinian pomace extracts. Foods 2024, 13, 1414. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef]
- Sailović, P.; Odžaković, B.; Bodroža, D.; Vulić, J.; Čanadanović-Brunet, J.; Zvezdanović, J.; Danilović, B. Polyphenolic Composition and Antimicrobial, Antioxidant, Anti-Inflammatory, and Antihyperglycemic Activity of Different Extracts of Teucrium montanum from Ozren Mountain. Antibiotics 2024, 13, 358. [Google Scholar] [CrossRef]
- Palaiogiannis, D.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Successive Solvent Extraction of Polyphenols and Flavonoids from Cistus creticus L. Leaves. Oxygen 2023, 3, 274–286. [Google Scholar] [CrossRef]
- Supriatno, S.; Lelifajri, L. Effect of sequential extraction on total phenolic content (TPC) and antioxidant activities (AA) of Luffa acutangula Linnaeus dried pulps. AIP Conf. Proc. 2018, 2002, 020062. [Google Scholar] [CrossRef]
- Nawaz, H.; Aslam, M.; Tul Muntaha, S.; Haq Nawaz, C. Effect of Solvent Polarity and Extraction Method on Phytochemical Composition and Antioxidant Potential of Corn Silk. Free. Radic. Antioxid. 2019, 9, 5–11. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Sousa, A.M.; Gando-Ferreira, L.M.; Quina, M.J. Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules 2023, 28, 2715. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Rondini, G.; Calabretta, M.M.; Michelini, E.; Vallini, V.; Fava, F.; Roda, A.; Minnucci, G.; Tassoni, A. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities. New Biotechnol. 2017, 39, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Viola, C.M.; Torres-Carro, R.; Cartagena, E.; Isla, M.I.; Alberto, M.R.; Arena, M.E. Effect of wine wastes extracts on the viability and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus strains. Evid.-Based Complement. Altern. Med. 2018, 2018, 9526878. [Google Scholar] [CrossRef]
- Sinan, K.I.; Chiavaroli, A.; Orlando, G.; Bene, K.; Zengin, G.; Cziáky, Z.; Jekő, J.; Mahomoodally, M.F.; Picot-Allain, M.C.N.; Menghini, L.; et al. Biopotential of Bersama abyssinica Fresen stem bark extracts: UHPLC profiles, antioxidant, enzyme inhibitory, and antiproliferative propensities. Antioxidants 2020, 9, 163. [Google Scholar] [CrossRef]
- Zekeya, N.; Ibrahim, M.; Mamiro, B.; Ndossi, H.; Kilonzo, M.; Mkangara, M.; Chacha, M.; Chilongola, J.; Kideghesho, J. Potential of natural phenolic antioxidant compounds from Bersama abyssinica (Meliathaceae) for treatment of chronic diseases. Saudi J. Biol. Sci. 2022, 29, 103273. [Google Scholar] [CrossRef]
- Silva, V.; Silva, A.; Ribeiro, J.; Aires, A.; Carvalho, R.; Amaral, J.S.; Barros, L.; Igrejas, G.; Poeta, P. Screening of Chemical Composition, Antimicrobial and Antioxidant Activities in Pomegranate, Quince, and Persimmon Leaf, Peel, and Seed: Valorization of Autumn Fruits By-Products for a One Health Perspective. Antibiotics 2023, 12, 1086. [Google Scholar] [CrossRef]
- Brown, C.; Jiang, X. Activities of muscadine grape skin and polyphenolic constituents against Helicobacter pylori. J. Appl. Microbiol. 2013, 114, 982–991. [Google Scholar] [CrossRef]
- Silva, A.; Martins, R.; Silva, V.; Fernandes, F.; Carvalho, R.; Aires, A.; Poeta, P. Red grape by-products from the demarcated Douro region: Chemical analysis, antioxidant potential and antimicrobial activity against food-borne pathogens. Molecules 2024, 29, 4708. [Google Scholar] [CrossRef] [PubMed]
- Sateriale, D.; Forgione, G.; Di Rosario, M.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; Pagliarulo, C. Vine-winery byproducts as a precious resource of natural antimicrobials: In vitro antibacterial and antibiofilm activity of grape pomace extracts against foodborne pathogens. Microorganisms 2024, 12, 437. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Saavedra, M.J.; Simões, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 2012, 28, 755–767. [Google Scholar] [CrossRef]
- Lou, Z.; Tang, Y.; Song, X.; Wang, H. Metabolomics-based screening of biofilm-inhibitory compounds against Pseudomonas aeruginosa from burdock leaf. Molecules 2015, 20, 16266–16277. [Google Scholar] [CrossRef]
- Ivanov, M.; Novović, K.; Malešević, M.; Dinić, M.; Stojković, D.; Jovčić, B.; Soković, M. Polyphenols as inhibitors of antibiotic resistant bacteria-mechanisms underlying rutin interference with bacterial virulence. Pharmaceuticals 2022, 15, 385. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, X.; Li, K.; Li, X.; Yu, K.; Liao, X.; Shi, B. Prevention of bacterial colonization based on self-assembled metal-phenolic nanocoating from rare-earth ions and catechin. ACS Appl. Mat. Interfaces 2020, 12, 22237–22245. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.M.F.; de Almeida, F.A.; Pinto, U.M. Exploring the antivirulence potential of phenolic compounds to inhibit quorum sensing in Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 2025, 41, 32. [Google Scholar] [CrossRef]
- Fu, L.; Lu, W.; Zhou, X. Phenolic Compounds and in Vitro Antibacterial and Antioxidant Activities of Three Tropic Fruits: Persimmon, Guava, and Sweetsop. Biomed. Res. Int. 2016, 2016, 4287461. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, X.; Wang, L.; Zeng, W.; Sun, Y.; Zhou, C.; Zhou, T.; Shen, M. Effect of chlorogenic acid on the quorum-sensing system of clinically isolated multidrug-resistant Pseudomonas aeruginosa. J. Appl. Microbiol. 2022, 132, 1008–1017. [Google Scholar] [CrossRef]
- Benedec, D.; Oniga, I.; Hanganu, D.; Tiperciuc, B.; Nistor, A.; Vlase, A.M.; Laurian Vlase, L.; Puşcas, C.; Duma, M.; Login, C.C.; et al. Stachys Species: Comparative evaluation of phenolic profile and antimicrobial and antioxidant potential. Antibiotics 2023, 12, 1644. [Google Scholar] [CrossRef]
- Qian, W.; Yang, M.; Wang, T.; Sun, Z.; Liu, M.; Zhang, J.; Zeng, Q.; Cai, C.; Li, Y. Antibacterial mechanism of vanillic acid on physiological, morphological, and biofilm properties of carbapenem-resistant Enterobacter hormaechei. J. Food Protec. 2020, 83, 576–583. [Google Scholar] [CrossRef]
- Shariati, A.; Noei, M.; Askarinia, M.; Khoshbayan, A.; Farahani, A.; Chegini, Z. Inhibitory effect of natural compounds on quorum sensing system in Pseudomonas aeruginosa: A helpful promise for managing biofilm community. Front. Pharmacol. 2024, 15, 1350391. [Google Scholar] [CrossRef]
- Roy, P.K.; Song, M.G.; Park, S.Y. Impact of quercitin against Salmonella typhimurium biofilm formation on food-contact surfaces and molecular mechanism pattern. Foods 2022, 11, 977. [Google Scholar] [CrossRef]
- Talavera, M.M.; Nuthakki, S.; Cui, H.; Jin, Y.; Liu, Y.; Nelin, L.D. Immunostimulated Arginase II Expression in Intestinal Epithelial Cells Reduces Nitric Oxide Production and Apoptosis. Front. Cell Dev. Biol. 2017, 5, 227133. [Google Scholar] [CrossRef]
- Tang, X.; Liu, B.; Wang, X.; Yu, Q.; Fang, R. Epidermal Growth Factor, through Alleviating Oxidative Stress, Protect IPEC-J2 Cells from Lipopolysaccharides-Induced Apoptosis. Int. J. Mol. Sci. 2018, 19, 848. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, T.N.; Barros, A.O.; Nogueira, J.R.; Fruet, A.C.; Rodrigues, I.C.; Calcagno, D.Q.; Smith, M.A.C.; Souza, T.P.; Barros, S.B.M.; Vasconcellos, M.C.; et al. Anti-wrinkle and anti-whitening effects of jucá (Libidibia ferrea Mart.) extracts. Arch. Dermatol. Res. 2016, 308, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Casarini, T.P.A.; Frank, L.A.; Pohlmann, A.R.; Guterres, S.S. Dermatological applications of the flavonoid phloretin. Eur. J. Pharmacol. 2020, 889, 173593. [Google Scholar] [CrossRef]
- Viola, C.M.; Torres-Carro, R.; Verni, M.C.; del Valle Leal, E.; Dall’Acqua, S.; Rodrigues, F.; Arena, M.E. Interference in the production of bacterial virulence factors by olive oil processing waste. Food Biosc. 2022, 49, 101883. [Google Scholar] [CrossRef]
- Ahmed, S.A.K.S.; Rudden, M.; Smyth, T.J.; Dooley, J.S.G.; Marchant, R.; Banat, I.M. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl. Microbiol. Biotech. 2019, 103, 3521–3535. [Google Scholar] [CrossRef]
- Ouyang, J.; Sun, F.; Feng, W.; Sun, Y.; Qiu, X.; Xiong, L.; Liu, Y.; Chen, Y. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J. Appl. Microbiol. 2016, 120, 966–974. [Google Scholar] [CrossRef]
- Abdul-Hussein, Z.; Atia, S. Antimicrobial effect of pyocyanin extracted from Pseudomonas aeruginosa. Eur. J. Exp. Biol. 2016, 6, 1–4. [Google Scholar]
- Ugurlu, A.; Karahasan Yagci, A.; Ulusoy, S.; Aksu, B.; Bosgelmez-Tinaz, G. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed. 2016, 6, 698–701. [Google Scholar] [CrossRef]
- Rütschlin, S.; Böttcher, T. Inhibitors of bacterial swarming behavior. Chemistry 2019, 26, 964–979. [Google Scholar] [CrossRef]
- Carette, J.; Nachtergael, A.; Duez, P.; Jaziri, M.; Rasamiravaka, T. Natural compounds inhibiting Pseudomonas aeruginosa biofilm formation by targeting quorum sensing circuitry. In Bacterial Biofilms; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- O’May, C.; Tufenkji, N. The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl. Environ. Microbiol. 2011, 77, 3061–3067. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.A.; Lima, E.M.F.; Franco, B.D.G.M.; Pinto, U.M. Exploring Phenolic Compounds as Quorum Sensing Inhibitors in Foodborne Bacteria. Front. Microbiol. 2012, 12, 735931. [Google Scholar] [CrossRef]
- Duarte, A.; Alves, A.C.; Ferreira, S.; Silva, F.; Domingues, F.C. Resveratrol inclusion complexes: Antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Food Res. Int. 2015, 77, 244–250. [Google Scholar] [CrossRef]
- Bali, E.B.; Türkmen, K.E.; Erdönmez, D.; Saglam, N. Comparative study of inhibitory potential of dietary phytochemicals against quorum sensing activity of and biofilm formation by Chromobacterium violaceum 12472, and swimming and swarming behavior of Pseudomonas aeruginosa PAO1. Food Technol. Biotechnol. 2019, 57, 212–221. [Google Scholar] [CrossRef]
- Rivera, M.L.C.; Hassimotto, N.M.A.; Bueris, V.; Sircili, M.P.; Almeida, F.A.; Pinto, U.M. Effect of Capsicum frutescens extract, capsaicin, and luteolin on quorum sensing regulated phenotypes. J. Food Sci. 2019, 84, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Nguta, J.M.; Mbaria, J.M.; Gakuya, D.W.; Gathumbi, P.K.; Kabasa, J.D.; Kiama, S.G. Biological screening of Kenyan medicinal plants using Artemia salina L. (Artemiidae). Pharmacologyonline 2011, 2, 458–478. [Google Scholar]
- Hassan, Y.I.; Kosir, V.; Yin, X.; Ross, K.; Diarra, M.S. Grape Pomace as a Promising Antimicrobial Alternative in Feed: A Critical Review. J. Agric. Food Chem. 2019, 67, 9705–9718. [Google Scholar] [CrossRef]
- Bouarab Chibane, L.; Degraeve, P.; Ferhout, H.; Bouajila, J.; Oulahal, N. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 2019, 99, 1457–1474. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.; Zhao, Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef]
- Marchiani, R.; Bertolino, M.; Ghirardello, D.; McSweeney, P.L.; Zeppa, G. Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. J. Food Sci. Technol. 2016, 53, 1585–1596. [Google Scholar] [CrossRef]
- Demirkol, M.; Tarakci, Z. Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT 2018, 97, 770–777. [Google Scholar] [CrossRef]
- Chouchouli, V.; Kalogeropoulos, N.; Konteles, S.J.; Karvela, E.; Makris, D.P.; Karathanos, V.T. Fortification of yoghurts with grape (Vitis vinifera) seed extracts. LWT-Food Sci. Technol. 2013, 53, 522–529. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Zhao, L.; Chen, L.; He, Y.; Yang, H. Vacuum impregnation of fish gelatin combined with grape seed extract inhibits protein oxidation and degradation of chilled tilapia fillets. Food Chem. 2019, 294, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Ren, X.; Li, Y.; Mao, L. The beneficial effects of grape seed, sage and oregano extracts on the quality and volatile flavor component of hairtail fish balls during cold storage at 4 °C. LWT 2019, 101, 25–31. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, L.; Zhao, L.; He, Y.; Yang, H. Antimicrobial kinetics of nisin and grape seed extract against inoculated Listeria monocytogenes on cooked shrimps: Survival and residual effects. Food Control 2020, 115, 107278. [Google Scholar] [CrossRef]
- Kakaei, S.; Shahbazi, Y. Effect of chitosan-gelatin film incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil on survival of Listeria monocytogenes and chemical, microbial and sensory properties of minced trout fillet. LWT Food Sci. Technol. 2016, 72, 432–438. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Ind. Crops Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.L.; Hufnagle, W.O.; Kowallk, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Molina, R.D.I.; Campos-Silva, R.; Macedo, A.J.; Blázquez, M.A.; Alberto, M.R.; Arena, M.E. Antibiofilm activity of coriander (Coriandrum sativum L.) grown in Argentina against food contaminants and human pathogenic bacteria. Ind. Crops Prod. 2020, 151, 112380. [Google Scholar] [CrossRef]
- Gupta, P.; Sarkar, A.; Sandhu, P.; Daware, A.; Das, M.C.; Akhter, Y.; Bhattacharjee, S. Potentiation of antibiotic against Pseudomonas aeruginosa biofilm: A study with plumbagin and gentamicin. J. Appl. Microbiol. 2017, 123, 246–261. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.A.; González, S.N.; Alberto, M.R.; Arena, M.E. Human probiotic bacteria attenuate Pseudomonas aeruginosa biofilm and virulence by quorum-sensing inhibition. Biofouling 2020, 36, 597–609. [Google Scholar] [CrossRef]
Phytochemical Composition | Ethyl Acetate | Ethanol | ||||
---|---|---|---|---|---|---|
Bonarda | Malbec | Tannat | Bonarda | Malbec | Tannat | |
Total phenolics (µg GAE/mg) | 37.8 ± 3.3 b | 23.8 ± 3.3 a | 39.9 ± 3.3 b | 113.8 ± 6.6 d | 97.3 ± 6.6 c | 162.5 ± 6.6 e |
Non Flavonoids (µg GAE/mg) | 20.4 ± 2.6 b | 14.6 ± 0.3 a | 18.2 ± 1.2 a,b | 40.5 ± 0.2 d | 26.1 ± 3.0 c | 53.8 ± 3.1 e |
Flavones/Flavonols (µg QE/mg) | 3.6 ± 0.3 a,b | 3.4 ± 0.2 a,b | 5.4 ± 0.1 d | 4.8 ± 0.2 c | 4.0 ± 0.6 b,c | 7.0 ± 0.3 e |
Tannins (µg PB2E/mg) | 1.1 ± 0.0 a | 0.9 ± 0.0 a | 1.3 ± 0.0 a | 24.5 ± 0.3 c | 10.6 ± 0.0 b | 44.4 ± 1.0 d |
Anthocyanins (µg C3GE/mg) | ND | ND | ND | 2421.3 ± 11.8 c | 922.6 ± 76.7 a | 1632.3±431.1 b |
Phenolic Compound | Ethyl Acetate | Ethanol | ||||
---|---|---|---|---|---|---|
Bonarda | Malbec | Tannat | Bonarda | Malbecc | Tannat | |
Phenolic acids | ||||||
Gallic acid | 5.5 ± 0.3 | 402.6 ± 20.1 | 503.3 ± 25.2 | 4.8 ± 0.2 | 107.3 ± 5.4 | 143.6 ± 7.2 |
Protocatechuic acid | 59.00 ± 3.0 | 13.0 ± 0.7 | 4.8 ± 0.2 | 8.8 ± 0.4 | 149.7 ± 7.5 | ND |
Neochlorogenic acid | 2.19 ± 0.1 | <LOD | 1.2 ± 0.1 | 25.6 ± 1.3 | 62.3 ± 3.1 | 71.2 ± 3.6 |
Caftaric acid | 32.8 ± 1.6 | 5.4 ± 0.3 | 21.9 ± 1.1 | 25.3 ± 1.3 | 48.3 ± 2.4 | 71.0 ± 3.6 |
Chlorogenic acid | 36.8 ± 1.8 | 13.7 ± 0.7 | 30.5 ± 1.5 | 179.4 ± 9.0 | 294.4 ± 14.7 | 409.1 ± 20.5 |
4-O-Caffeyolquinic acid | 483.5 ± 24.2 | 158.7 ± 7.9 | 913.4 ± 45.7 | 3980.4 ± 199.0 | 3340.5 ± 167.0 | 6431.9 ± 321.6 |
Vanillic acid | 1604.7 ± 80.2 | 801.1 ± 40.1 | 678.8 ± 33.9 | 1247.8 ± 62.4 | 1361.7 ± 68.1 | 1589.3 ± 79.5 |
Caffeic acid | 13.9 ± 0.7 | 10.8 ± 0.5 | 17.5 ± 0.9 | 38.3 ± 1.9 | 23.6 ± 1.2 | 57.1 ± 2.9 |
Syringic acid | 26.3 ± 1.3 | ND | ND | ND | ND | 50.5 ± 2.5 |
p-Coumaric acid | 12.7 ± 0.6 | 17.4 ± 0.9 | 13.5 ± 0.7 | 8.2 ± 0.4 | 12.1 ± 0.6 | 8.7 ± 0.4 |
Ferulic acid | ND | <LOQ | 2.1 ± 0.1 | 6.9 ± 0.3 | 9.9 ± 0.5 | 25.2 ± 1.3 |
Caffeine | 16.5 ± 0.8 | 13.5 ± 0.7 | 7.7 ± 0.4 | 24.3 ± 1.2 | 31.2 ± 1.6 | 14.8 ± 0.7 |
Sinapic acid | ND | ND | 1.6 ± 0.1 | ND | ND | 22.8 ± 1.1 |
3,5-di-Caffeoylquinic acid | 1.2 ± 0.1 | 4.9 ± 0.2 | 5.2 ± 0.3 | 8.7 ± 0.4 | 12.8 ± 0.6 | 3.2 ± 0.2 |
Ellagic acid | 7.4 ± 0.4 | 1.5 ± 0.1 | 4.9 ± 0.2 | 76.9 ± 3.8 | 38.4 ± 1.9 | 63.9 ± 3.2 |
4,5-di-O-Caffeoylquinic acid | 62.1 ± 3.1 | 18.6 ± 0.9 | 25.4 ± 1.3 | 82.1 ± 4.1 | 42.3 ± 2.1 | 48.6 ± 2.4 |
Flavonoids | ||||||
(+)-Catechin | 73.9 ± 3.7 | 31.1 ± 1.6 | 95.9 ± 4.8 | 442.8 ± 22.1 | 330.3 ± 16.5 | 720.0 ± 36.0 |
(−)-Epicatechin | 11.8 ± 0.6 | 26.1 ± 1.3 | 13.9 ± 0.7 | 416.8 ± 20.8 | 402.2 ± 20.1 | 442.9 ± 22.1 |
Naringin | 19.7 ± 1.0 | 20.5 ± 1.0 | 26.9 ± 1.3 | 30.4 ± 1.5 | 16.0 ± 0.8 | 22.1 ± 1.1 |
Quercetin-3-O-galactoside | 22.1 ± 1.1 | 35.9 ± 1.8 | 23.8 ± 1.2 | 54.3 ± 2.7 | 27.3 ± 1.4 | 49.3 ± 2.5 |
Quercetin-3-O-glucopyranoside | 12.0 ± 0.6 | 31.6 ± 1.6 | 2.7 ± 0.1 | 7.9 ± 0.4 | 1.4 ± 0.1 | 1.2 ± 0.1 |
Rutin | 29.8 ± 1.5 | 6.1 ± 0.3 | 110.2 ± 5.5 | 307.5 ± 15.4 | 33.8 ± 1.7 | 832.8 ± 41.6 |
Phloridzin | 28.3 ± 1.4 | 19.9 ± 1.0 | 20.8 ± 1.0 | 147.0 ± 7.4 | 73.0 ± 3.7 | 143.8 ± 7.2 |
Myricetin | 17.3 ± 0.9 | 65.7 ± 3.3 | 92.9 ± 4.6 | 262.5 ± 13.1 | 105.9 ± 5.3 | 161.6 ± 8.1 |
Kaempferol-3-O-glucoside | ND | 25.2 ± 1.3 | 52.6 ± 2.6 | ND | ND | ND |
Kaempferol-3-O-rutinoside | ND | ND | ND | ND | 11.4 ± 0.6 | 13.2 ± 0.7 |
Isorhamnetin-3-O-rutinoside | 2.4 ± 0.1 | 12.0 ± 0.6 | 10.6 ± 0.5 | 16.2 ± 0.8 | 19.7 ± 1.0 | 18.7 ± 0.9 |
Naringenin | <LOD | 7.3 ± 0.4 | 8.4 ± 0.4 | 11.4 ± 0.6 | 8.2 ± 0.4 | 20.2 ± 1.0 |
Quercetin | 1.9 ± 0.1 | 12.8 ± 0.6 | 23.2 ± 1.2 | 27.5 ± 1.4 | 47.8 ± 2.4 | 135.4 ± 6.8 |
Phloretin | 2.4 ± 0.1 | 1.3 ± 0.1 | 2.8 ± 0.1 | 6.9 ± 0.3 | 1.3 ± 0.1 | 7.0 ± 0.4 |
Tiliroside | ND | 2.4 ± 0.1 | 4.7 ± 0.2 | 20.1 ± 1.0 | 25.3 ± 1.3 | 23.2 ± 1.2 |
Kaempferol | 9.0 ± 0.4 | 1.1 ± 0.1 | 7.9 ± 0.4 | 13.0 ± 0.7 | 10.9 ± 0.5 | 8.8 ± 0.4 |
Apigenin | 1.1 ± 0.1 | <LOD | <LOD | 2.6 ± 0.1 | 1.4 ± 0.1 | 1.6 ± 0.1 |
Chrysin | <LOD | <LOD | <LOD | 1.1 ± 0.1 | 1.4 ± 0.1 | 1.1 ± 0.1 |
Stilbenoids and others | ||||||
trans-Polydatin | 2.3 ± 0.1 | 2.8 ± 0.1 | 2.5 ± 0.1 | 11.4 ± 0.6 | 1.3 ± 0.1 | 15.5 ± 0.8 |
Resveratrol | 3.5 ± 0.2 | <LOD | 1.3 ± 0.1 | 7.60.4 | 11.5 ± 0.6 | 7.8 ± 0.4 |
trans-Epsilon viniferin | 3.7 ± 0.2 | <LOD | 12.6 ± 0.6 | 15.0 ± 0.8 | 1.4 ± 0.1 | 20.4 ± 1.0 |
Total (mg/100 g DW) | 2601.7 | 1763.2 | 2732.6 | 7504.7 | 6664.5 | 11,637.2 |
Variety | Extract | Phosphomolybdenum Reducing Capacity (μg AAE/mg DW) | ABTS•+ Scavenging IC50 (μg/mL) | Fe3+ Reducing RC50 (μg/mL) | NO Scavenging IC50 (μg/mL) |
---|---|---|---|---|---|
Bonarda | Ethyl acetate | 27.2 ± 0.7 b,c | 48.4 ± 2.3 c | 161.2 ± 1.8 e | - |
Ethanol | 82.9 ± 2.6 e | 41.4 ± 0.1 b,c | 42.1 ± 0.4 c | - | |
Malbec | Ethyl acetate | 20.5 ± 1.3 a,b | 86.5 ± 1.5 f | 312.4 ± 2.9 f | - |
Ethanol | 66.6 ± 4.9 d | 71.3 ± 4.1 e | 67.9 ± 0.8 d | - | |
Tannat | Ethyl acetate | 27.7 ± 0.1 b,c | 59.9 ± 1.1 d | 185.4 ± 0.01 e | - |
Ethanol | 127.7 ± 1.8 f | 36.9 ± 1.9 b | 30.9 ± 0.01 b | 800.3 ± 27.4 b | |
Controls | Trolox | - | 3.7 ± 0.1 a | - | - |
BHT | - | - | 11.4 ± 0.1 a | - | |
Ascorbic acid | - | - | - | 133.8 ± 6.3 a |
Variety | Extract | P. aeruginosa PAO1 | P. aeruginosa LVP 60 | ||
---|---|---|---|---|---|
250 µg/mL | 500 µg/mL | 250 µg/mL | 500 µg/mL | ||
Bonarda | Ethyl Acetate | 83 ± 6 b(17%) | 66 ± 8 b(34%) | 64 ± 5 b(36%) | 63 ± 7 b(37%) |
Ethanol | 52 ± 4 c(48%) | 40 ± 5 c(60%) | 65 ± 5 b(35%) | 52 ± 6 b,c(48%) | |
Malbec | Ethyl Acetate | 53 ± 1 c(47%) | 33 ± 6 c,d(67%) | 46 ± 4 c(54%) | 40 ± 3 c(60%) |
Ethanol | 50 ± 4 c(50%) | 35 ± 5 c,d(65%) | 42 ± 9 c(58%) | 43 ± 5 c(57%) | |
Tannat | Ethyl Acetate | 55 ± 3 c(44%) | 33 ± 2 c,d(67%) | 50 ± 5 c(50%) | 45 ± 3 c(55%) |
Ethanol | 54 ± 4 c(46%) | 32 ± 1 c,d(68%) | 50 ± 3 c(50%) | 40 ± 7 c(60%) | |
Control | Vehicle (DMSO) | 100 ± 7 a | 100 ± 7 a | 100 ± 4 a | 100 ± 4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viola, C.M.; Danilovich, M.E.; Torres-Carro, R.; Moreira, M.M.; Rodrigues, F.; Cartagena, E.; Alberto, M.R.; Blázquez, M.A.; Arena, M.E. Phenolic-Rich Wine Pomace Extracts as Antioxidant and Antipathogenic Agents Against Pseudomonas aeruginosa. Antibiotics 2025, 14, 384. https://doi.org/10.3390/antibiotics14040384
Viola CM, Danilovich ME, Torres-Carro R, Moreira MM, Rodrigues F, Cartagena E, Alberto MR, Blázquez MA, Arena ME. Phenolic-Rich Wine Pomace Extracts as Antioxidant and Antipathogenic Agents Against Pseudomonas aeruginosa. Antibiotics. 2025; 14(4):384. https://doi.org/10.3390/antibiotics14040384
Chicago/Turabian StyleViola, Carolina María, Mariana Elizabeth Danilovich, Romina Torres-Carro, Manuela M. Moreira, Francisca Rodrigues, Elena Cartagena, María Rosa Alberto, María Amparo Blázquez, and Mario Eduardo Arena. 2025. "Phenolic-Rich Wine Pomace Extracts as Antioxidant and Antipathogenic Agents Against Pseudomonas aeruginosa" Antibiotics 14, no. 4: 384. https://doi.org/10.3390/antibiotics14040384
APA StyleViola, C. M., Danilovich, M. E., Torres-Carro, R., Moreira, M. M., Rodrigues, F., Cartagena, E., Alberto, M. R., Blázquez, M. A., & Arena, M. E. (2025). Phenolic-Rich Wine Pomace Extracts as Antioxidant and Antipathogenic Agents Against Pseudomonas aeruginosa. Antibiotics, 14(4), 384. https://doi.org/10.3390/antibiotics14040384